1.7 EXERCISES

1. Use Taylor's method for two steps to compute $y(0.2)$ and $y(0.4)$ of $y^{\prime}=1-$ $2 x y, y(0)=0$.
2. Find y at $x=0.1$ and 0.2 of $y^{\prime}+y+x y^{2}=0, y(0)=1$, and find truncation error, using Runge-Kutta fourth order method.
3. Use Taylor's method to find the value of y at $x=0.1$ and $x=0.2$, and truncation error of $y^{\prime}-2 y=3 e^{x}$ where $y(0)=0$.
4. Given $y^{\prime}=x^{3}+y, y(0)=2$, compute $y(0.2)$ and $y(0.4)$ using the Runge Kutta method of fourth order.
5. Use Taylor's method to compute $y(1.1)$ and $y(1.2)$ of $y^{\prime}=x y^{\frac{1}{3}}, y(1)=1$.
6. Use Rnage-Kutta fourth order to find the approximate solution $y(0.2)$ and $y(0.4)$ of $y^{\prime}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, \quad y(0)=1$.
7. Use Taylor method to solve $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$ for $x=0.1, x=0.2$.
8. Use Euler and Modified Euler to find approximate solution of y at $x=0.2$ for $y^{\prime}=2+\sqrt{x y}, y(1)=1$, only two steps.
9. Find the second Taylor polynomial $P_{2}(x)$ for the function $f(x)=x e^{x}+x$, about $x_{0}=0$, and then find a bound for the error on the interval $[0,1]$.
10. Find the fourth order Taylor series method for the function $y^{\prime}+4 y=x^{2}$, with $y(0)=1$, and then determine $y(0.4)$.
11. Use Euler's method to approximate the solution of the following initial value problem.

$$
y^{\prime}=x e^{3 x}-2 y, 0 \leq x \leq 1, y(0)=0, \quad \text { with } h=0.5
$$

12. Use Runge-Kutta second order to find the approximate solution $0 \leq t \leq 0.5, h=$ 0.1 of $y^{\prime}=t^{2}-y+1, \quad y(0)=1$.

EXERCISES

1- Solve the boundary value problems defined by

$$
\mathrm{y} "-\mathrm{y}=0, \quad \mathrm{y}(0)=0, \mathrm{y}(1)=1,
$$

by finite differenc, take $\mathrm{h}=0.5$

2- Solve this boundary value problem by finite difference method, where $\mathrm{h}=0.25$,

$$
\mathrm{y}^{\prime \prime}+\mathrm{y}=1, \mathrm{y}(0)=0, \mathrm{y}(\pi / 2)=0 .
$$

3- Solve this boundary value problem by finite difference method, where $\mathrm{h}=\pi / 2$,

$$
y^{\prime \prime}+y=\sin (2 x), \quad y(0)=0, \quad y(\pi)=0
$$

4- Let $y=y(x)$ be a solution to the boundary value problem

$$
\begin{aligned}
& 3 y^{\prime \prime}+4 y^{\prime}+5 y=7 \\
& y(0)=2, y(1.5)=2
\end{aligned}
$$

Using a mesh width of $\mathrm{h}=0.5$. find $\mathrm{y}(0.5)$.

5- Let $y=y(x)$ be a solution to the boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}-2 y=-3 \\
& y(0)=1, y(2)=-2 .
\end{aligned}
$$

Using a mesh width of $h=0.5$. find $y(1)$.

