Vector Analysis

1- Given points M(-1, 2, 1), N(3, -3, 0), and P(-2, -3, -4), find: (a) \mathbf{R}_{MN} ; (b) $\mathbf{R}_{MN} + \mathbf{R}_{MP}$; (c) $|\mathbf{r}_M|$; (d) \mathbf{a}_{MP} ; (e) $|2\mathbf{r}_P - 3\mathbf{r}_N|$.

2- The three vertices of a triangle are located at A(6, -1, 2), B(-2, 3, -4), and C(-3, 1, 5). Find: (*a*) \mathbf{R}_{AB} ; (*b*) \mathbf{R}_{AC} ; (*c*) the angle θBAC at vertex A; (*d*) the (vector) projection of \mathbf{R}_{AB} on \mathbf{R}_{AC} .

3– The three vertices of a triangle are located at A(6, -1, 2), B(-2, 3, -4), and C(-3, 1, 5). Find: (*a*) $\mathbf{R}_{AB} \times \mathbf{R}_{AC}$; (*b*) the area of the triangle; (*c*) a unit vector perpendicular to the plane in which the triangle is located.

4- Transform to cylindrical coordinates: (*a*) $\mathbf{F} = 10\mathbf{a}_x - 8\mathbf{a}_y + 6\mathbf{a}_z$ at point P(10, -8, 6); (*b*) $\mathbf{G} = (2x+y)\mathbf{a}x - (y-4x)\mathbf{a}y$ at point $Q(\rho, \phi, z)$. (*c*) Give the rectangular components of the vector $\mathbf{H} = 20\mathbf{a}_{\rho} - 10\mathbf{a}_{\phi} + 3\mathbf{a}_z$ at P(x = 5, y = 2, z = -1).

5- Transform the following vectors to spherical coordinates at the points given: (a) $10\mathbf{a}_x$ at P(x = -3, y = 2, z = 4); (b) $10\mathbf{a}_y$ at $Q(\rho = 5, \phi = 30^\circ, z = 4)$; (c) $10\mathbf{a}_z$ at $M(r = 4, \theta = 110^\circ, \phi = 120^\circ)$.

Coulomb's Law and Electric Field Intensity

6- A charge $Q_A = -20 \ \mu$ C is located at A(-6, 4, 7), and a charge $Q_B = 50 \ \mu$ C is at B(5, 8, -2) in free space. If distances are given in meters, find: (a) \mathbf{R}_{AB} ; (b) R_{AB} . Determine the vector force exerted on Q_A by Q_B if $\epsilon_o = (c) \ 10^{-9} / (36 \ \pi)$ F/m; (d) 8.854 × 10⁻¹² F/m.

7- A charge of $-0.3 \ \mu$ C is located at A(25, -30, 15) (in cm), and a second charge of 0. 5 $\ \mu$ C is at B(-10, 8, 12) cm. Find **E** at: (*a*) the origin; (*b*) P(15, 20, 50) cm.

8- Calculate the total charge within each of the indicated volumes: (a) $0.1 \le |x|$, |y|, $|z| \le 0.2$: $\rho \ \nu = 1/(x^3 y^3 z^3)$; (b) $0 \le \rho \le 0.1, 0 \le \phi \le \pi$, $2 \le z \le 4$; $\rho \ \nu = \rho^2 z^2 \sin 0.6 \phi$; (c) universe: $\rho \ \nu = e^{-2r} / r^2$.

9- Infinite uniform line charges of 5 nC/m lie along the (positive and negative) *x* and *y* axes in free space. Find **E** at: (*a*) $P_A(0, 0, 4)$; (*b*) $P_B(0, 3, 4)$.

10- Three infinite uniform sheets of charge are located in free space as follows: 3 nC/m² at z = -4, 6 nC/m² at z = 1, and -8 nC/m² at z = 4. Find **E** at the point: (*a*) $P_A(2, 5, -5)$; (*b*) $P_B(4, 2, -3)$; (*c*) $P_C(-1, -5, 2)$; (*d*) $P_D(-2, 4, 5)$.

Electric Flux Density, Gauss's Law, and Divergence

11- Given a 60- [C point charge located at the origin, find the total electric flux passing through: (a) that portion of the sphere r = 26 cm bounded by $0 < \theta < \pi/2$ and $0 < \phi < \pi/2$; (b) the closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm; (c) the plane z = 26 cm.

12- Calculate **D** in rectangular coordinates at point P(2, -3, 6) produced by: (*a*) a point charge $Q_A = 55$ mC at Q(-2, 3, -6); (*b*) a uniform line charge $\rho_{LB} = 20$ mC/m on the *x* axis; (*c*) a uniform surface charge density $\rho_{SC} = 120$ [C/m² on the plane z = -5 m.

13- Given the electric flux density, $\mathbf{D} = 0.3r^2\mathbf{a}_r \text{ nC/m}^2$ in free space: (*a*) find **E** at point $P(r = 2, \quad \theta = 25^\circ, \quad \phi = 90^\circ)$; (*b*) find the total charge within the sphere r=3; (*c*) find the total electric flux leaving the sphere r=4.

14- A point charge of 0.25 μ C is located at r = 0, and uniform surface charge densities are located as follows: 2 mC/m² at r = 1 cm, and -0.6 mC/m² at r = 1.8 cm. Calculate **D** at: (*a*) r = 0.5 cm; (*b*) r = 1.5 cm; (*c*) r = 2.5 cm. (*d*) What uniform surface charge density should be established at r = 3 cm to cause **D** = 0 at r = 3.5 cm?

15- Determine an expression for the volume charge density associated with each **D** field: (a) $\mathbf{D} = 4xy/z\mathbf{a}_x + 2x^2/z\mathbf{a}_y - 2x^2 y/z^2 \mathbf{a}_z$; (b) $\mathbf{D} = z \sin \phi \mathbf{a}_{\rho} + z \cos \phi \mathbf{a}_{\phi} + \rho \sin \phi \mathbf{a}_z$; (c) $\mathbf{D} = \sin \theta \sin \phi \mathbf{a}_r + \cos \theta \sin \phi \mathbf{a}_{\theta} + \cos \phi \mathbf{a}_{\phi}$.

16- Given the field $\mathbf{D} = 6 \rho \sin(\frac{1}{2}) \phi \mathbf{a} \rho + 1.5 \rho \cos(\frac{1}{2}) \phi \mathbf{a} \phi C/m^2$, evaluate both sides of the divergence theorem for the region bounded by $\rho = 2$, $\phi = 0$, $\phi = \pi$, z = 0, and z = 5.

Energy and Potential

17- Calculate the work done in moving a 4-C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 - 2x, z = 0 in the field $\mathbf{E} = (a) 5\mathbf{a}_x V/m$; (b) $5x\mathbf{a}_x V/m$; (c) $5x\mathbf{a}_x + 5y\mathbf{a}_y V/m$.

18- An electric field is expressed in rectangular coordinates by $\mathbf{E} = 6x^2\mathbf{a}_x + 6y\mathbf{a}_y + 4\mathbf{a}_z V/m$. Find: (a) V_{MN} if points M and N are specified by M(2, 6, -1) and N(-3, -3, 2); (b) V_M if V = 0 at Q(4, -2, -35); (c) V_N if V = 2 at P(1, 2, -4).

THE POTENTIAL FIELD OF A SYSTEM OF CHARGES: CONSERVATIVE PROPERTY

19- If we take the zero reference for potential at infinity, find the potential at (0, 0, 2) caused by this charge configuration in free space (*a*) 12 nC/m on the line $\rho = 2.5$ m, z = 0; (*b*) point charge of 18 nC at (1, 2, -1); (*c*) 12 nC/m on the line y = 2.5, z = 0, $-1.0 \le x \le 1.0$.

20- Given the potential field in cylindrical coordinates,

 $V=100/(z^2+1) \rho \cos \phi$ V, and point P at $\rho = 3$ m, $\phi = 60^{\circ}, z = 2$ m, find values at P for (a) V; (b) E; (c) E; (d) dV/dN; (e) \mathbf{a}_N ; (f) ρ_{ν} in free space.

THE ELECTRIC DIPOLE

21- An electric dipole located at the origin in free space has a moment $\mathbf{p} = 3\mathbf{a}_x - 2\mathbf{a}_y + \mathbf{a}_z \text{ nC } \cdot \text{ m. } (a)$ Find V at $P_A(2, 3, 4)$. (b) Find V at r = 2.5, $\theta = 30^\circ$, $\phi = 40^\circ$.

22- A dipole of moment $\mathbf{p} = 6\mathbf{a}_z \,\mathrm{nC} \cdot \mathrm{m}$ is located at the origin in free space. (a) Find V at $P(r = 4, \ \theta = 20^\circ, \ \phi = 0^\circ)$. (b) Find **E** at *P*.

ENERGY DENSITY IN THE ELECTROSTATIC FIELD

23- Find the energy stored in free space for the region 2 mm $\langle r \langle 3mm, 0 \rangle \langle \theta \rangle \langle 90^{\circ}, 0 \rangle \langle \phi \rangle \langle 90^{\circ}, given the potential field V=: (a) 200/r V; (b) 300 cos <math>\theta / r^2$ V.

CURRENT AND CURRENT DENSITY

24- Given the vector current density $\mathbf{J} = 10 \rho^2 z \mathbf{a}_{\rho} - 4 \rho \cos^2 \phi \mathbf{a}_{\phi} \text{ mA/m}^2$: (*a*) find the current density at $P(\rho = 3, \phi = 30^\circ, z = 2)$; (*b*) determine the total current flowing outward through the circular band $\rho = 3, 0 < \phi < 2\pi, 2 < z < 2.8$.

25- Current density is given in cylindrical coordinates as $\mathbf{J} = -10^6 z^{1.5} \mathbf{a}_z \text{A/m}^2$ in the region $0 \le \rho \le 20 \,\mu$ m; for $\rho \ge 20 \,\mu$ m, $\mathbf{J} = 0$. (a) Find the total current crossing the surface z = 0.1 m in the \mathbf{a}_z direction. (b) If the charge velocity is 2×10^6 m/s at z = 0.1 m, find ρ_{ν} there. (c) If the volume charge density at z = 0.15 m is -2000 C/m³, find the charge velocity there.

METALLIC CONDUCTORS

26- Find the magnitude of the current density in a sample of silver for which $\sigma = 6.17 \times 10^7$ S/m and $\mu_e = 0.0056$ m²/V • s if (*a*) the drift velocity is 1.5 μ m/s; (*b*) the electric field intensity is 1 mV/m; (*c*) the sample is a cube 2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (*d*) the sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

CONDUCTOR PROPERTIES AND BOUNDARY CONDITIONS

27- Given the potential field in free space, $V = 100 \sinh 5x \sin 5y V$, and a point P(0.1, 0.2, 0.3), find at P:(a) V; (b) **E**; (c) $|\mathbf{E}|$; (d) $|\rho_S|$ if it is known that P lies on a conductor surface.

THE NATURE OF DIELECTRIC MATERIALS

28- A slab of dielectric material has a relative dielectric constant of 3.8 and contains a uniform electric flux density of 8 nC/m². If the material is lossless, find: (*a*) *E*; (*b*) *P*; (*c*) the average number of dipoles per cubic meter if the average dipole moment is 10^{-29} C • m.

BOUNDARY CONDITIONS FOR PERFECT DIELECTRIC MATERIALS

29- Let Region 1 (z < 0) be composed of a uniform dielectric material for which $\epsilon_r = 3.2$, while Region 2 (z > 0) is characterized by $\epsilon_r = 2$. Let **D**1 =-30**a**_x +50**a**_y +70**a**_z nC/m² and find: (*a*) D_{N1} ; (*b*) **D**_{t1}; (*c*) D_{t1} ; (*d*) D_1 ; (*e*) θ_1 ; (*f*) **P**₁.

30- Continue Problem 29 by finding: (*a*) \mathbf{D}_{N2} ; (*b*) \mathbf{D}_{t2} ; (*c*) \mathbf{D}_{2} ; (*d*) \mathbf{P}_{2} ; (*e*) θ_{2} .

Capacitance: PARALLEL-PLATE CAPACITOR

31- Find the relative permittivity of the dielectric material present in a parallelplate capacitor if: (*a*) $S = 0.12\text{m}^2$, $d = 80 \,\mu$ m, V0 = 12 V, and the capacitor contains 1 μ J of energy; (*b*) the stored energy density is 100 J/m³, V0 = 200V, and $d = 45 \,\mu$ m; (*c*) $E = 200 \,\text{kV/m}$ and $\rho_S = 20 \,\mu$ C/m².

The Steady Magnetic Field

BIOT-SAVART LAW

32- Given the following values for P_1 , P_2 , and $I_1\Delta L_1$, calculate $_H_2$: (*a*) $P_1(0, 0, 2)$, $P_2(4, 2, 0)$, $2 \pi \mathbf{a}_z \ \mu \mathbf{A} \cdot \mathbf{m}$; (*b*) $P_1(0, 2, 0)$, $P_2(4, 2, 3)$, $2 \pi \mathbf{a}_z \ \mu \mathbf{A} \cdot \mathbf{m}$; (*c*) $P_1(1, 2, 3)$, $P_2(-3, -1, 2)$, $2 \pi (-\mathbf{a}x + \mathbf{a}_y + 2\mathbf{a}_z) \ \mu \mathbf{A} \cdot \mathbf{m}$.

33- A current filament carrying 15 A in the \mathbf{a}_z direction lies along the entire *z* axis. Find **H** in rectangular coordinates at: (*a*) $P_A(\sqrt{20}, 0, 4)$; (*b*) $P_B(2, -4, 4)$.

AMPE` RE'S CIRCUITAL LAW

34- Use Ampere's law to obtain **H** due to an infinitely long, straight filament of current *I*.

35- Consider an infinitely long coaxial transmission line (cable) as shown in the figure. Its inner conductor is solid with radius *a*. The outer conductor is in the form of concentric cylinder whose inner radius is *b* and outer radius is *c*. This cable is placed along z-axis. The total current (*I*) is uniformly distributed in the inner conductor. While (-I) is uniformly distributed in the outer conductor. Use Ampere's law to find **H** in the regions: (*a*) inside inner conductor (r < a), (*b*) inside dielectric (a < r < b) (*c*) inside outer conductor (b < r < c), out of coaxial cable (r > c).

