Ex.: $N, V \quad M$
Draw axial, Shear\& moment diagrams.

Sol.:

$$
\begin{aligned}
& \text { - } \quad \sum M_{o l}=0 \\
& R_{a} * 6+8 * 4 \cdot 5+4 * 9-6 * 10 * 3=0 \\
& R_{a}=18 \mathrm{KNA} \\
& \Sigma F y=0 \\
& -10 * 6+18+R_{d}=0 \\
& R_{d_{y}}=42 \mathrm{kN} \mathrm{~A} \\
& \sum F_{x}=0 \\
& 4+8-R_{d x}=0 \\
& R_{d x}=12 \mathrm{kN} \leftarrow \\
& \text { member } a b \text { : } \\
& \sum M_{b}=0 \\
& \left.M_{b}-8 * 4.5=0 \Rightarrow M_{b}=36 \mathrm{kN} \cdot \mathrm{~m}\right) \\
& \text { M }
\end{aligned}
$$

mimber $b c$:

$$
\begin{aligned}
& \sum F_{x}=0 \\
& 4+8-N_{b}=0 \\
& N_{b}=12 K N
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{C}=0 \\
& 18 * 6-36-10 * 6 * 3+M_{c}=0 \\
& \left.M_{c}=108 \mathrm{kN} \cdot \mathrm{~m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{18}=\frac{6}{60} \\
& x=1.8 \mathrm{~m}
\end{aligned}
$$

(5)

Beams

Let r denote the number of reaction
c the number of equations of condition ($c=1$ for a hinge; $c=$ 2 for a roller; $c=0$ for a beam without internal connection).

1. If $r<c+3$, the beam is statically unstable.
2. If $r=c+3$, the beam is statically determinate
3. If $r>c+3$, the beam is statically indeterminate.

$$
r=3
$$

$c+3=0+3=3$
$r=c+3$
determinte and stable

$$
r=3
$$

$$
c+3=0+3=3
$$

$$
r=c+3
$$

determinte and stable

Beam	$r c$	$r: c+3$	Classification
तो तो तो तो	5	$5=5$	Stable and determinate
तो, तो 0 -	6	$6>5$	Stable and indeterminate to the first degree
	43	$4<6$	Unstable
$y-0-0$	63	$6=6$	Stable and determinate

Trusses

1. If $b+r<2 j$, the system is statically unstable.
2. If $b+r=2 j$, the system is statically determinate provided that it is also stable.
3. If $b+r>2 j$, the system is statically indeterminate.
$b=$ No. of bars
$R=$ No. of reactions
$j=$ No. of joints

$$
\begin{aligned}
& b=13 \\
& r=3 \\
& j=8 \\
& b+r=16 \\
& 2 j=16 \\
& b+r=2 j \\
& \text { Determinate and stable }
\end{aligned}
$$

Slassification

Rigid Frames

1. If $3 b+r<3 j+c$, the frame is statically unstable.
2. If $3 b+r=3 j+c$, the frame is statically determinate
3. If $3 b+r>3 j+c$, the frame is statically indeterminate.
$b=$ No. of members
$R=$ No. of reactions
$j=$ No. of joints
$c=$ No. of equations of constructions.

