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Maxwell-Boltzmann Statistics: 

In statistical mechanics, Maxwell–Boltzmann statistics describes 

the distribution of classical material particles over various energy 

states in thermal equilibrium. It is applicable when the 

temperature is high enough or the particle density is low enough 

to render quantum effects negligible. This is sometimes called the 

classical case. In statical thermodynamics, two central quantities 

are Maxwel-Boltzmann statistics and its partition function. 

Maxwell-Boltzmann distribution is an important relationship that 

finds many applications in physics and chemistry. is a result of 

the kinetic theory of gases, which provides a simplified 

explanation of many fundamental gaseous including pressure and 

diffusion. 

Maxwell-Boltzmann statistics describes the statistical distribution 

of particles over various energy states in thermal equilibrium, 

which throw a light on microstate, and Maxwell-Boltzmann 

statistics is valid when the temperature is high enough and density 

is low enough to omit quantum effects.  

The importance of the traditional Maxwell-Boltzmann statistics 

appears in many important theoretical applications such as 

calculating the physical properties of an ideal gas. 

The Maxwell–Boltzmann distribution applies to ideal gases close 

to thermodynamic equilibrium, negligible quantum effects, and 

non-relativistic speeds.  

 

http://www.wikipedia.org/wiki/Pressure
http://www.wikipedia.org/wiki/Diffusion
http://www.wikipedia.org/wiki/Ideal_gases
http://www.wikipedia.org/wiki/Thermodynamic_equilibrium
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The basic postulates associated with the MB 

statistics are- 
•The particles of the system are identical and distinguishable. 

1-The phase space can be divided into a very large number of 

cells. 

2-There is no restriction on the number of particles which can 

occupy a single phase cell. 

3-The available volume of the phase space cell can be very 

small and may even approach zero. 

4-The total number of particles in the system remains constant. 

5-The total energy of the system remains constant. 

 

6-  The M.B.S. describes particle speeds in gases.                   

7- The M.B.S. applies to ideal gas close to thermodynamic                                             

equilibrium with negligible quantum effect. 

Examples; Molecular and speed distribution.  
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Maxwell-Boltzmann Distribution Function 

Maxwell pictured the gas to consist of billions of molecules 

moving rapidly at random, colliding with each other and the wall 

of the container.  

If we accept the notion that raising the temperature causes the 

molecules to move faster and collide with the walls of the 

container more frequently. 

Maxwell made four assumptions…… 
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The Maxwell-Boltzmann distribution is a mathematical function 

that speaks about how many particles are in a container have a 

certain energy.                                            

The number of particles with energy 𝜀𝑖 is 𝑁𝑖. The number of 

particles possessing another energy 𝜀𝑗 is 𝑁𝑗. In physical speech 

this statement  states that those many particles 𝑁𝑖 with the same 

energy amount  𝜀𝑖  , all occupy a so called (energy level).                                                              

Physically, each container corresponds to a state in which each 

particle can be put. 

• In the classical case, there are no restriction on how many 

particles that can put into any one container o state.  

• In the quantum state where there are restriction for some 

particles. 

Now consider an isolated system of volume v containing N 

distinguishable particles. The internal energy U is then fixed the 
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macrostate will be characterized by (N,V,U). There are n energy 

levels (like boxes) available. There following restrictions: 

 

∑ 𝑁𝑗 = 𝑁𝑛
𝑗=1     (conservation of particles)  

∑ 𝑁𝑗𝐸𝑗 = 𝑈𝑛
𝑗=1     (conservation of energy) 

 

The central problem is then to determine the most probable 

distribution. The actual distribution of particles amongst the 

energy level will be maximize the thermodynamic probability of 

the system. 

For finding the Maxwell-Boltzmann distribution law;         

Let the thermodynamic probability of the macrostate is;  

𝑊 =
𝑁!

∑ 𝑁𝑖!
− − − − − − − − − − − − − − − (1) 

Taking logarithm of the both side of equation 1 

        ln 𝑊 = ln
𝑁!

∑ 𝑁𝑖!
 

        ln 𝑊 = ln 𝑁! − ∑ ln 𝑁𝑖! − − − − − − − − − −(2) 

Applying Stirling, s approximation 

        ln 𝑥! = 𝑥 ln 𝑥 − 𝑥 + 1 

For large x  
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 ln 𝑥! = 𝑥 ln 𝑥 − 𝑥 -------------------------------------(3) 

Using this approximation for eqn. (2) then we get 

ln 𝑊 = 𝑁 ln 𝑁 − 𝑁 − ∑ 𝑁𝑖 ln 𝑁𝑖 + ∑ 𝑁𝑖 

Where ∑ 𝑁𝑖 = 𝑁                                                                           

∴       ln 𝑊 = 𝑁 ln 𝑁 − ∑ 𝑁𝑖 ln 𝑁𝑖 − − − − − − − −(4) 

For maximizing thermodynamic probability W 

      𝜕 ln 𝑊 = 0 ,  then 

      𝜕 ln 𝑊 = − ∑ 𝑁𝑖𝜕 ln 𝑁𝑖 − ∑ ln 𝑁𝑖𝜕𝑁𝑖 = 0 − −(5) 

But   ∑ 𝑁𝑖𝜕 ln 𝑁𝑖 = ∑ 𝑁𝑖
𝜕𝑁𝑖

𝑁𝑖
= 0  

Since the total number of particles is constant, hence 

     ∑ ln 𝑁𝑖𝜕𝑁𝑖 = 0 − − − − − − − − − − − − − (6) 

There are two physical constrains on our classical system: 

     1- The total number of particles must be conserved. 

     2- The total energy of the system must be conserved.   

        Constrain 1 implies                       Constrain 2 implies     

∑ 𝑁𝑖 = 𝑁 → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                    ∑ 𝜀𝑖𝑁𝑖 = 𝑈 → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

∑ 𝝏𝑵𝒊 = 𝝏𝑵 = 𝟎 − − − − − − − − − − − − − −(𝟕)          
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The total number of particles is constant.                                                              
∑ 𝜀𝑖𝜕𝑁𝑖 = 𝜕𝑈 = 0 − − − − − − − − − − − − − (8) 

The total internal energy remains constant. 

Now, multiplying eqn.(6) by a constant (− ln 𝛼) and eqn.(8) by a 

constant (𝛽). Then eqns. 6 and 8 can be written as;  

 ∑ ln 𝑁𝑖 𝜕𝑁𝑖 × (− ln 𝛼) = 0  

 ∑(ln 𝑁𝑖 − ln 𝛼)𝜕𝑁𝑖 = 0 − − − − − − − − − − − (9) 

  ∑ 𝛽𝜀𝑖𝜕𝑁𝑖 = 0 − − − − − − − − − − − − − − − (10) 

Adding eqn. (9) and (10) to each other we get;            

  ∑(ln 𝑁𝑖 − ln 𝛼)𝜕𝑁𝑖 + ∑ 𝛽𝜀𝑖𝜕𝑁𝑖 = 0                          

 ∑(ln 𝑁𝑖 − ln 𝛼 + 𝛽𝜀𝑖)𝜕𝑁𝑖 = 0                                         

 ln 𝑁𝑖 − ln 𝛼 + 𝛽𝜀𝑖 = 0                                                       

 Ln
𝑁𝑖

𝛼
= −𝛽𝜀𝑖 

𝑁𝑖 = 𝛼𝑒−𝛽𝜀𝑖 − − − − − − − − − −(11) 

Let   𝐴 =
1

𝛼
   then eqn. 11 becomes 

𝑁𝑖 =
1

𝐴𝑒𝛽𝜀𝑖
− − − − − − − − − −(12) 
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Eqn. (11) or (12) is known as Maxwell-Boltzmann distribution 

law , or Energy distribution function. 

Boltzmann showed that the statistical factor 𝑒𝛽𝜀𝑖 is a 

characteristic of any classical system in equilibrium (in agreement 

with maxwell,s speed distribution). 

 Energy Distribution Function  

The distribution function 𝑓(𝜀) is the probability that a particle is 

in energy state 𝐸.                                                   

The Maxwell-Boltzmann distribution is the classical distribution 

function of an amount of energy between identical but 

distinguishable particles. 

 

 

  𝑓(𝜀) =
1

𝐴𝑒𝛽𝜀𝑖
 

 

     The probability that                                   The probability for                   

aparticle have energy (𝜀)                   accupying a given energy  

                                                         State decreases exponentially  

 

𝐴                   Normalization constant state                          
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An expression for 𝛼 can be obtained from the requirement that all 

the sum of all 𝑁𝑖
,s must be equal to the total number of particles 

𝑁. 

∑ 𝑵𝒊 = 𝑵 = 𝜶 ∑ 𝒆−𝜷𝜺𝒊 − − − − − − − − − − − − − −(𝟏𝟑) 

 

Partition Function 

In physics, a partition function describes the statistical properties 

of a system in thermodynamic equilibrium. They are functions of 

temperature and other parameters, such as the volume enclosing 

a gas. Most of the aggregate thermodynamic variables of the 

system, such as the total energy, free energy, entropy, and 

pressure, can be expressed in terms of the partition function or its 

derivatives. 

The sum over states is called the Partition function.        

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Thermodynamic_equilibrium
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Thermodynamics
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Thermodynamic_free_energy
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Derivative
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In principle, It ,s a sum over all the particle states of a system, and 

then contains the statistical information about the system. All of 

the thermodynamics properties of the system are derivable from 

the partition function.                

The sum ∑ 𝑒−𝛽𝜀𝑖           is an important role in statistical mechanics, 

and it is called partition function and is represented by a symbol 

Z. 

          𝑍 = ∑ 𝑒−𝛽𝜀𝑖 − − − − − − − − − −(14)  

The partition function describes the statistical properties of a 

system in thermodynamic equilibrium, it depends on 𝛽 and on the 

way in which the energy 𝜀𝑖 varies from cell to cell and other 

parameters such as volume.                               

Another important meaning of the partition function of a system: 

it counts the number of states a system can occupy. Hence if all 

states are equally probable ( equal energy ) the partition function 

is the total number of possible states.  

For expressing 𝛼 in term of Z, using eqn.(13). 

𝑁 = 𝛼𝑍 ⟹   𝛼 =
𝑁

𝑍
− − − − − − − − − (15)  

Now the number of particles in the ith cell in the state of maximum 

thermodynamic probability is therefore; 

𝑁𝑖 =
𝑁

𝑍
𝑒−𝛽𝜀𝑖 − − − − − − − − − −(16) 

Eqn.(16) represents Maxwell-Boltzmann distribution law. 



12 
 

Let   𝛽 =
1

𝑘𝑇
 then eqn. (16) can be written as; 

𝑁𝑖 =
𝑁

𝑍
𝑒−

𝜀𝑖
𝑘𝑇 − − − − − − − − − −(17) 

Applications of M.B distribution 

 
The Doppler broadening of spectral lines 

One of the effects which arise from the distribution of the 

velocities of the molecules in a hot gas at low densities is the 

brooding of the spectral lines which are emitted by the gas 

molecules. This broadening can be used as an experimental check 

for the validity of the Maxwell Boltzmann velocity distribution. 

This broadening (i.e. spread) arises from the distribution of 

velocities of the molecules in a gas. 

 

Statistical Approach to Thermodynamic 

Variables 

Entropy                                                                              

According to the law of thermodynamics, only those process can 

take place in a closed system for which the entropy of the system 

increase or in the limit remain constant.                                                                                   

The thermodynamic probability defines as                                    

 𝑊 =
𝑁!

∑ 𝑁𝑖!
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and from equation (4) as derived                                                           

ln 𝑊 = ln 𝑁! − ∑ ln 𝑁𝑖! = 𝑁 ln 𝑁 − ∑ 𝑁𝑖 ln 𝑁𝑖                  

From the definition of entropy in statistical mechanics. 

      𝑆 = 𝑘 ln 𝑊 ----------------------------------(18                                                                                

Substituting eqn.(4) in to eqn. (18) 

     𝑆 = 𝑘 ln 𝑊 = 𝑘[𝑁 ln 𝑁 − ∑ 𝑁𝑖 ln 𝑁𝑖] − − − (19) 

Using Maxwell-Boltzmann distribution law in eqn.(19) we get; 

𝑁𝑖 =
𝑁

𝑍
𝑒−𝛽𝜀𝑖 

    𝑆 = 𝑘 [𝑁 ln 𝑁 − ∑ 𝑁𝑖 ln
𝑁

𝑍
𝑒−𝛽𝜀𝑖] 

    𝑆 = 𝑘[𝑁 ln 𝑁 − ∑ 𝑁𝑖(ln 𝑁 − ln 𝑍 − 𝛽𝜀𝑖)]        − − − −(20) 

But,          ∑ 𝑁𝑖 = 𝑁     𝑎𝑛𝑑 ∑ 𝑁𝑖𝜀𝑖 = 𝑈                        

Therefore eqn.(20) becomes; 

     𝑆 = 𝑘[𝑁 ln 𝑁 − 𝑁 ln 𝑁 + ∑ 𝑁𝑖 ln 𝑍 + 𝛽𝑈] 

     𝑆 = 𝑘[∑ 𝑁𝑖 ln 𝑍 + 𝛽𝑈] 

     𝑆 = 𝑘[𝑁 ln 𝑍 + 𝛽𝑈]                                               

Then the statistical definition of entropy is                          

    𝑆 = 𝑁𝑘 ln 𝑍 + 𝑘𝛽𝑈 ----------------------(21) 
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Definition of 𝜷 

    

 𝑆 = 𝑁𝑘 ln 𝑍 + 𝑘𝛽𝑈 ----------------------(21) 

Taking the derivation of eqn.(21) with respect to the internal 

energy; 

  (
𝜕𝑆

𝜕𝑈
)

𝑉
=

𝑁𝑘

𝑍
(

𝜕𝑍

𝜕𝑈
)

𝑉
+ 𝑘𝛽 + 𝑘𝑈 (

𝜕𝛽

𝜕𝑈
)

𝑉
----(22) 

Let 

    (
𝜕𝑍

𝜕𝑈
)

𝑉
= (

𝜕𝑍

𝜕𝛽
)

𝑉
(

𝜕𝛽

𝜕𝑈
)

𝑉
 ---------------------(23) 

Now from the definition of partition function 

     𝑍 = ∑ 𝑒−𝛽𝜀𝑖 ⟹  (
𝜕𝑍

𝜕𝛽
)

𝑉
= − ∑ 𝜀𝑖𝑒−𝛽𝜀𝑖  ----(24) 

And    𝑈 = ∑ 𝑁𝑖𝜀𝑖 =
𝑁

𝑍
∑ 𝜀𝑖𝑒−𝛽𝜀𝑖 

Then   ∑ 𝜀𝑖𝑒−𝛽𝜀𝑖 =
𝑍𝑈

𝑁
  ---------------------------------(25) 

Substituting eqn. (25) in to eqn. (24) we get; 

     (
𝜕𝑍

𝜕𝛽
)

𝑉
= −

𝑍𝑈

𝑁
 --------------------------------(26) 

And eqn.(23) can be written as 

    (
𝜕𝑍

𝜕𝑈
)

𝑉
= −

𝑍𝑈

𝑁
(

𝜕𝛽

𝜕𝑈
)

𝑉
 -----------------------(27) 
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Substituting eqn.(27) in to eqn.(22) 

     (
𝜕𝑆

𝜕𝑈
)

𝑉
=

𝑁𝑘

𝑍
[−

𝑍𝑈

𝑁
(

𝜕𝛽

𝜕𝑈
)

𝑉
] + 𝑘𝛽 + 𝑘𝑈 (

𝜕𝛽

𝜕𝑈
)

𝑉
 

      (
𝜕𝑆

𝜕𝑈
)

𝑉
= −𝑘𝑈 (

𝜕𝛽

𝜕𝑈
)

𝑉
+ 𝑘𝛽 + 𝑘𝑈 (

𝜕𝛽

𝜕𝑈
)

𝑉
 

     (
𝜕𝑆

𝜕𝑈
)

𝑉
= 𝑘𝛽 -------------------------------(28) 

From the principle of thermodynamics 

        (
𝜕𝑈

𝜕𝑆
)

𝑉
= 𝑇    𝑜𝑟    (

𝜕𝑆

𝜕𝑈
)

𝑉
=

1

𝑇
 

Eqn. (28) becomes 

         
1

𝑇
= 𝑘𝛽 

Then 

           𝛽 =
1

𝑘𝑇
  -------------------------------(29) 

 

Internal Energy 

The internal energy of the system is defined as; 

      𝑈 = ∑ 𝜀𝑖𝑁𝑖       

And the Maxwell-Boltzmann distribution law is given by; 

     𝑁𝑖 =
𝑁

𝑍
𝑒−𝛽𝜀𝑖 =

𝑁

𝑍
𝑒−

𝜀𝑖
𝑘𝑇 
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The partition function is defined by; 

     𝑍 = ∑ 𝑒−𝛽𝜀𝑖 = ∑ 𝑒−
𝜀𝑖
𝑘𝑇 

Where  𝑒−
𝜀𝑖
𝑘𝑇  is called the Boltzmann coefficient. 

Now the internal energy can be written as; 

     𝑈 = ∑ 𝜀𝑖
𝑁

𝑍
𝑒−

𝜀𝑖
𝑘𝑇 =

𝑁

𝑍
∑ 𝜀𝑖𝑒−

𝜀𝑖
𝑘𝑇 --------------(30) 

Return to the definition of the partition function 

      𝑍 = ∑ 𝑒−
𝜀𝑖
𝑘𝑇 

     
𝜕𝑍

𝜕𝑇
=

1

𝑘𝑇2
∑ 𝜀𝑖𝑒−

𝜀𝑖
𝑘𝑇 

    ∑ 𝜀𝑖𝑒−
𝜀𝑖
𝑘𝑇 = 𝑘𝑇2 𝜕𝑍

𝜕𝑇
  --------------------------(31) 

substituting eqn.(31) in to eqn.(30) we obtains 

     𝑈 =
𝑁

𝑍
𝑘𝑇2 𝜕𝑍

𝜕𝑇
 

     𝑈 = 𝑁𝑘𝑇2 𝜕 ln 𝑍

𝜕𝑇
   ---------------------------(32) 
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Helmholtz Function 

The thermodynamic function of a system that is equal to its 

internal energy minus the product of its absolute temperature and 

entropy: a decrease in the function is equal to the maximum 

amount of work available during a reversible isothermal process. 

  

The Helmholtz function is defined thermodynamically as; 

       𝐴 = 𝑈 − 𝑇𝑆 --------------------------------(33)  

Using eqn.(21)    

    𝑆 = 𝑁𝑘 ln 𝑍 + 𝑘𝛽𝑈 ----------------------(21) 
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Eqn. (21) can be written in the form 

     𝑆 = 𝑁𝑘 ln 𝑍 +
𝑈

𝑇
 --------------------------(34) 

Substituting eqn.(34) in to eqn.(33) then the Helmholtz function 

can be written as; 

     𝐴 = 𝑈 − 𝑇 (𝑁𝑘 ln 𝑍 −
𝑈

𝑇
) 

    𝐴 = 𝑈 − 𝑁𝑘𝑇 ln 𝑍 − 𝑈 

Then the Helmholtz function can be written statistically as; 

     𝐴 = −𝑁𝑘𝑇 ln 𝑍 ---------------------------(35) 

Pressure 

The TdS equation in thermodynamic is defined by 

    𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉 

    𝑇
𝑑𝑆

𝑑𝑉
=

𝑑𝑈

𝑑𝑉
+ 𝑝 

Then, 

    𝑝 = 𝑇
𝑑𝑆

𝑑𝑉
−

𝑑𝑈

𝑑𝑉
= −

𝑑𝑈

𝑑𝑉
+ 𝑇

𝑑𝑆

𝑑𝑉
 

   𝑝 = −
𝑑

𝑑𝑉
(𝑈 − 𝑇𝑆) --------------------------(36) 

Substituting eqn.(35) in to eqn,(36) 

    𝑝 = −
𝑑

𝑑𝑉
(−𝑁𝑘𝑇 ln 𝑍) 
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   𝑝 = (
𝑑𝐴

𝑑𝑉
)

𝑇
------------------------------------(37) 

Or 

   𝑝 = 𝑁𝑘𝑇 (
𝜕 ln 𝑍

𝜕𝑉
)

𝑇
 --------------------------(38) 

Eqns.(37) and (38) is the statistical approaches of the pressure. 

 

Examples: 

A system consisting of 4000 particles distributed over three 

energy levels: 𝜀1=0, 𝜀 2= 𝜀, 𝜀 3=2 𝜀 where 𝜀 is constant and has 

units of energy 𝜀.  

a- Find the most likely number of particles in each state of the 

distribution, given that the total energy of the system is 

2300 𝜀 

b- Calculate the ratio between the two probabilities if we take 

two particles out of level 2 and one of them is vacant in 

level 1 and the second in level 3. 

Sol. 

𝑁𝑖 = 𝛼𝑒−𝛽𝜀𝑖 

𝑁1 = 𝛼𝑒−𝛽0     𝑁2 = 𝛼 𝑒−𝛽𝜀     𝑁3 = 𝛼𝑒−𝛽2𝜀 

If  𝑒−𝛽𝜀= X   then 

𝑁1 = 𝛼𝑒−𝛽0  = 𝛼       𝑁2 = 𝑁1X     𝑁3 = 𝑁1X2    

Total Number of particles  
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𝑁1 + 𝑁2 + 𝑁3 = 4000     then   𝑁1 + 𝑁1𝑋 + 𝑁1X2 = 4000 

 

(1 + 𝑋 +X2 ) 𝑁1 = 4000                                      ………..a 

And the total energy is equal to 2300 𝜀 

𝑁1𝜀1 + 𝑁2𝜀2 + 𝑁3𝜀3 = 2300 𝜀 

𝑁10 + 𝑁2𝜀 + 𝑁32𝜀 = 2300 𝜀                     

0 + 𝑁2𝜀 + 𝑁32𝜀 = 2300 𝜀 

𝑁1𝑋 𝜀 + 𝑁1X2
 𝜀 = 2300 𝜀 

𝜀 (𝑁1𝑋 + 2 𝑁1𝑋2 )= 2300 𝜀      

  Delet  𝜀  then   𝑁1𝑋 + 2𝑁1𝑋2= 2300 

𝑁1(𝑋 + 2𝑋2 )= 2300                                                …….b 

Delet 𝑁1 from each equ. a and b then 

57X2 +17 X -23 =0 

X= -0.802        or  X = 0.5034    from equ. B 

𝑁1 =
2300

𝑋+2𝑋2   = 
2300

0.5034+2(0.5034) 2
   =2277 

𝑁2 = 2277x(0.5034) =1146     

 𝑁3 = 𝑁1X2  = 2277x (0.5034)2 =577 

The thermodynamic probability is 

W1= 
4000!

2277!1146!577!
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b. W2= 
4000!

2278!1144!578!
 

W2

W1
 =   

4000!

2278!1144!578!
  x 

2277!1146!577!

4000!
 

W2

W1
  = 0.9966 

 

Examples: 

Suppose a system of N particles a phase space of n cells. suppose 

that all particles have the same energy. Calculate;   

1- The partition function                                                            

2- Ni th particle.                                                                            

3- The internal energy.                                                              

    4- Entropy. 

Solution                                                                                       

1-The partition function 

      𝑍 = ∑ 𝑒−
𝜀𝑖
𝑘𝑇 = 𝑛𝑒−

𝜀

𝑘𝑇𝑛
𝑖=1   

2- Ni 
th particle.  

     𝑁𝑖 =
𝑁

𝑍
𝑒−

𝜀

𝑘𝑇 =
𝑁

𝑛𝑒
−

𝜀
𝑘𝑇

𝑒−
𝜀

𝑘𝑇                                 𝑁𝑖 =
𝑁

𝑛
 

3- The internal energy.   

        𝑈 = 𝑁𝑘𝑇2 𝜕 ln 𝑍

𝜕𝑇
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             = NkT2
∂ ln(ne

−
ε

kT)

∂T
           

           = 𝑁𝑘𝑇2
𝜕(ln 𝑛−

𝜀

𝑘𝑇
)

𝜕𝑇
    

           = 𝑁𝑘𝑇2 𝜕

𝜕𝑇
(−

𝜀

𝑘𝑇
) 

       𝑈 = 𝑁𝑘𝑇2 𝜀

𝑘𝑇2 = 𝑁𝜀  

This means that all particles have the same energy 

 4- Entropy. 

      𝑆 = 𝑁𝑘 ln 𝑍 +
𝑈

𝑇
 

        = 𝑁𝑘 ln (𝑛𝑒−
𝜀

𝑘𝑇) +
𝑈

𝑇
 

        = 𝑁𝑘 (ln 𝑛 −
𝜀

𝑘𝑇
) +

𝑈

𝑇
 

        = 𝑁𝑘 ln 𝑛 − 𝑁𝑘
𝜀

𝑘𝑇
+

𝑈

𝑇
= 𝑁𝑘 ln 𝑛 −

𝑁𝜀

𝑇
+

𝑈

𝑇
 

     𝑆 = 𝑁𝑘 ln 𝑛 

The internal energy and entropy of all particles are constant and 

independent on the temperature. 
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