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Fermi-Dirac Statistics 

Fermi-Dirac Statistics, in quantum mechanics, one of two 

possible ways in which a system of indistinguishable particles can 

be distributed among a set of energy states: each of the 

available discrete states can be occupied by only one particle. 

The theory of this statistical behavior was developed (1926–27) 

by the physicists Enrico Fermi and P.A.M. Dirac, who 

recognized that a collection of identical and indistinguishable 

particles can be distributed in this way among a series of discrete 

(quantized) states. 

 

In contrast to the Bose-Einstein statistics, the Fermi-Dirac 

statistics apply only to those types of particles that obey Pauli 

exclusion principle. Such particles have half-integer values 

of spin and are named fermions, after the statistics that correctly 

describe their behavior. Fermi-Dirac statistics apply, for example, 

to electrons, protons, and neutrons. 

Fermions obey the Pauli exclusion principle, which forbids more 

than one particle of this type from occupying a 

single quantum state.  

 

in quantum mechanics, fundamental mathematical proof that 

subatomic particles having integral values of spin (such as 

https://www.britannica.com/science/quantum-mechanics-physics
https://www.britannica.com/dictionary/discrete
https://www.britannica.com/biography/Enrico-Fermi
https://www.britannica.com/biography/Paul-Dirac
https://www.britannica.com/science/Bose-Einstein-statistics
https://www.britannica.com/science/Pauli-exclusion-principle
https://www.britannica.com/science/Pauli-exclusion-principle
https://www.britannica.com/science/spin-atomic-physics
https://www.britannica.com/science/fermion
https://www.britannica.com/science/proton-subatomic-particle
https://www.britannica.com/science/neutron
https://www.britannica.com/science/Pauli-exclusion-principle
https://www.britannica.com/science/quantum
https://www.britannica.com/science/quantum-mechanics-physics
https://www.merriam-webster.com/dictionary/integral
https://www.britannica.com/science/spin-atomic-physics


3 
 

photons and helium-4 atoms) must be described by Bose-Einstein 

statistics , and that subatomic particles having half-integral values 

of spin (such as electrons and protons) must be described 

by Fermi-Dirac statistics . 

The main application of Fermi–Dirac Statistics is to calculate the 

properties of electrons.  

Fermi-Dirac Statistics describes a distribution of particles over 

energy states in systems of many identical particles that obey the 

Pauli exclusion principle. 

 

The third statistical model of interest to us assume, as dose Bose-

Einstein statistics , that the particles are indistinguishable, but in 

this case there is a limit of no more than one particle per quantum 

state. That is, 

𝑁1 → Particle in the first energy level 𝐸1 

𝑁2 → Particle in the second energy level 𝐸2 

 

In this case, we allow 0 or 1 particle to each quantum state. 

 

       

    C1           C2        C3           C4          C5         C6          C7 

 

Either there is a particle or no particle in each quantum state. 

 

 

 

https://www.britannica.com/science/Bose-Einstein-statistics
https://www.britannica.com/science/Bose-Einstein-statistics
https://www.britannica.com/science/Fermi-Dirac-statistics
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Properties of Fermi-Dirac Statistics:  
 

According of F.D.S. one conclude that; 

 

1- All particles are indistinguishable 

2- Energy states are distinguishable 

3- The particles having anti symmetric wave functions are     

     called Fermions  ( electrons and atoms composed of odd                                       

number of fermions obey F.D.S).                                            

4- Fermions have half integral angular momentum spin,  

    𝑆 =
1

2
ℏ,   

3

2
ℏ,   

5

2
ℏ, − − − − − 

    Then 𝑆 = (𝑛 +
1

2
) ℏ       where n= 0, 1, 2, 3, ---------- 

5- Fermions obey Pauli exclusion principle , ( No more than 

Fermions can be in the same energy state). Or ( No two electrons 

in the same atoms have the same set of quantum number). 
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Thermodynamic Probability 

 

 

The thermodynamic probability of each cell 

   𝑊𝑖 = 4       and       𝑊𝑗 = 4 

  The total thermodynamic probability of a macrostate is 

    𝑊 = 𝑊𝑖 × 𝑊𝑗 = 4 × 4 = 16 

For B.E.S.                    The thermodynamic probability for 

the same example equal to 80. 
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In general when there are any number of cells, 

    𝑊 = ∏𝑊𝑖   ---------------------------------------------(1) 

The thermodynamic probability for a given cell is defined as the 

number of different ways that the compartments can be divided 

into just two groups with the occupied compartments in one group 

and the empty compartments in the other. 

Let 𝑁𝑖  → represent the number of occupied compartments 

             = The number of phase points in the cell                 

  𝑛 − 𝑁𝑖 → represent the number of empty compartments. 

The number of different ways of dividing the compartments 

into occupied and unoccupied groups. Or 

The thermodynamic probability;                                                 

   𝑊𝑖 =
𝑛!

𝑁𝑖!(𝑛−𝑁𝑖)!
 ---------------------------------(2) 

Example; 

Let  𝑁𝑖 = 3  and 𝑛 = 4  (number of compartment) in the 𝑖𝑡ℎ 

cell  and 𝑁𝑗 = 1 , 𝑛 = 4 in the 𝑗𝑡ℎ cell. Calculate the 

thermodynamic probability. 

  𝑊𝑖 = 
𝑛!

𝑁𝑖!(𝑛−𝑁𝑖)!
=

4!

3!(4−3)!
=

1×2×3×4

1×2×3×1
= 4   

𝑊𝑗 =
𝑛!

𝑁𝑗!(𝑛−𝑁𝑗)!
=

4!

1!(4−1)!
=

1×2×3×4

1×1×2×3
= 4  
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Is the same result as before. 

Fermi-Dirac distribution functions 

The thermodynamic probability for F.D.S. is; 

      𝑊 = ∏
𝑛!

𝑁𝑖!(𝑛−𝑁𝑖)!
  ------------------------------------(2) 

To maximize subject to the constraints; 

       ∑ 𝑁𝑖 = 𝑁 

      ∑ 𝜀𝑖𝑁𝑖 = 𝑈     Therefore, 

       ln 𝑊 ≅ ∑[𝑛 ln 𝑛 − 𝑁𝑖 ln 𝑁𝑖 − (𝑛 − 𝑁𝑖) ln(𝑛 − 𝑁𝑖)] ---(3) 

Where      𝑛 ≫ 𝑁𝑖 ≫ 1                      

𝜕 ln 𝑊 = ∑[− ln 𝑁𝑖𝜕𝑁𝑖 − 𝜕𝑁𝑖 + ln(𝑛 − 𝑁𝑖)𝜕𝑁𝑖 + 𝜕𝑁𝑖] 

                   = ∑ ln (
𝑛−𝑁𝑖

𝑁𝑖
) 𝜕𝑁𝑖 

                 = 0 

     ∑ ln (
𝑛−𝑁𝑖

𝑁𝑖
) 𝜕𝑁𝑖 = 0 ----------------------------------------(4) 

Now we added in 

        𝛼 ∑ 𝜕𝑁𝑖 = 0 

    −𝛽 ∑ 𝜀𝑖𝜕𝑁𝑖 = 0 
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So  ∑ [ln (
𝑛−𝑁𝑖

𝑁𝑖
) + 𝛼 − 𝛽𝜀𝑖] 𝜕𝑁𝑖 = 0 --------------(5) 

Or       ln (
𝑛−𝑁𝑖

𝑁𝑖
) = −𝛼 + 𝛽𝜀𝑖 

Then,           
𝑛−𝑁𝑖

𝑁𝑖
= 𝑒−𝛼+𝛽𝜀𝑖 

Therefore, 

                   𝑁𝑖 =
𝑛

𝑒−𝛼𝑒𝛽𝜀𝑖+1
 -------------------------------(6) 

                   𝑁𝑖 =
𝑛

𝐴𝑒𝛽𝜀𝑖+1
    where 𝐴 = 𝑒−𝛼   

Which is the Fermi-Dirac Distribution. 

Fermi-Dirac distribution function in momentum space  

As before we define,  𝛽 =
1

𝑘𝑇
                                                  

And in the case of F.D. distribution;                                    

 𝑛 =
2𝐻

ℎ3 =
2

ℎ3 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 

Here the number 2 is added because there are two independent 

states of different spin orientation per unit volume in n space.                                                                     

In this case, the number of phase point 𝑁 → 𝑑6𝑁 𝑎𝑛𝑑 𝜀𝑖 → 𝜀  

Then the F.D. distribution function can be written as; 

           𝑁𝑖 =
𝑛

𝑒−𝛼𝑒
𝜀

𝑘𝑇+1
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Or      𝑁𝑖 =
𝑛

𝛼𝑒
𝜀

𝑘𝑇+1
 

 𝑑6𝑁 =
2

ℎ3

1

𝛼𝑒
𝜀

𝑘𝑇+1
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 --------(7) 

Integrating eqn. (7) over all space x, y and z we get;           

     𝑑3𝑁 =
2𝑉

ℎ3

1

𝛼𝑒
𝜀

𝑘𝑇+1
𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 -----------------(8) 

Eqn. (8) represents the F.D. distribution function in      three- 

dimensional momentum space. 

If      𝛼𝑒
𝜀

𝑘𝑇 ≫ 1 then eqn. (8) becomes; 

  𝑑3𝑁 =
2𝑉

ℎ3

1

𝛼𝑒
𝜀

𝑘𝑇

𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 -------------------(9) 

Eqn. (9) is the same as the Maxwell-Boltzmann statistics. 

But this approximation can not be made for electron gas, and  𝛼 

must be evaluated from eqn. (8). For this reason the expression 

for  𝛼 was first derived by Sommerfeld and is given by. 

              𝛼 = 𝑒−𝜀𝐹 𝑘𝑇⁄  

Where  𝜀𝐹 represent the maximum energy of electrons called the 

Fermi energy. 

According to this approximation eqn. (8) can be written as, 

 𝑑3𝑁 =
2𝑉

ℎ3

1

𝑒−𝜀𝐹 𝑘𝑇⁄ 𝑒𝜀 𝑘𝑇⁄ +1
𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 

 𝑑3𝑁 =
2𝑉

ℎ3

1

𝑒(𝜀−𝜀𝐹) 𝑘𝑇⁄ +1
𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 -----------(10) 
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  𝑑3𝑁 = 𝜌 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 -------------------------------(11) 

Where  𝜌 =
2𝑉

ℎ3

1

𝑒(𝜀−𝜀𝐹) 𝑘𝑇⁄ +1
 is the density of the phase points in the 

momentum space. 

Now let 𝜀𝐹0
→ represents the energy at 𝑇 = 0  

Where  𝜀𝐹0
→ is the maximum Fermi energy of the electron at 

absolute zero. Then the density in terms of 𝜀𝐹0
 is; 

              𝜌 =
2𝑉

ℎ3

1

𝑒
(𝜀−𝜀𝐹0

 ) 𝑘𝑇⁄
+1

 -------------------------(12) 

Boundary Conditions 

1- if  𝜀 < 𝜀𝐹0
       at   𝑇 = 0 then, 

              𝜌0 =
2𝑉

ℎ3

1

𝑒
−𝜀𝐹0

𝑘𝑇⁄
+1

=
2𝑉

ℎ3

1

𝑒−∞+1
 

              𝑒−∞ = 0                                                                             

 ∴            𝜌0 =
2𝑉

ℎ3  ----------------------------------------------(13) 

This means that at absolute zero the density 𝜌0 is constant. 

2- if    𝜀 > 𝜀𝐹0
 at  𝑇 = 0  then, 

                𝜌0 =
2𝑉

ℎ3

1

𝑒𝜀 𝑘𝑇⁄ +1
=

2𝑉

ℎ3

1

𝑒+∞+1
 

         𝑒+∞ = ∞                                                       

  ∴            𝜌0 = 0 ---------------------------------------------(14) 
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Eqn. (14) means that the density of phase points in momentum 

space is equal to zero where 𝜀 > 𝜀𝐹0
 at  𝑇 = 0.  

The Fermi-Dirac Energy Distribution Function  

Fermi-Dirac distribution at 𝑇 = 0°𝐾. 

  Electron are fermions. Two electrons can occupy a state, one 

with spin up and one with spin down. 

Fermi function 𝑓(𝜀) is the probability that a state at energy 𝜀 is 

occupied. 

       Electron obey the Fermi-Dirac distribution function 

       𝑓(𝜀) =
1

𝑒(𝜀−𝜀𝐹) 𝑘𝑇⁄ +1
 -------------------------------------(15) 

  At T=0°K, an ideal Fermi gas is in the ground state, and the 

particles of the gas occupy all quantum states with energy up to a 

certain maximum value, which depends on the gas density and is 

called Fermi level (𝜀𝐹). Quantum state with energy 𝜀 > 𝜀(𝐹) are 

empty; such a distribution of occupied and empty state. The 

distribution function for electrons at T= 0°K has the form 

    𝑓(𝜀) = {
1, 𝜀 < 𝜀(𝐹)

0, 𝜀 > 𝜀(𝐹)
  

That is, all level below 𝜀(𝐹) are completely filled, and all those 

above  𝜀(𝐹) are completely empty. 
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     What happens if the temperature is 

increased? 

Fermi-Dirac distribution at 𝑻 > 𝟎°𝑲 

The kinetic energy of the electron gas increase with temperature. 

Therefore, some energy levels become occupied which were 

vacant at zero temperature, and some levels become vacant which 

were occupied at absolute zero. 

The distribution of electrons among the levels is usually described 

by the distribution function  𝑓(𝜀), which is defined as the 

probability the level  𝜀 is occupied by an electron. Thus if the level 

is certainly empty, then,  𝑓(𝜀) = 0, while if it is certainly full, then 

𝑓(𝜀) = 1. In general,  𝑓(𝜀) has a value between zero and unity. 
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Relation between the energy and momentum 

The relation between the energy 𝜀 and the momentum 𝑃 is,    

 𝜀 =
1

2
𝑚𝑣2 =

1

2𝑚
𝑚2𝑣2 =

𝑃2

2𝑚
                                               

  ∴          𝑃2 = 2𝑚𝜀 

For the maximum energy at absolute zero the momentum become 

maximum,                                                                     

             𝑃𝐹0

2 = 2𝑚𝜀𝐹0
 

            𝑃𝐹0
= (2𝑚𝜀𝐹0

)
1 2⁄

 ---------------------------------(16) 

This means that, at absolute zero temperature the momentum 

space distributed uniformly inside a sphere of radius  𝑃𝐹0
 and 

there is no phase point outside the sphere. 

                                             

 

  

                Momentum space 

The volume of sphere of radius  𝑃𝐹0
 is equal to 

    ∭ 𝑑𝑃𝑥𝑑𝑃𝑦𝑑𝑃𝑧 =
4

3
𝜋𝑃𝐹0

3       

Now, using equation (11) 𝑑3𝑁 = 𝜌 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 and integrating 

it over all momentum space 

         𝑷𝑭𝟎
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𝑁 = 𝜌0 ∭ 𝑑𝑃𝑥𝑑𝑃𝑦𝑑𝑃𝑧
 --------------------------------------(17) 

At 𝑇 = 0°𝐾, then 𝜌0 =
2𝑉

ℎ3  

Then eqn. 17 becomes 

      𝑁 =
2𝑉

ℎ3 ×
4

3
𝜋𝑃𝐹0

3 =
8𝜋𝑉

3ℎ3 𝑃𝐹0

3   

 ∴   𝑃𝐹0

3 =
3𝑁ℎ3

8𝜋𝑉
  

      𝑃𝐹0
= (

3𝑁ℎ3

8𝜋𝑉
)

1 3⁄

 ---------------------------------------(18) 

Substituting eqn. 18 in to 16 we obtain 

      (
3𝑁ℎ3

8𝜋𝑉
)

1 3⁄

= (2𝑚𝜀𝐹0
)

1 2⁄
 

     2𝑚𝜀𝐹0
= (

3𝑁ℎ3

8𝜋𝑉
)

2 3⁄

 

           𝜀𝐹0
=

1

2𝑚
(

3𝑁ℎ3

23𝜋𝑉
)

2 3⁄

 

           𝜀𝐹0
=

ℎ2

8𝑚
(

3𝑁

𝜋𝑉
)

2 3⁄

  ----------------------------------(19) 

Which a result in a relationship between the Fermi energy and the 

number of particles per unit volume. 

  ℎ = 6.62 × 10−34 𝑗. 𝑠𝑒𝑐   Planks constant 

  𝑚 = 9.1 × 10−31𝑘𝑔𝑚         electron mass 
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𝑁

𝑉
 number of electron per unit volume 

For monatomic N=1, diatomic N=2 

Fermi Energy and Fermi Level 

No. Fermi Energy Fermi Level 

1 Is the energy difference between 

The highest and lowest occupied 

Single-particle in a quantum state  

Of non-interacting fermions at  

absolute zero T 

Is a terms used to describe the 

collection of electron energy levels 

at absolute zero T 

2 Is defined only at absolute 

Temperature 

Is defined at any temperature 

3 Is the kinetic energy difference  

between highest and lowest 

occupied single- particle state 

Refers to the total kinetic energy and 

potential energy of a thermodynamic 

system containing fermions 

4 In metals F.E. is the energy 

difference between F.L. and the 

lowest occupied single-particle 

state 

Is the energy of the highest occupied 

single-particle state at zero absolute 

T  

5 Is defined only for non-interacting 

fermions 

Can be defined even for fermions 

that are in complex interacting 

systems 
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Specific heat capacity of the electron gas 

The amount of energy needed to raise the temperature of 1kg 

substanceby1○C is called the specific heat capacity. This 

amount of energy   is 

measured in joules. The Fermi-Dirac statistics attributes a much 

greater energy to the electron than does the older theory. The 

change in energy with temperature is very small, and it is only the 

change in energy that influence the heat capacity. 

The average energy 𝜀 of an electron is defined as; 

     𝜀 =
∫ 𝜀𝑑𝑁𝜀

∞
0

∫ 𝑑𝑁𝜀
∞

0

 ----------------------------------------- (29) 

At  𝑇 = 0        𝑎𝑛𝑑      𝜀 < 𝜀𝐹0
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Then eqn.28 can be written as;     

 𝒅𝑵(𝜺) =
𝟒𝝅𝑽

𝒉𝟑
(𝟐𝒎)𝟑 𝟐⁄ 𝜺𝟏 𝟐⁄

𝒆
(𝜺−𝜺𝑭𝟎

) 𝒌𝑻⁄
+𝟏

𝒅𝜺 ----------(28) 

      𝑑𝑁(𝜀) =
4𝜋𝑉

ℎ3
(2𝑚)3 2⁄ 𝜀1 2⁄ 𝑑𝜀 ----------------(30) 

At  𝑇 = 0°𝐾 there are no electron with energies greater than 𝜀𝐹0
, 

then  𝜀 < 𝜀𝐹0
.         

Now substituting eqn. 30 into 29 we obtain  

     𝜀0 =
∫  

4𝜋𝑉

ℎ3 (2𝑚)3 2⁄ 𝜀1 2⁄ 𝜀𝑑𝜀
𝜀𝐹0

0

∫
4𝜋𝑉

ℎ3 (2𝑚)3 2⁄ 𝜀1 2⁄ 𝑑𝜀
𝜀𝐹0  

0

  

    𝜀0 =
∫ 𝜀3 2⁄ 𝑑𝜀

𝜀𝐹0
0

∫ 𝜀1 2⁄ 𝑑𝜀
𝜀𝐹0

0

   

    𝜀0 =

𝜀𝐹0
5 2⁄

5 2⁄

𝜀𝐹0
3 2⁄

3 2⁄

=
2

5
𝜀𝐹0

5 2⁄ ×
3

2
𝜀𝐹0

−3 2⁄  

    𝜀0 =
3

5
𝜀𝐹0

 -----------------------------------------------(31) 

The average energy of the electron at 𝑇 = 0°𝐾 is equal to 
3

5
𝜀𝐹0

 of 

the maximum energy. 

The average energy at any temperature 𝑇 can be obtained by using 

the series expansion for 𝜀𝐹 as a function of 𝑇. 
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     𝜀 =
3

5
𝜀𝐹0

[1 +
5𝜋2

12
(

𝑘𝑇

𝜀𝐹0

)
2

+ − − −] ----------(32) 

 

The total energy at constant volume 

  𝑈 = 𝑁𝜀   → 𝑑𝑈 = 𝑁𝑑𝜀  

And the specific heat constant volume is defined as, 

  𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝑁

𝑑𝜀

𝑑𝑇
  

  𝐶𝑉 = 𝑁
3

5
𝜀𝐹0

[
5𝜋2

12
×

𝑘2

(𝜀𝐹0)
2 × 2𝑇]  

  𝐶𝑉 =
𝑁𝜋2𝑘2

2𝜀𝐹0

𝑇 ----------------------------------------(33) 

 𝑁 → Avogadro number 

 𝑁𝑘 = 𝑅  

Then eqn.33 becomes; 

   𝐶𝑉 =
𝜋2𝑘

2𝜀𝐹0

𝑅𝑇 --------------------------------------(34) 

Eqn.34 shows that the specific heat capacity is dependent on the 

temperature 𝑇 according to the Fermi-Dirac statistics, while the 

Maxwell-Boltzmann statistics predict the specific heat capacity is 

independent on the temperature 𝐶𝑉 =
3

2
𝑅.  
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The Difference Between Energy Distribution 

Function For M.B.S, B.E.S And F.D.S 

The distribution function f(E) is the probability that a particle is 

in energy state E. The distribution function is a generalization of 

the ideas of discrete probability to the case where energy can be 

treated as a continuous variable. Three distinctly different 

distribution functions are found in nature. The term A in the 

denominator of each distribution is a normalization term which 

may change with temperature. 

   

Identical 

but distinguishable 

particles. 

Identical indistinguishable particles 

with integer spin (bosons). 

Identical indistinguishable 

particles with half-integer spin 

(fermions). 

Examples: 

Molecular 

speed 

distribution 

 

Examples: 
Thermal radiation 

Specific heat 
 

Examples: 

Electrons in a 

metal 

Conduction in 

semiconductor. 
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21 
 

Example; 

Assume for silver there are one electron per atom, then 

𝑁

𝑉
= 5.86 × 1028 free electron per m3  

The maximum kinetic energy at absolute zero 

     𝜀𝐹0
=

ℎ2

8𝑚
(

3𝑁

𝜋𝑉
)

2 3⁄

 

       𝜀𝐹0
=

(6.62×10−34)
2

8×9.1×10−31 (
3

𝜋
× 5.86 × 1028)

2 3⁄

 

               = 9 × 10−19𝐽 = 5.6𝑒𝑉 

This is maximum kinetic energy of electron at absolute zero. 

Average energy of electron at absolute zero 

   𝜀̅ = (
3

5
) 𝜀𝐹0

 ---------------------------------------------(20) 

For silver  

      𝜀̅ = (
3

5
) × 5.6 ≅ 3.46𝑒𝑉 
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