Example 4 Evaluating $\iint_{R} 3 x d A$ over a Polar Rectangular Region

$$
R=\{(r, \theta): 1 \leq r \leq 2 \text { and } 0 \leq \theta \leq \pi\}
$$

Example 5 Evaluating $\iint_{R}(x+y) d A$ over a Polar Rectangular Region

$$
R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4 \text { and } x \leq 0\right\}
$$

Example 6: Use polar coordinates to evaluate

$$
\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x
$$

Example 7: Find the volume enclosed by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
Example 8: Find the volume of the solid bounded above by the surface $z=3+r$ and below by the region enclosed by the cardioid $r=1+\sin \theta$

Example 6: Find symmetric equations of the line in the $x y$-plane that passes through the points $\left(x_{1}, y_{1}, 0\right)$ and $\left(x_{2}, y_{2}, 0\right)$.

In Problems 1-22, find a vector equation, parametric equations, and symmetric equations of the indicated line.

1. Containing $(2,1,3)$ and $(1,2,-1)$.
2. Containing $(1,3,2)$ and $(2,4,-2)$.
3. Containing $(-4,1,3)$ and $(-4,0,1)$.
4. Containing $(1,2,3)$ and $(3,2,1)$.
5. Containing ($1,2,4$) and ($1,2,7$).
6. Containing ($1,-1,1$) and ($-1,1,-1$).
7. Containing $(-2,4,5)$ and $(3,7,2)$.
8. Containing $(2,3,-4)$ and $(2,0,-4)$.
9. Containing $(7,1,3)$ and $(-1,-2,3)$.
10. Containing $(-3,-1,-6)$ and $(-3,1,6)$.
11. Containing $(2,2,1)$ and parallel to $2 \mathbf{i}-\mathbf{j}-\mathbf{k}$.
12. Containing ($-1,-6,2$) and parallel to $4 \mathbf{i}+\mathbf{i}-3 \mathbf{k}$.
13. Containing $(1,0,3)$ and parallel to $\mathbf{i}-\mathbf{j}$.
14. Containing $(2,1,-4)$ and parallel to $i+4 \mathbf{k}$.
15. Containing $(-1,-2,5)$ and parallel to $-3 \mathbf{j}+7 \mathbf{k}$.
16. Containing $(-2,3,-2)$ and parallel to 4 k .
17. Containing $(-1,-3,1)$ and parallel to -7 j .

Example 4 Express $\iint_{Q} \int f(x, y, z) d V$ as an iterated integral if Q is the region in the first octant bounded by the coordinate planes and the graphs of

$$
z-2=x^{2}+\frac{1}{4} y^{2}, \text { and } x^{2}+y^{2}=1
$$

Example 5 Find the volume of the solid that is bounded by the cylinder $\mathrm{y}=x^{2}$ and by the planes $\mathrm{y}+\mathrm{z}=4$ and $\mathrm{z}=0$.
H.W 1: Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x^{2}+y^{2}}}^{2} x y z d z d y d x$.
H.W 2: Evaluate $\int_{0}^{4} \int_{0}^{\frac{4-x}{2}} \int_{0}^{\frac{12-3 x-6 y}{4}} 1 d z d y d x$, using the order of integration $d V=d y d x d z$.

Let v be any nonzero vector. Then $u=v /|v|$ is the unit vector having the same direction as v.

Example 3: Find the unit vector having the same direction as $v=2 i-3 j$.
Example 4: Find the vector v whose direction is $\frac{5 \pi}{4}$ and whose magnitude is 7 .

H.W.

In Problems 7-18, find the magnitude and direction of the given vector.
7. $\mathbf{v}=(4,4)$
8. $v=(-4,4)$
9. $\mathbf{v}=(4,-4)$
10. $\mathbf{v}=(-4,-4)$
11. $\mathbf{v}=(\sqrt{3}, 1)$
12. $\mathbf{v}=(1, \sqrt{3})$
13. $\mathbf{v}=(-1, \sqrt{3})$
14. $\mathbf{v}=(1,-\sqrt{3})$
15. $\mathbf{v}=(-1,-\sqrt{3})$
16. $\mathbf{v}=(1,2)$
17. $\mathbf{v}=(-5,8)$
18. $v=(11,-14)$

In Problems 19-26, write in the form $a \mathbf{i}+b \mathbf{j}$ the vector \mathbf{v} that is represented by $\overrightarrow{P Q}$. Sketch $\overrightarrow{P Q}$ and \mathbf{v}.
19. $P=(1,2) ; Q=(1,3)$
20. $P=(2,4) ; Q=(-7,4)$
21. $P=(5,2) ; Q=(-1,3)$
22. $P=(8,-2) ; Q=(-3,-3)$
23. $P=(7,-1) ; Q=(-2,4)$
24. $P=(3,-6) ; Q=(8,0)$
25. $P=(-3,-8) ; Q=(-8,-3)$
26. $P=(2,4) ; Q=(-4,-2)$
27. Let $\mathbf{u}=(2,3)$ and $\mathbf{v}=(-5,4)$. Find the following:
(a) $3 \mathbf{u}$
(b) $u+v$
(c) $\mathbf{v}-u$
(d) $2 \mathbf{u}-7 \mathbf{v}$

Sketch these vectors.
28. Let $\mathbf{u}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{v}=-4 \mathbf{i}+6 \mathbf{j}$. Find the following:
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}-\mathrm{v}$
(c) 3 u
(d) $-7 v$
(e) $8 u-3 v$
(f) $4 v-6 u$

Sketch these vectors.
29. Show that the vectors \mathbf{i} and \mathbf{j} are unit vectors.
30. Show that the vector $(1 / / / \overline{2}) \mathbf{i}+(1 / \sqrt{2}) \mathbf{j}$ is a unit vector.
31. Show that if $\mathbf{v}=a \mathrm{i}+b \mathrm{j} \neq \mathbf{0}$, then $\mathbf{u}=\left(a / \sqrt{a^{2}+b^{2}}\right) \mathbf{i}+\left(b / \sqrt{a^{2}+b^{2}}\right) \mathbf{j}$ is a unit vector having the same direction as \mathbf{v}.

THE DOT PRODUCT

Definition 2: Dot Product Let $u=\left(a_{1}, \mathrm{~b}_{1}\right)=a_{1} i+b_{1} j$ and $v=\left(a_{2}, \mathrm{~b}_{2}\right)=$ $a_{2} i+b_{2} j$. Then the dot product of u and v denoted $\boldsymbol{u} \cdot \boldsymbol{v}$, is defined by

$$
\mathbf{u} \cdot \boldsymbol{v}=a_{1} a_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}
$$

REMARK. The dot product of two vectors is a scalar. For this reason the dot product is often called the scalar product. It is also called the inner product.

Example 5: If $u=(1,3)$ and $v=(4,-7)$, find $\mathbf{u} \cdot \boldsymbol{v}$.
Theorem 1. For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, and scalar α,
(i) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(iii) $(\alpha \mathbf{u}) \cdot \mathbf{v}=\underline{\alpha}(\mathbf{u} \cdot \mathbf{v})$
(v) $|\mathbf{u}|=\sqrt{\mathbf{u} \cdot \mathbf{u}}$
(ii) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(iv) $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

Definition 3 ANGLE BETWEEN TWO Vectors Let u and v be two nonzero vectors. Then the angle φ between u and v is defined to be the smallest angle between the representations of u and v that have the origin as their initial points.

Theorem 2. Let u and v be two nonzero vectors. Then if φ is the angle between them,

$$
\cos \varphi=\frac{\mathbf{u} \cdot \boldsymbol{v}}{|\mathbf{u}||\boldsymbol{v}|}
$$

we could define the dot product $\mathbf{u} \cdot \boldsymbol{v}$ by

$$
\mathbf{u} \cdot \boldsymbol{v}=|\mathbf{u}||\boldsymbol{v}| \cos \varphi
$$

Example 6 Find the cosine of the angle between the vectors $u=2 i+3 j$ and $v=-7 i+j$.

Definition 4 PARALLEL VECTORS Two nonzero vectors u and v are parallel if the angle between them is 0 or π.

Example 7 Show that the vectors $u=(2,-3)$ and $v=(-4,6)$ are parallel.

Definition 5 ORTHOGONAL VECTORS The nonzero vectors u and v are called orthogonal (or perpendicular) if the angle between them is $\frac{\pi}{2}$.
Example 8 Show that the vectors $u=3 i-4 j$ and $v=4 i+3 j$ are orthogonal.

Theorem 3 The nonzero vectors \mathbf{u} and \boldsymbol{v} are orthogonal if and only if $\mathbf{u} \cdot \boldsymbol{v}=\mathbf{0}$.

Theorem 4 Let v be a nonzero vector. Then for any other vector u, the vector

$$
w=u-\left[\frac{u \cdot v}{|v|^{2}}\right] v \text { is orthogonal to } v \text {. }
$$

Proof: H.W.

H.W.

In Problems 1-10, calculate both the dot product of the two vectors and the cosine of the angle between them.

1. $\mathbf{u}=\mathbf{i}+\mathbf{j} ; \mathbf{v}=\mathbf{i}-\mathbf{j}$
2. $\mathbf{u}=3 \mathbf{i} ; \mathbf{v}=-7 \mathbf{j}$
3. $\mathbf{u}=-5 \mathbf{i} ; \mathbf{v}=18 \mathbf{j}$
4. $\mathbf{u}=\alpha \mathbf{i} ; \mathbf{v}=\beta \mathbf{j} ; \alpha, \beta$ real and nonzero
5. $\mathbf{u}=2 \mathbf{i}+5 \mathbf{j} ; \mathbf{v}=5 \mathbf{i}+2 \mathbf{j}$
6. $\mathbf{u}=2 \mathbf{i}+5 \mathbf{j} ; \mathbf{v}=5 \mathbf{i}-3 \mathbf{j}$
7. $\mathbf{u}=-3 \mathbf{i}+4 \mathbf{j} ; \mathbf{v}=-2 \mathbf{i}-7 \mathbf{j}$
8. $\mathbf{u}=4 \mathbf{i}+5 \mathbf{j} ; \mathbf{v}=7 \mathbf{i}-4 \mathbf{j}$
9. $\mathbf{u}=11 \mathbf{i}-8 \mathbf{j} ; \mathbf{v}=4 \mathbf{i}-7 \mathbf{j}$
10. $\mathbf{u}=-13 \mathbf{i}+8 \mathbf{j} ; \mathbf{v}=2 \mathbf{i}+11 \mathbf{j}$

In Problems 13-20, determine whether the given vectors are orthogonal, parallel, or neither. Then sketch each pair.
13. $\mathbf{u}=3 \mathbf{i}+5 \mathbf{j} ; \mathbf{v}=-6 \mathbf{i}-10 \mathbf{j}$
14. $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j} \mathbf{j} \mathbf{v}=6 \mathbf{i}-4 \mathbf{j}$
15. $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j} \mathbf{j} \mathbf{v}=6 \mathbf{i}+4 \mathbf{j}$
16. $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j} ; \mathbf{v}=-6 \mathbf{i}+4 \mathbf{j}$
17. $\mathbf{u}=7 \mathbf{i} ; \mathbf{v}=-23 \mathbf{j}$
18. $\mathbf{u}=2 \mathbf{i}-6 \mathbf{j} ; \mathbf{v}=-\mathbf{i}+3 \mathbf{j}$
19. $\mathbf{u}=\mathrm{i}+\mathrm{j} ; \mathbf{v}=\alpha \mathbf{i}+\alpha \mathrm{j} ; \alpha$ real
20. $\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j} ; \mathbf{v}=-\mathbf{i}+2 \mathbf{j}$

Example 3: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ dose not exist.
Example 4: Find $\lim _{(x, y) \rightarrow(1,0)} \frac{y}{x+y-1}$.
Example 5: Using the epsilon and delta to prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+y^{2}}=0$.
H.W: Prove that $\lim _{(x, y) \rightarrow(1,2)} x^{2}+2 y=5$.
H.W: Show that the function $\frac{3 x^{3} y}{x^{4}+y^{4}}$, has no limit as (x, y) approaches $(0,0)$.

Example 4: Calculate the volume of the region beneath the surface $z=$ $x y^{2}+y^{3}$ and over the rectangle $R=\{(x, y): 0 \leq x \leq 2$ and $1 \leq y \leq 3\}$.
H.W: Evaluate the following integrals

1. $\int_{1}^{3} \int_{2}^{4}(40-2 x y) d y d x$
2. $\int_{1}^{2} \int_{0}^{3}(1+8 x y) d x d y$.
3. Let R denote the rectangle $\{(x, y):-1 \leq x \leq 0$ and $-2 \leq y \leq 3\}$. Calculate the double integrals
a) $\iint_{R}(x+y) d A$
b) $\iint_{R}\left(y^{2}-x^{2}\right) d A$
c) $\iint_{R}\left(3 x^{2}-5 y^{2}\right) d A$
