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CH.3 
 
Electric Flux Density, 
Gauss’s Law,  
and Divergence 
 
 
 
Electric Flux Density: 
 
Electric Flux: 
 
    Another important concept in electrostatics is electric flux. If a unit test 
charge is placed near a point charge, it experiences a force. The direction of 
this force can be represented by the lines, radially coming outward from a 
positive charge. These lines are called streamlines or flux lines. Thus the 
electric field due to a charge can be imagined to be present around it in terms 
of a quantity called electric flux. The flux lines give the pictorial 
representation of distribution of electric flux around a charge. In the 
following sections we will explain the concept of electric flux, electric flux 
density, Gauss’s law, applications of Gauss’s law and the divergence 
theorem.    
 
Faraday Experiment: 
 
    About 1837, Michael Faraday he was experimenting in his now-famous 
work on induced electromotive force, in his experiment, Faraday had a pair 
of concentric metallic spheres constructed, the outer one consisting of two 
hemispheres that could be firmly clamped together. He also prepared shells 
of insulating material (or dielectric material or simply dielectric) that would 
occupy the entire volume between the concentric spheres. 
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His experiment, then, consisted essentially of the following steps: 
 

1. With the equipment dismantled, the inner sphere was given a known 
positive charge (+Q). 

2. The hemispheres were then clamped together around the charged 
sphere with about 2 cm of dielectric material between them. 

3. The outer sphere was discharged by connecting it momentarily to 
ground. 

4. The outer space was separated carefully, using tools made of 
insulating material in order not to disturb the induced charge on it, and 
the negative induced charge on each hemisphere was measured. 

 
Faraday found that the total charge on the outer sphere was (-Q) equal in 
magnitude to the original charge placed on the inner sphere and that this was 
true regardless of the dielectric material separating the two spheres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
He concluded that there was some sort of “displacement” from the inner 
sphere to the outer which was independent of the medium, and we now refer 
to this flux as displacement, displacement flux or simply electric flux . 
 
Faraday’s experiments also showed, of course, that a larger positive charge 
on the inner sphere induced a correspondingly larger negative charge on the 
outer sphere, leading to a direct proportionality between the electric flux 
and the charge on the inner sphere. The constant of proportionality is 
dependent on the system of units involved, and we are fortunate in our use of 

Figure 3.1 The electric flux in the region between a pair of charged concentric spheres. 
The direction and magnitude of D are not functions of the dielectric between the spheres. 
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SI units, because the constant is unity. If electric flux is denoted by  Ψ (psi) 
and the total charge on the inner sphere by Q, then for Faraday’s experiment 
 

Ψ =  
 
and the electric flux Ψ is measured in coulombs. That by definition, one 
coulomb of electric charge gives rise to one coulomb of electric flux. 
 
Key Point: Thus the total number of lines of force in any particular electric 
field is called the electric flux. It is represented by the symbol   Ψ . Similar to 
the charge, unit of electric flux is also coulomb C. 
 
Properties of electric flux lines 
 

1- The flux lines start from positive charge and terminate on the negative 
charge  
 
  

 
 
 
 
 
 
 
 

2- If the negative charge is absent, then the flux lines terminate at 
infinity. While in absence of positive charge, the electric flux 
terminates on the negative charge from infinity. 
 

 



Electric flux  | 4 
 

 
 
 
 
 
 
 
 
 
 

 
 
This is according to SI units. Hence if Q is large, flux ψ is more surrounding 
the charge and vice versa. 
The flux is a scalar field. Let us define now a vector field associated with 
the flux called electric flux density. 
 
 
Electric Flux Density (D): 
 
We can obtain more quantitative information by considering an inner sphere 
of radius a and an outer sphere of radius b, with charges of Q and −Q, 
respectively (Figure 3.1). The paths of electric flux ψ extending from the 
inner sphere to the outer sphere are indicated by the symmetrically 
distributed streamlines drawn radially from one sphere to the other. 
 
At the surface of the inner sphere, ψ coulombs of electric flux are produced 
by the charge Q (= Ψ) Coulombs distributed uniformly over a surface having 
an area of  (4πa2 ) m2. 
The density of the flux at this surface is  Ψ/ (4πa2)  or  Q / (4πa2) C/m2, 
and this is an important new quantity. 
 
Electric flux density; measured in coulombs per square meter (sometimes 
described as “ lines per square meter,” for each line is due to one 
coulomb), is given the letter  D, which was originally chosen because of the 
alternate names of displacement flux density or displacement density. 
Electric flux density is more descriptive, however, and we will use the term 
consistently. 
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   The electric flux density D is a vector field and is a member of the “flux 
density” class of vector fields, as opposed to the “force fields” class, which 
includes the electric field intensity E.  
 
 The direction of D at a point is the direction of the flux lines at that 

point. 
 The magnitude is given by the number of flux lines crossing a surface 

normal to the lines divided by the surface area. 
 
Referring again to Figure 3.1, the electric flux density is in the radial 
direction and has a value of 
 

| =
4

                 (  ℎ ) 
 

| =
4

                 (  ℎ ) 
 
And at any radial distance r , where ≤ ≤ , 
 

=
4

 
 
 
 
Electric flux density from a point charge: 
 
If we now let the inner sphere become smaller and smaller, while still 
retaining a charge of Q, it becomes a point charge in the limit, but the 
electric flux density at a point  r  meters from the point charge is still given 
by 
 

=
4

                                          ( ) 
 
 
for Q lines of flux are symmetrically directed outward from the point and 
pass through an imaginary spherical surface of area (4πr2). 
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If in the neighborhood of point P the lines of flux have the direction of 
the unit vector  (see the figure below) and if an amount of flux Ψ crosses 
the differential area , which is a normal to , then the electric flux density 
at P is  

=
Ψ

         ( / ) 

 
 
Relationship between D and E: 
 
In the previous, it has been derived that the electric field intensity E at a 
distance of  r, from a point charge Q in free space is given by, 
 

=
4

 

 
Dividing the equations of  D  and  E  due to a point charge Q we get, 
 

= 4

4

=  

 
 
Therefore,                         =              (free space only)             (2) 
 
 
This equation (2) is applicable only to a vacuum.  
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Thus D and E are related through the permittivity. If the medium in which 
charge is located is other than free space having relative permittivity  then, 
 

=  
i.e.                                            

=  
 
Equation (2) is not restricted solely to the field of a point charge. For a 
general volume charge distribution in free space, 
 

=
4

             (  ) 

 
where this relationship was developed from the field of a single point 
charge. In a similar manner, (1) leads to 
 

=
4

  

  
and (2) is therefore true for any free-space charge configuration; we shall 
consider (2) as defining D in free space. 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 
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Gauss’s Law: 
 
The generalizations of Faraday’s experiment lead to the following statement, 
which is known as Gauss’s law: 
 
The electric flux passing through any closed surface is equal to the total 
charge enclosed by that surface. 
 
Let we obtain a mathematical form for this statement: 
Let us imagine a distribution of charge, shown as a cloud of point charges in 
Figure 3.2, surrounded by a closed surface of any shape. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 At every point on the surface the electric-flux-density vector D will 
have some value DS ,  

 where the subscript S merely reminds us that D must be evaluated at 
the surface,  

 and DS will in general vary in magnitude and direction from one point 
on the surface to another. 

 
At any point P, consider an incremental element of surface ∆S and let DS 
make an angle θ with  ∆S, as shown in Figure 3.2.  
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The flux crossing ∆S is then the product of the normal component of DS and 
∆S, 

∆Ψ = , Δ = cos Δ = ∙ Δ  
 
The total flux passing through the closed surface is obtained by adding the 
differential contributions crossing each surface element ∆S, 
 

Ψ = Ψ = ∙  

 
The vector surface element    is taken to point out of  , so that  Ψ  is the 
amount of flux passing from the interior of  to the exterior of  through . 
 
The resultant integral is a closed surface integral, and since the surface 
element  dS  always  involves  the  differentials  of  two  coordinates, such as  

, , sin  , the integral is a double integral. Usually 
only one integral sign is used for brevity, and we will always place an S 
below the integral sign to indicate a surface integral, although this is not 
actually necessary, as the differential dS is automatically the signal for a 
surface integral. One last convention is to place a small circle on the integral 
sign itself to indicate that the integration is to be performed over a closed 
surface. Such a surface is often called a gaussian surface. We then have the 
mathematical formulation of Gauss’s law, 
 

Ψ = ∙ =  

 
                                                                         = ℎ   
 
The charge enclosed might be several point charges, in which case 
 

=  
 
or a line charge, 

=  
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or a surface charge, (not necessarily a closed surface), 
 

=
 

 

or a volume charge distribution, 

=
 

 

 
The last form is usually used, and it represents any or all of the other forms. 
With this understanding, Gauss’s law may be written in terms of the charge 
distribution as 
 

∙
 

=
 

 

 
 
a mathematical statement meaning simply that the total electric flux through 
any closed surface is equal to the charge enclosed. 
 
 
Example: To illustrate the application of Gauss’s law, let us check the 
results of Faraday’s experiment by placing a point charge Q at the origin of a 
spherical coordinate system (Figure 3.3) and by choosing our closed surface 
as a sphere of radius a. 
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Solution: 

Ψ = ∙ = = ℎ    … . .         … … … (1) 

We have, as before, 

=
4

 
At the surface of the sphere, 

=
4

        … … …    ( ) 
The differential element of area on a spherical surface is, in spherical 
coordinates, 

=       
For our sphere, 

=                 … … …       (3) 
 
Substitute eq.(2) and eq.(3) into eq.(1); 

Ψ = ∙ = (
4

 ) ∙  (     )  

=
4

  

=
4

 [− cos ]   [ ]  
 

=
4

 [− cos + cos 0] [2 ] 
 

=
4

 [−(−1) + 1] [2 ] 
 

=
4

 4  
 
=   
 
and we obtain a result showing that Q coulombs of electric flux are crossing 
the surface, as we should since the enclosed charge is Q coulombs. 
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Application of Gauss’s Law: Some Symmetrical Charge Distributions: 
 
We now consider how we may use Gauss’s law, 

= ∙  

to determine DS if the charge distribution is known. This is an example of an 
integral equation in which the unknown quantity to be determined appears 
inside the integral. 
The solution is easy if we are able to choose a closed surface which satisfies 
two conditions: 

1. DS  is everywhere either normal or tangential to the closed surface, so 
that  DS · dS  becomes either  DS dS  or  zero, respectively. 

2. On that portion of the closed surface for which  DS · dS  is not zero,  
DS = constant. 

 
This allows us to replace the dot product with the product of the scalars DS 
and  dS  and then to bring DS outside the integral sign. The remaining 
integral is then  ∫S dS  over that portion of the closed surface which DS 
crosses normally, and this is simply the area of this section of that surface. 
 
Homework: 

1- Find D and E of a point charge Q at the origin of a spherical 
coordinate system using Gauss’s law. 
 

2- Find D and E for the uniform line charge distribution  lying along 
the z axis and extending from −∞   + ∞. 
 

3- Find D and E for two coaxial cylindrical conductors, the inner of 
radius a and the outer of radius b, each infinite in extent. Assume a 
charge distribution of  on the outer surface of the inner conductor.  

 
 
Application of Gauss’s Law:Differential volume element: 
 
We are now going to apply the methods of Gauss’s law to a slightly 
different type of problem - one that does not possess any symmetry at all.  
At first glance, it might seem that our case is hopeless, for without 
symmetry, a simple gaussian surface cannot be chosen such that the normal 
component of D is constant or zero everywhere on the surface. Without such 
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a surface, the integral cannot be evaluated. There is only one way to 
circumvent these difficulties and that is to choose such a very small closed 
surface that D is almost constant over the surface, and the small change in 
D may be adequately represented by using the first two terms of the 
Taylor’s-series expansion for D. The result will become more nearly correct 
as the volume enclosed by the gaussian surface decreases, and we intend 
eventually to allow this volume to approach zero. 
 
This example also differs from the preceding ones in that we will not obtain 
the value of D as our answer but will instead receive some extremely 
valuable information about the way D varies in the region of our small 
surface. This leads directly to one of Maxwell’s four equations, which are 
basic to all electromagnetic theory. 
 
Let us consider any point P, shown in Figure 3.6, located by a rectangular 
coordinate system. The value of D at the point P may be expressed in 
rectangular components,  = + + . We choose as our 
closed surface the small rectangular box, centered at P, having sides of 
lengths ∆ , ∆ ,  ∆ , and apply Gauss’s law, 
 

∙ =  
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In order to evaluate the integral over the closed surface, the integral must be 
broken up into six integrals, one over each face, 
 
 
 
 
Consider the first of these in detail. Because the surface element is very 
small, D is essentially constant (over this portion of the entire closed 
surface) and 
 
 
 
 
 
where we have only to approximate the value of Dx at this front face. The 
front face is at a distance of ∆x/2 from P, and hence 
 
 
 
 
 
 
where Dx0 is the value of Dx at P, and where a partial derivative must be used 
to express the rate of change of Dx with x, as Dx in general also varies with y 
and z. This expression could have been obtained more formally by using the 
constant term and the term involving the first derivative in the Taylor’s-
series expansion for Dx in the neighborhood of P. 
We now have 
 
 
 
Consider now the integral over the back surface, 
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and 
 
 
 
giving 
 
 
 
 
If we combine these two integrals, we have 
 
 
 
 
By exactly the same process we find that 
 
 
 
and 
 
 
 
and these results may be collected to yield 
 
 
 
or 
 
                                                                                                      (7) 
 
The expression is an approximation which becomes better as ∆v becomes 
smaller, and in the following section we shall let the volume ∆v approach 
zero. For the moment, we have applied Gauss’s law to the closed surface 
surrounding the volume element ∆v and have as a result the approximation 
(7) stating that 

 
 
 

(8) 
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Example: 

 
 
 
 
Divergence and Maxwell’s First Equation: 
 
We will now obtain an exact relationship from (7), by allowing the volume 
element ∆ν to shrink to zero. We write this equation as 
 
 
 
 
in which the charge density,  , is identified in the second equality. 
 
The methods of the previous section could have been used on any vector A 
to find ∮ ∙  for a small closed surface, leading to 
 
 
 
 
where A could represent velocity, temperature gradient, force, or any other 
vector field. 
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This operation appeared so many times in physical investigations in the last 
century that it received a descriptive name, divergence. The divergence of A 
is defined as 
 
 
 
 
and is usually abbreviated div A. 
 
The physical interpretation of the divergence of a vector is obtained by 
describing carefully the operations implied by the right-hand side of (11), 
where we shall consider A to be a member of the flux-density family of 
vectors in order to aid the physical interpretation: 
 
The divergence of the vector flux density A is the outflow of flux from a small 
closed surface per unit volume as the volume shrinks to zero. 
 
Writing (9) with our new term, we have 
 

 

 

 
 
Divergence merely tells us how much flux is leaving a small volume on a 
per-unit-volume basis; no direction is associated with it. 
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Example: 
 

 
 
Maxwell’s First Equation 
 
As mentioned previously,  

 

 
 
we can combine Eqs. (9) and (12) and form the relation between electric flux 
density and charge density: 
 
 
                                        
                                           ∇ ∙ =  
 

 This is the first of Maxwell’s four equations as they apply to 
electrostatics and steady magnetic fields,  

 and it states that the electric flux per unit volume leaving a 
vanishingly small volume unit is exactly equal to the volume 
charge density there.  

 This equation is aptly called the point form of Gauss’s law. Gauss’s 
law relates the flux leaving any closed surface to the charge enclosed, 
and Maxwell’s first equation makes an identical statement on a per-
unit-volume basis for a vanishingly small volume, or at a point. 

 

.. Maxwell’s 1st Eq. 
point form of Gauss’s law 

We use (12) to obtain 
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Because the divergence may be expressed as the sum of three partial 
derivatives, Maxwell’s first equation is also described as the differential-
equation form of Gauss’s law, and conversely, Gauss’s law is recognized 
as the integral form of Maxwell’s first equation. 
 
As a specific illustration, let us consider the divergence of D in the region 
about a point charge Q located at the origin. We have the field 

=
4

 

 
 
 
Divergence Theorem: 
 
From Gauss’s law, we have 
 
                                                                (1) 
 
While the charge enclosed in a volume is given by, 
 
                                                                (2) 
 
But according to Gauss’s law in the point form, 
 
∇ ∙ =                                                (3) 
 
Using in (2), 
 
                                                              (4) 
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Equating (1) and (4) constitute the divergence theorem, 
 
                                                                                                                         
 
 
which may be stated as follows: 
 
The integral of the normal component of any vector field over a closed 
surface is equal to the integral of the divergence of this vector field 
throughout the volume enclosed by the closed surface. 
 

 The divergence theorem is true for any vector field. 
 It relates a triple integration throughout some volume to a double 

integration over the surface of that volume. 
 i.e with the help of the divergence theorem, the surface integral can be 

converted into a volume integral, provided that the closed surface 
encloses certain volume. 

 Thus volume integral on right hand side of the theorem must be 
calculated over a volume which must be enclosed by the closed 
surface on left hand side. The theorem is applicable only under this 
condition. 

The divergence theorem becomes obvious physically if we consider a 
volume v, shown in cross section in Figure 3.7, which is surrounded by a 
closed surface S. Division of the volume into a number of small 
compartments of differential size and consideration of one cell show that the 
flux diverging from such a cell enters, or converges on, the adjacent cells 
unless the cell contains a portion of the outer surface. In summary, the 
divergence of the flux density throughout a volume leads, then, to the same 
result as determining the net flux crossing the enclosing surface. 
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Example:  

 
 

 
 

 

 
and the check is accomplished. Remembering Gauss’s law, we see that we have 
also determined that a total charge of 12 C lies within this parallelepiped. 
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Example:  (Q.4.17. in Schaum’s outlines book) 
 
Given that = 30 − 2    in cylindrical coordinates, evaluate both 
sides of the divergence theorem for the volume enclosed by = 2,   = 0,

  = 5   (Fig. 4.7). 
 
The Solution: 
 
The divergence theorem states that 

∙ = ∙   

Now 

∙ = + + ∙  

 
Consider dS normal to ar  direction which is for the side surface.  
∴       =   
∴       ∙ = (30 − 2  ) ∙   
                    = 30 ( ∙ )  
                    = 30  

∴      ∙ = 30           ℎ    = 2 

                           = 30 × 2 × × [ ] × [ ] = 255.1 
The dS on top has direction ar hence for top surface, 

=   
∴       ∙ = (30 − 2  ) ∙   
                    = −2 z    

∴      ∙ = −2 z             ℎ    = 5 

= −2 × 5 ×
2

× [ ] = −40  

While dS for bottom has direction -az hence for bottom surface, 
=  (− ) 

∴       ∙ = (30 − 2  ) ∙  (−  )  = 2 z    
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But z=0 for the bottom surface, as shown in the fig. 4.7. 
 

∙ = 255.1 − 40 + 0 

                 = 129.4363 
This is the left hand side of divergence theorem. 
 
Now evaluate ∫ ( ∙ )   
 

∙ =
1

( ) +
1

+  

And 
= 30 ,        = 0,          = −2  

 

∴         ∙ =
1

(30 ) + 0 + (−2 ) 
 

=
1

{30 (− ) + 30  (1)} + (−2) 

                             = −30 + − 2 
 

∴      ( ∙ ) = −30 +
30

− 2     

 

= (−30 + 30 − 2 )     

 

= −30
−1

− (−30)
−1

+ 30
−1

− 2
2

[ ] [ ]  

Obtained using integration by parts. 
 
= [30  + 30 − 30 − ]  [5] [2 ] 
= [60  − 2 ] [10 ] = 129.437 
This is same as obtained from the left hand side. 
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Problems 
 
1. A point charge of 15 nC is located at the origin, find the total electric flux 
leaving: (a) The surface of a sphere of radius 5 m centered at the point (1, -1, 
2). (b) The top z=0.5 face of a cube, 1 m on a side centered at the origin, 
edges parallel to the coordinate axes. (c) that portion of  a right circular 
cylinder r = 5, for which z ≥ 0. 
 
2. Calculate the total electric flux leaving the cylindrical surface r = 4.5 and 
z = ± 3.5 if the charge distribution is: (a) 2 C point charges on the x- axis at x 
= 0, ± 1, ±2, ±3, ….. .(b) a line charge on the x-axis, = 2 cos 0.1    C/m. 
(c) a surface charge = 0.1   C/m2 on the plane z = 0. 
 
3. Find the total charge lying within the sphere r = 2 if D equals (a) .  

(b) . 
 
4. Using Gauss’s law to find the electric flux density for (a) a point charge, 
(b) a uniform line charge distribution   lying along the z – axis and 
extending from -∞ to ∞. 
 

5. Determine an expression for the volume charge density that gives rise to 
the field (a) = e e e  2 − 2. 5 − , 
              (b) = e  2  +  − 2   
 
6.  Given that = (5 4⁄ )    ( / ) in spherical coordinates, evaluate 
both sides of the divergence theorem for the volume enclosed by = 4  
and  = 4⁄ .  
 
 
 
 


