Exercises:

1- Determine the domain of each of the following functions
i) $f(x, y)=\ln (y-2 x)$.
ii) $f(x, y)=\frac{1}{x y}$.
iii) $f(x, y)=y \sqrt{x^{2}-1}$.
iv) $f(x, y)=\frac{x-1}{\sqrt{x+y+1}}$.

2- Graph and describe the level curve for the following functions:
a) $f(x, y)=\sqrt{x^{2}-y^{2}}$
b) $f(x, y)=y-x^{2}-1$.
c) $f(x, y)=x^{2}+y^{2}$.

Exercises: Find the radius of convergence and interval of convergence for the following power series

1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}(x)^{n}$
2) $\sum_{n=1}^{\infty} \frac{(x)^{2 n}}{(-3)^{n}}$
3) $\sum_{n=0}^{\infty} n^{n}(x)^{n}$
4) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n^{3}+3}$
5) $\sum_{n=0}^{\infty} \frac{(x+17)^{n}}{n!}$
6) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2 n!}(x)^{2 n}$
7) $\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{2}}$

Let v be any nonzero vector. Then $u=v /|v|$ is the unit vector having the same direction as v.

Example 3: Find the unit vector having the same direction as $v=2 i-3 j$.
Example 4: Find the vector v whose direction is $\frac{5 \pi}{4}$ and whose magnitude is 7 .

H.W.

In Problems 7-18, find the magnitude and direction of the given vector.
7. $\mathbf{v}=(4,4)$
8. $v=(-4,4)$
9. $\mathbf{v}=(4,-4)$
10. $\mathbf{v}=(-4,-4)$
11. $\mathbf{v}=(\sqrt{3}, 1)$
12. $\mathbf{v}=(1, \sqrt{3})$
13. $\mathbf{v}=(-1, \sqrt{3})$
14. $\mathbf{v}=(1,-\sqrt{3})$
15. $\mathbf{v}=(-1,-\sqrt{3})$
16. $\mathbf{v}=(1,2)$
17. $\mathbf{v}=(-5,8)$
18. $v=(11,-14)$

Example 3: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ dose not exist.
Example 4: Find $\lim _{(x, y) \rightarrow(1,0)} \frac{y}{x+y-1}$.
Example 5: Using the epsilon and delta to prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+y^{2}}=0$.
H.W: Prove that $\lim _{(x, y) \rightarrow(1,2)} x^{2}+2 y=5$.
H.W: Show that the function $\frac{3 x^{3} y}{x^{4}+y^{4}}$, has no limit as (x, y) approaches $(0,0)$.

