
1 
 

 

 

Quantum statistical mechanics 

 

 

Lecture Five 
 

 

1- Bose-Einstein Statistics 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

Quantum statistical mechanics  

 

is statistical mechanics applied to quantum mechanical systems. 

In quantum statistics, Bose–Einstein statistics (or B–E statistics) 

describe one of two possible ways in which a collection of non-

interacting, indistinguishable particles may occupy a set of 

available discrete energy states at thermodynamic equilibrium.  

 

 

The theory of this behavior was developed (1924–1925) by 

Satyendra Nath Bose, who recognized that a collection of 

identical and indistinguishable particles can be distributed. The 

idea was later adopted and extended by Albert Einstein in 

collaboration with Bose. The Bose–Einstein statistics apply only 

to those particles not limited to single occupancy of the same 

state—that is, particles that do not obey the Pauli Exclusion 

Principle restrictions. Such particles have integer values of spin 

and are named bosons, after the statistics that correctly describe 

their behavior.  

 

 

There must also be no significant interaction between the 

particles.  

 

Bose–Einstein statistics apply when quantum effects are 

important and the particles are "indistinguishable".  

The According to quantum statistical mechanics, particles with 

half an odd integer spin such as electron and positron follow the 

https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Quantum_mechanics
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Fermi statistics, and particles with an even integer spin such as 

photon and phonon follow the Bose-Einstein statistics.  

Classical statistical  mechanics and quantum statistical 

mechanics are both based on the statistical probability description 

of Nature. The M.B.D. law is a result of classical theory; it is valid 

for molecules of a gas under ordinary conditions.                     

 

What is the essential properties of B.E.S. 

The Bose-Einstein statistics leads to;                                        

1- The system is completely indistinguishable ( there is no                          

limit on the number of particle per quantum state. 

2- All particles has a symmetric wave function ( i.e. ψ is           

remain unchanged) under interchange of any two particles. 

3- The system have zero or integer angular momentum i.e.  

𝑠 = 0, ћ, 2ћ, 3ћ--------- 

4- The system not obey Pauli exclusion principle. 

5- The particles of the system ( i.e. Photon,  Phonon,       
 𝛼 −particles ) is known as a bosons and there is no restriction on 

the number of such system which may occupy a given energy 

state. 

 

 

 

https://www.sciencedirect.com/topics/chemistry/statistical-mechanics
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Phase Space 

    In the quantum statistical it is imposed to use Six-dimensional 

phase space.                                                          

 𝐻 = 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑃𝑧 

According to classical mechanics, the position and momentum of 

a particle can be specified to any discrete degree of precision. 

In quantum mechanics there is a limit both to the experimental 

precision with which the position and momentum of a particle can 

be simultaneously determined. This leads to so called Heisenberg 

Uncertainty Principle. 

 

The H.U. principle states that the point representing the position 

and momentum of the particle lies some where with in an element 

of phase space of volume ℎ3 𝑖. 𝑒. ∆𝑥. ∆𝑝 ≥ ℎ    

 ℎ = 6.6237 × 10−34𝐽. 𝑠𝑒𝑐 → Planck's constant                   

 ℎ3 → has dimension of a volume in phase space                  

 ℎ3 →  (𝐽. 𝑠𝑒𝑐)3 = (𝑁. 𝑚. 𝑠𝑒𝑐)3 = 𝑚3(𝑁. 𝑠𝑒𝑐)3                     

 ℎ3 = (𝑙𝑒𝑛𝑔𝑡ℎ)3 × (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚)3 Newton second law.   

If an element of volume  ℎ3 → as a compartment to distinguish it 

from a cell of volume H. The subdivision of phase space into cell 

of volume H and liner subdivision into a compartments of volume 

ℎ3 ⟹ 𝑖. 𝑒. 𝐻 ≫ ℎ3  

The number of compartment per cell      

𝑛 =
𝐻

ℎ3 ⟹ Number of compartment per cell. 
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Thermodynamic probability  

As before, let  𝑁𝑖 → represent the number of phase point in the ith 

cell. In any statistics, the properties of the system determined by 

the macrostate of the system i.e. number Ni . The thermodynamic 

probability W of a macrostate is defined as the number of 

microstate correspond to it. 

 Now let return to the same example as in Maxwell-Boltzmann 

statistics, thus 4 phase point and two cells i and j so, Ni = 3 and 

Nj = 1  (abcd) 

        Ni=3          Nj=1      

•                    According to Maxwell-Boltzmann stat.   

       Cell i        cell j                                                                      

According to M.B.S. there are 4 microstate corresponding to this 

macrostate , so that W= 4 

Cell i       Ni =3 W=4 

Cell j             Nj =1 

Let these cell subdivision to smaller compartments.           

Here we consider only particles to which the Pauli exclusion 

principle does not apply, and for which there may be any number 

of phase point in a compartment.                            

The theory was developed by Einstein and Boltzmann and is 

called Bose-Einstein statistics.   

Let the cell i and j divided into four compartment each. 

•  

 

… 
 

 

    a     b     c     d 
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According to B.E.S. let us assume there are four compartment per 

cell, with out making any use of the identities of the particles.                                                        

Let us assume  

Ni= 3 in the cell i                                                

Nj= 1 in the cell j 

Cell i,       Wi=20 

 

    

 

 

  

    

      

  

   

Cell j,   Wj=4 

                                                                                     

 

  

All these distribution not obeys the Pauli exclusion principle. 

The thermodynamic probability to each cell equal to the number 

of possible ways of arranging the phase points with in that cell. 

This can not done in the M.B.S. 20 different ways of arranging 
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the three phase points in cell i and 4 ways of arranging the one 

phase point in cell j. 

If Wi  represents the probability of cell i 

 Wj represents the probability of cell j 

The thermodynamic probability of the macrostate equals the total 

number of arrangement which is   

  𝑊 = 𝑊𝑖𝑊𝑗 = 20 × 4 = 80 

In M.B.S.   W= 4 

In general for n number of cells                                                 

𝑊 = ∏𝑊𝑖 -----------------------------------------------(1) 

 

For deriving the thermodynamic probability in terms 

of Ni
, s according to B.E.S.  

Suppose the compartment in the ith cell are 1,2,3------n cells and 

the phase points are lettered a,b,c-------Ni. 

In some arrangement of the phase point in cell i. 

                             

 

Compartment   1           2              3           4                                

If the numbers and letters are arranged in all possible sequences 

each sequence will represented a microstate.  There are n ways in 

which the sequence can being.            

One of each of the n-compartments and in each of these the 

remaining  (𝑛 + 𝑁𝑖 − 1). 

  ab    c empt

y 

def 
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So the number of different sequences that being with number is  

 𝑛(𝑛 + 𝑁𝑖 − 1)! -------------------------------------(2) 

Each sequence represent    a microstate 

Many sequences represents    the same microstate 

 

For different sequences the microstate does not change. 

         

 

                  3              1                    4                2 

There are n blocks in the sequence one for each compartment so 

that number of different blocks is 𝑛! Equation (2) can be divided 

on   𝑛! 𝑁𝑖! .                              

Hence the number of microstate for the ith cell is; 

       𝑊𝑖 =
𝑛(𝑁𝑖+𝑛−1)!

𝑛!𝑁𝑖!
 ------------------------------(3) 

        𝑛! = 𝑛(𝑛 − 1)!     then equation (3) becomes 

        𝑊𝑖 =
𝑛(𝑁𝑖+𝑛−1)!

𝑛(𝑛−1)!𝑁𝑖
  

       𝑊𝑖 =
(𝑁𝑖+𝑛−1)!

(𝑛−1)!𝑁𝑖
 -------------------------------(4) 

Where  𝑁𝑖 represent the number of indistinguishable 

particles. And n represents the number of compartments. 

 

empty      ab      def        c 
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The total number of microstate or the thermodynamic probability;                                                                            

𝑊 = ∏𝑊𝑖 = ∏
(𝑁𝑖+𝑛−1)!

(𝑛−1)!𝑁𝑖!
 

 

Example 1: 

Let,   𝑛 = 5 for cell i and cell j and let 𝑁𝑖 = 3, 𝑁𝑗 = 2 

 𝑊𝑖 =
(𝑁𝑖+𝑛−1)!

(𝑛−1)!𝑁𝑖
=

(3+5−1)!

(5−1)!3!
=

7!

4!3!
 

        =
1×2×3×4×5×6×7

1×2×3×4×1×2×3
= 35                                 

 𝑊𝑗 =
(2+5−1)!

(5−1)!2!
=

6!

4!2!
                                          

 𝑊𝑗 =
1×2×3×4×5×6

1×2×3×4×1×2
= 15                                         

 

 𝑊𝑡𝑜𝑡 = 𝑊𝑖𝑊𝑗 = 35 × 15 = 525 
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Bose-Einstein Distribution Law  

Bose-Einstein statistics describes the statistical behavior of 

bosons.  

Bosons  

Bosons are particle which have integer spin and which therefore 

are not constrained by the Pauli exclusion principle . The energy 

distribution of bosons is described by Bose-Einstein statistics. 

The wave function which describes  a collection of bosons must 

be symmetric with respect to the exchange of identical particles.                                                

At low temperature, bosons can behave very differently than 

fermions because an unlimited number of them can collect into 

the same energy state. 

 

 

Driving Bose-Einstein Distribution Law 

For driving the Bose-Einstein distribution law, starting  from the 

statistical relation of entropy.                                

 𝑆 = 𝑘 ln 𝑊                                                              

To maximize the thermodynamic probability 𝑊 with respect to 

the number of particles 𝑁𝑖 having each 𝜀𝑖.                         

 It is necessary to taking logarithm on both side of equation 4   

     𝑊 =
(𝑁𝑖+𝑛−1)!

(𝑛−1)!𝑁𝑖
                                                             

    ln 𝑊 = ∑ ln
(𝑁𝑖+𝑛−1)!

(𝑛−1)!𝑁𝑖!
 

              = ∑[ln(𝑁𝑖 + 𝑛 − 1)! − ln(𝑛 − 1)! − ln 𝑁𝑖!]---(5) 
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Using the Striling approximation                         

             ln 𝑥𝑖 = 𝑥 ln 𝑥 − 𝑥 

ln 𝑊 = ∑{(𝑁𝑖 + 𝑛 − 1) ln(𝑁𝑖 + 𝑛 − 1) − (𝑁𝑖 + 𝑛 − 1)

− [(𝑛 − 1) ln(𝑛 − 1) − (𝑛 − 1)] − {𝑁𝑖 ln 𝑁𝑖 − 𝑁𝑖} 

          = ∑(𝑁𝑖 + 𝑛 − 1) ln(𝑁𝑖 + 𝑛 − 1) − 𝑛 − 𝑁𝑖 + 1 − 

                 (𝑛 − 1) ln(𝑛 − 1) + 𝑛 − 1 − 𝑁𝑖 ln 𝑁𝑖 + 𝑁𝑖 

                     =  ∑[(𝑁𝑖 + 𝑛 − 1) ln(𝑁𝑖 + 𝑛 − 1) −
                                (𝑛 − 1) ln(𝑛 − 1) − 𝑁𝑖 ln 𝑁𝑖]----(6) 

If we neglect 1 in comparison with  𝑛 and 𝑁𝑖, then;      

ln 𝑊 = ∑[(𝑛 + 𝑁𝑖) ln(𝑛 + 𝑁𝑖) − 𝑛 ln 𝑛 − 𝑁𝑖 ln 𝑁𝑖]-----(7) 

Using the statistical condition                                      

      𝑁 = ∑ 𝑁𝑖        Constant number of particles                  

      𝑈 = ∑ 𝜀𝑖𝑁𝑖     Constant total internal energy 

For maximum thermodynamic probability                             

       𝜕𝑁 = ∑ 𝜕𝑁𝑖 = 0     

       𝜕𝑈 = ∑ 𝜀𝑖𝜕𝑁𝑖 = 0 

       
𝜕 ln 𝑊

𝜕𝑁𝑖
= 0               ---------------------------------(8) 

This condition means that the variation in  ln 𝑊 is zero for  a small 

variation in 𝑁𝑖.                                                          

 From the equilibrium distribution 

  1-     𝜕 ln 𝑊 = 0 =
𝜕 ln 𝑊

𝜕𝑁𝑖
𝜕𝑁𝑖 
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Now taking the derivative of equation (7) we get; 

𝜕 ln 𝑊

𝜕𝑁𝑖
𝜕𝑁𝑖 = ∑ [ln

𝑁𝑖 + 𝑛

𝑁𝑖
𝜕𝑁𝑖 − 𝑁𝑖

1

𝑁𝑖
𝜕𝑁𝑖] = 0 

Then 

          ∑ ln
𝑁𝑖+𝑛

𝑁𝑖
𝜕𝑁𝑖 = 0 --------------------------(9) 

   2- 𝜕𝑈 = 0 =
𝜕𝑈

𝜕𝑁𝑖
𝜕𝑁𝑖  Constant internal energy condition 

        Or    ∑ 𝜀𝑖𝜕𝑁𝑖 = 0  -------------------------------------(10) 

    3- 𝜕𝑁 = 0 =
𝜕𝑁

𝜕𝑁𝑖
𝜕𝑁𝑖 Particle conservation condition 

         Or    ∑ 𝜕𝑁𝑖 = 0    -------------------------------------(11) 

We thus have three conditions to satisfy in order to establish the 

maximum thermodynamic probability. 

 If we were not bound by the constant energy and number of 

particles restriction, then the number of particles in each energy 

state 𝑁𝑖 could be considered as independent variable.  In this case 

we apply equation (9); 

       ln
𝑁𝑖+𝑛

𝑁𝑖
= 0 ⟹ as the maximizing conditions          

 Now multiplying equation (10) by a constant (−𝛽) and equation 

(11) by (−𝛼) we obtain; 

        ∑ −𝛽𝜀𝑖𝜕𝑁𝑖 = 0 --------------------------------(12) 

       ∑ −𝛼𝜕𝑁𝑖 = 0  ----------------------------------(13) 

Adding equations  9, 12 and 13 together we get; 

 ∑ [ln
𝑁𝑖+𝑛

𝑁𝑖
𝜕𝑁𝑖 − 𝛽𝜀𝑖𝜕𝑁𝑖 − 𝛼𝜕𝑁𝑖] = 0 
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 ∑ [ln
𝑁𝑖+𝑛

𝑁𝑖
− 𝛽𝜀𝑖 − 𝛼] 𝜕𝑁𝑖 = 0  ------------------(14) 

If the number of the particles treated as independent particles, in 

this case equation (14) becomes; 

          ln
𝑁𝑖+𝑛

𝑁𝑖
− 𝛽𝜀𝑖 − 𝛼  = 0 

Or    ln
𝑁𝑖+𝑛

𝑁𝑖
= 𝛽𝜀𝑖 + 𝛼 

        1 +
𝑛

𝑁𝑖
= 𝑒𝛽𝜀𝑖+𝛼 

        
𝑛

𝑁𝑖
= 𝑒𝛽𝜀𝑖+𝛼 − 1 

        
𝑁𝑖

𝑛
=

1

𝑒𝛽𝜀𝑖+𝛼−1
=

1

𝑒𝛼𝑒𝛽𝜀𝑖−1
  

        
𝑁𝑖

𝑛
=

1

𝐴𝑒𝛽𝜀𝑖−1
      Where 𝐴 = 𝑒𝛼 

         𝑁𝑖 =
𝑛

𝐴𝑒𝛽𝜀𝑖−1
 -------------------------------(15) 

Equation (15) is the Bose-Einstein distribution law.             

The M.B. distribution law is given by 

  𝑁𝑖 = 𝛼𝑒−𝛽𝜀𝑖 

  𝑁𝑖 =
1

𝐴𝑒𝛽𝜀𝑖
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Determination of the constant 𝜶  

The evaluation of  𝛼 for both Bose-Einstein and Fermi-Dirac is 

no simple and depends on the physical system (gas, liquid or 

solid). 

1- To evaluate 𝛼 

Let us consider a system in which the number of phase point in a 

cell 𝑁𝑖 is very smaller than the number of compartment (n) i.e.  

𝑁𝑖 ≪ 𝑛 

In this case    
𝑁𝑖

𝑛
≪ 1 and   𝑒𝛽𝜀𝑖 ≫ 1 

Then the Bose-Einstein function becomes, 

     
𝑁𝑖

𝑛
=

1

𝐴𝑒𝛽𝜀𝑖−1
  

       
𝑁𝑖

𝑛
=

1

𝐴𝑒𝛽𝜀𝑖
  Or 

      
𝑁𝑖

𝑛
=

1

𝐴𝑒𝜀𝑖 𝑘𝑇⁄       where    𝛽 =
1

𝑘𝑇
   

From Maxwell-Boltzmann statistics   𝛼 =
1

𝐴
  then 

      𝑁𝑖 = 𝑛𝛼𝑒−𝜀𝑖 𝑘𝑇⁄    ----------------------------------------(1) 

For determining 𝛼 using the conditions 

       𝑁 = ∑ 𝑁𝑖   

And the volume phase space 

       𝐻 = 𝑛ℎ3  

       𝑛 =
𝐻

ℎ3 =
1

ℎ3 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧  

Or  𝑛 =
𝑚3

ℎ3 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 ------------------(2) 
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Substituting equation (2) into (1)  

   𝑑6𝑁 =
𝛼𝑚3

ℎ3 𝑒−𝜀𝑖 𝑘𝑇⁄ 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

Integrating over all volume  

   𝑑3𝑁 =
𝛼𝑚3

ℎ3 𝑒−𝜀𝑖 𝑘𝑇⁄ ∭ 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧  

Where V is the volume = ∭ 𝑑𝑥𝑑𝑦𝑑𝑧  

    𝑑3𝑁 =
𝛼𝑚3𝑉

ℎ3 𝑒−𝜀𝑖 𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 ---------------------(3) 

Let  𝜀𝑖 =
1

2
𝑚𝑣2 and substituting in equation 3 we get; 

   𝑑3𝑁 =
𝛼𝑚3𝑉

ℎ3 𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 --------------------(4) 

Integrating over all velocities  𝑣𝑥, 𝑣𝑦, 𝑣𝑧                               

Then equation (4) becomes; 

       𝑁 =
𝛼𝑚3𝑉

ℎ3 ∭ 𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

      𝑁 =
𝛼𝑚3𝑉

ℎ3 (
2𝜋𝑘𝑇

𝑚
)

3 2⁄

 

      𝑁 =
𝛼𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)3 2⁄ , then 

      𝛼 =
𝑁ℎ3

𝑉(2𝜋𝑚𝑘𝑇)3 2⁄    --------------------------------------(5)  

Or  𝛼 =
𝑁ℎ3

𝑉
(2𝜋𝑚𝑘𝑇)−3 2⁄  ----------------------------------(5) 

Now substituting the value of 𝛼 into equation (4) 

 𝑑3𝑁 =
𝑚3𝑉

ℎ3

𝑁ℎ3

𝑉
(2𝜋𝑚𝑘𝑇)−3 2⁄ 𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 
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           = 𝑚3𝑁(2𝜋𝑚𝑘𝑇)−3 2⁄  𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

           = 𝑚3𝑁
1

(2𝜋𝑚𝑘𝑇)3 2⁄  𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

 𝑑3𝑁 = 𝑁 (
𝑚

2𝜋𝑘𝑇
)

3 2⁄

𝑒−𝑚𝑣2 2𝑘𝑇⁄ 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 ---------(6) 

Equation (6) represents the Maxwell-Boltzmann velocity 

distribution function. 

The Bose-Einstein (quantum) statistics leads to the same 

Maxwell-Boltzmann (classical) statistics provides the assumption 

that  
𝑁𝑖

𝑛
 is very less than unity is true.  


