
5.1. Given the current densityJ = −104[sin(2x)e−2yax + cos(2x)e−2yay ] kA/m2:

a) Find the total current crossing the planey = 1 in the ay direction in the region 0< x < 1,
0 < z < 2: This is found through

I =
∫ ∫

S

J · n
∣

∣

∣

S
da =

∫ 2

0

∫ 1

0
J · ay

∣

∣

∣

y=1
dx dz =

∫ 2

0

∫ 1

0
−104 cos(2x)e−2 dx dz

= −104(2)
1

2
sin(2x)

∣

∣

∣

1

0
e−2 = −1.23MA

b) Find the total current leaving the region 0< x, x < 1, 2 < z < 3 by integratingJ · dS over
the surface of the cube: Note first that current through the top and bottom surfaces will not exist,
sinceJ has noz component. Also note that there will be no current through thex = 0 plane, since
Jx = 0 there. Current will pass through the three remaining surfaces, and will be found through

I =
∫ 3

2

∫ 1

0
J · (−ay)

∣

∣

∣

y=0
dx dz +

∫ 3

2

∫ 1

0
J · (ay)

∣

∣

∣

y=1
dx dz +

∫ 3

2

∫ 1

0
J · (ax)

∣

∣

∣

x=1
dy dz

= 104
∫ 3

2

∫ 1

0

[

cos(2x)e−0 − cos(2x)e−2
]

dx dz − 104
∫ 3

2

∫ 1

0
sin(2)e−2y dy dz

= 104
(

1

2

)

sin(2x)
∣

∣

∣

1

0
(3 − 2)

[

1 − e−2
]

+ 104
(

1

2

)

sin(2)e−2y
∣

∣

∣

1

0
(3 − 2) = 0

c) Repeat partb, but use the divergence theorem: We find the net outward current through the surface
of the cube by integrating the divergence ofJ over the cube volume. We have

∇ · J =
∂Jx

∂x
+

∂Jy

∂y
= −10−4

[

2cos(2x)e−2y − 2 cos(2x)e−2y
]

= 0 as expected

5.2. Let the current density beJ = 2φ cos2 φaρ − ρ sin 2φaφ A/m2 within the region 2.1 < ρ < 2.5,
0 < φ < 0.1 rad, 6< z < 6.1. Find the total currentI crossing the surface:

a) ρ = 2.2, 0 < φ < 0.1, 6 < z < 6.1 in theaρ direction: This is a surface of constantρ, so only
the radial component ofJ will contribute: Atρ = 2.2 we write:

I =
∫

J · dS =
∫ 6.1

6

∫ 0.1

0
2(2) cos2 φ aρ · aρ 2dφdz = 2(2.2)2(0.1)

∫ 0.1

0

1

2
(1 + cos2φ) dφ

= 0.2(2.2)2
[

1

2
(0.1)+

1

4
sin2φ

∣

∣

∣

0.1

0

]

= 97 mA

b) φ = 0.05,2.2 < ρ < 2.5, 6< z < 6.1 in the aφ direction: In this case only theφ component of
J will contribute:

I =
∫

J · dS =
∫ 6.1

6

∫ 2.5

2.2
−ρ sin 2φ

∣

∣

φ=0.05 aφ · aφ dρ dz = −(0.1)2
ρ2

2

∣

∣

∣

2.5

2.2
= −7 mA



5.18. Let us assume a fieldE = 3y2z3 ax + 6xyz3 ay + 9xy2z2 az V/m in free space, and also assume that
pointP(2,1,0) lies on a conducting surface.

a) Findρv just adjacent to the surface atP :

ρv = ∇ · D = ǫ0∇ · E = 6xz3 + 18xy2z C/m3

Then atP , ρv = 0, sincez = 0.

b) Findρs atP :

ρs = D · n
∣

∣

∣

P
= ǫ0Eṅ

∣

∣

∣

P

Note however, that this computation involves evaluatingE at the surface, yielding a value of 0.
Therefore the surface charge density atP is 0.

c) Show thatV = −3xy2z3 V: The simplest way to show this is just to take−∇V , which yields the
given field: A more general method involves deriving the potential from the given field: We write

Ex = −
∂V

∂x
= 3y2z3 ⇒ V = −3xy2z3 + f (y, z)

Ey = −
∂V

∂y
= 6xyz3 ⇒ V = −3xy2z3 + f (x, z)

Ez = −
∂V

∂z
= 9xy2z2 ⇒ V = −3xy2z3 + f (x, y)

where the integration “constants” are functions of all variables other than the integration variable.
The general procedure is to adjust the functions,f , such that the result forV is the same in all
three integrations. In this case we see thatf (x, y) = f (x, z) = f (y, z) = 0 accomplishes this,
and the potential function isV = −3xy2z3 as given.

d) DetermineVPQ, given Q(1,1,1): Using the potential function of partc, we have

VPQ = VP − VQ = 0 − (−3) = 3 V

5.19. LetV = 20x2yz − 10z2 V in free space.

a) Determine the equations of the equipotential surfaces on whichV = 0 and 60 V: Setting the given
potential function equal to 0 and 60 and simplifying results in:

At 0 V : 2x2y − z = 0

At 60 V : 2x2y − z =
6

z

b) Assume these are conducting surfaces and find the surface charge density at that point on the
V = 60 V surface wherex = 2 andz = 1. It is known that 0≤ V ≤ 60 V is the field-containing
region: First, on the 60 V surface, we have

2x2y − z −
6

z
= 0 ⇒ 2(2)2y(1)− 1 − 6 = 0 ⇒ y =

7

8



7.7. LetV = (cos 2φ)/ρ in free space.
a) Find the volume charge density at pointA(0.5,60◦,1): Use Poisson’s equation:

ρv = −ǫ0∇2V = −ǫ0
(

1

ρ

∂

∂ρ

(

ρ
∂V

∂ρ

)

+
1

ρ2

∂2V

∂φ2

)

= −ǫ0
(

1

ρ

∂

∂ρ

(
− cos 2φ

ρ

)

−
4

ρ2

cos 2φ

ρ

)

=
3ǫ0 cos 2φ

ρ3

So atA wefind:

ρvA =
3ǫ0 cos(120◦)

0.53 = −12ǫ0 = −106 pC/m3

b) Find the surface charge density on a conductor surface passing throughB(2,30◦,1): First, we
find E:

E = −∇V = −
∂V

∂ρ
aρ −

1

ρ

∂V

∂φ
aφ

=
cos 2φ

ρ2 aρ +
2 sin2φ

ρ2 aφ

At pointB thefield becomes

EB =
cos 60◦

4
aρ +

2 sin60◦

4
aφ = 0.125aρ + 0.433aφ

The surface charge density will now be

ρsB = ±|DB | = ±ǫ0|EB | = ±0.451ǫ0 = ±0.399 pC/m2

The charge is positive or negative depending on which side of the surface we are considering. The
problem didnot provide information necessary to determine this.



7.21. In free space, letρv = 200ǫ0/r2.4.

a) UsePoisson’s equation to findV (r) if it is assumed thatr2Er → 0 whenr → 0, and also that
V → 0 asr → ∞: With r variation only, we have

∇2V =
1

r2

d

dr

(

r2dV

dr

)

= −
ρv

ǫ
= −200r−2.4

or
d

dr

(

r2dV

dr

)

= −200r−.4

Integrateonce:
(

r2dV

dr

)

= −
200

.6
r .6 + C1 = −333.3r.6 + C1

or
dV

dr
= −333.3r−1.4 +

C1

r2 = ∇V (in this case) = −Er

Our first boundary condition states thatr2Er → 0 whenr → 0 ThereforeC1 = 0. Integrate
again to find:

V (r) =
333.3

.4
r−.4 + C2

From oursecond boundary condition,V → 0 asr → ∞, we see thatC2 = 0. Finally,

V (r) = 833.3r−.4 V

b) Now findV (r) by using Gauss’ Law and a line integral: Gauss’ law applied to a spherical surface
of radiusr gives:

4πr2Dr = 4π
∫ r

0

200ǫ0
(r ′)2.4

(r ′)2dr = 800πǫ0
r .6

.6

Thus

Er =
Dr

ǫ0
=

800πǫ0r .6

.6(4π)ǫ0r2 = 333.3r−1.4 V/m

Now

V (r) = −
∫ r

∞
333.3(r′)−1.4dr ′ = 833.3r−.4 V



8.7. Given pointsC(5,−2,3) andP(4,−1,2); a current elementIdL = 10−4(4,−3,1) A · m atC pro-
duces a fielddH atP .

a) Specify the direction ofdH by a unit vectoraH : Using the Biot-Savart law, we find

dH =
IdL × aCP

4πR2
CP

=
10−4[4ax − 3ay + az] × [−ax + ay − az]

4π33/2 =
[2ax + 3ay + az] × 10−4

65.3

from which

aH =
2ax + 3ay + az√

14
= 0.53ax + 0.80ay + 0.27az

b) Find|dH|.

|dH| =
√

14× 10−4

65.3
= 5.73× 10−6 A/m = 5.73µA/m

c) What directional shouldIdL have atC so thatdH = 0? IdL should be collinear withaCP ,
thus rendering the cross product in the Biot-Savart law equal to zero. Thus the answer isal =
±(−ax + ay − az)/

√
3



8.27. The magnetic field intensity is given in a certain region of space as

H = x + 2y

z2 ay + 2

z
az A/m

a) Find ∇ × H: For this field, the general curl expression in rectangular coordinates simplifies to

∇ × H = −∂Hy
∂z

ax + ∂Hy

∂x
az = 2(x + 2y)

z3 ax + 1

z2 az A/m

b) Find J: This will be the answer of part a, since ∇ × H = J.

c) Use J to find the total current passing through the surface z = 4, 1 < x < 2, 3 < y < 5, in the az
direction: This will be

I =
∫ ∫

J
∣∣
z=4 · az dx dy =

∫ 5

3

∫ 2

1

1

42 dx dy = 1/8 A

d) Show that the same result is obtained using the other side of Stokes’ theorem: We take
∮

H · dL
over the square path at z = 4 as defined in part c. This involves two integrals of the y component
of H over the range 3 < y < 5. Integrals over x, to complete the loop, do not exist since there is
no x component of H. We have

I =
∮

H
∣∣
z=4 · dL =

∫ 5

3

2 + 2y

16
dy +

∫ 3

5

1 + 2y

16
dy = 1

8
(2)− 1

16
(2) = 1/8 A

8.28. Given H = (3r2/ sin θ)aθ + 54r cos θaφ A/m in free space:
a) find the total current in the aθ direction through the conical surface θ = 20◦, 0 ≤ φ ≤ 2π ,

0 ≤ r ≤ 5, by whatever side of Stokes’ theorem you like best. I chose the line integral side, where
the integration path is the circular path in φ around the top edge of the cone, at r = 5. The path
direction is chosen to be clockwise looking down on the xy plane. This, by convention, leads to
the normal from the cone surface that points in the positive aθ direction (right hand rule). We find

∮
H · dL =

∫ 2π

0

[
(3r2/ sin θ)aθ + 54r cos θaφ

]
r=5,θ=20

· 5 sin(20◦) dφ (−aφ)

= −2π(54)(25) cos(20◦) sin(20◦) = −2.73 × 103 A

This result means that there is a component of current that enters the cone surface in the −aθ
direction, to which is associated a component of H in the positive aφ direction.

b) Check the result by using the other side of Stokes’ theorem: We first find the current density
through the curl of the magnetic field, where three of the six terms in the spherical coordinate
formula survive:

∇ × H = 1

r sin θ

∂

∂θ
(54r cos θ sin θ)) ar − 1

r

∂

∂r

(
54r2 cos θ

)
aθ + 1

r

∂

∂r

(
3r3

sin θ

)
aφ = J

Thus

J = 54 cot θ ar − 108 cos θ aθ + 9r

sin θ
aφ



8.28b. (continued)

The calculation of the other side of Stokes’ theorem now involves integrating J over the surface of the
cone, where the outward normal is positive aθ , as defined in part a:

∫
S

(∇ × H) · dS =
∫ 2π

0

∫ 5

0

[
54 cot θ ar − 108 cos θ aθ + 9r

sin θ
aφ

]
θ=20◦

· aθ r sin(20◦) dr dφ

= −
∫ 2π

0

∫ 5

0
108 cos(20◦) sin(20◦)rdrdφ = −2π(54)(25) cos(20◦) sin(20◦)

= −2.73 × 103 A

8.29. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed current of 2
A dc.

a) Find J within the conductor: Assuming the current is +z directed,

J = 2

π(0.2 × 10−3)2
az = 1.59 × 107 az A/m2

b) Use Ampere’s circuital law to find H and B within the conductor: Inside, at radius ρ, we have

2πρHφ = πρ2J ⇒ H = ρJ

2
aφ = 7.96 × 106ρ aφ A/m

Then B = µ0H = (4π × 10−7)(7.96 × 106)ρaφ = 10ρ aφ Wb/m2.

c) Show that ∇ × H = J within the conductor: Using the result of part b, we find,

∇ × H = 1

ρ

d

dρ
(ρHφ) az = 1

ρ

d

dρ

(
1.59 × 107ρ2

2

)
az = 1.59 × 107 az A/m2 = J

d) Find H and B outside the conductor (note typo in book): Outside, the entire current is enclosed
by a closed path at radius ρ, and so

H = I

2πρ
aφ = 1

πρ
aφ A/m

Now B = µ0H = µ0/(πρ) aφ Wb/m2.

e) Show that ∇ × H = J outside the conductor: Here we use H outside the conductor and write:

∇ × H = 1

ρ

d

dρ
(ρHφ) az = 1

ρ

d

dρ

(
ρ

1

πρ

)
az = 0 (as expected)



8.41. Assume that A = 50ρ2az Wb/m in a certain region of free space.
a) Find H and B: Use

B = ∇ × A = −∂Az
∂ρ

aφ = −100ρ aφ Wb/m2

Then H = B/µ0 = −100ρ/µ0 aφ A/m.

b) Find J: Use

J = ∇ × H = 1

ρ

∂

∂ρ
(ρHφ)az = 1

ρ

∂

∂ρ

(−100ρ2

µ0

)
az = −200

µ0
az A/m2

c) Use J to find the total current crossing the surface 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π , z = 0: The current is

I =
∫ ∫

J · dS =
∫ 2π

0

∫ 1

0

−200

µ0
az · az ρ dρ dφ = −200π

µ0
A = −500 kA

d) Use the value of Hφ at ρ = 1 to calculate
∮

H · dL for ρ = 1, z = 0: Have

∮
H · dL = I =

∫ 2π

0

−100

µ0
aφ · aφ (1)dφ = −200π

µ0
A = −500 kA



10.11. Let the internal dimension of a coaxial capacitor be a = 1.2 cm, b = 4 cm, and l = 40 cm. The
homogeneous material inside the capacitor has the parameters ε = 10−11 F/m, µ = 10−5 H/m, and
σ = 10−5 S/m. If the electric field intensity is E = (106/ρ) cos(105t)aρ V/m (note missing t in the
argument of the cosine in the book), find:

a) J: Use

J = σE =
(

10

ρ

)
cos(105t)aρ A/m2

b) the total conduction current, Ic, through the capacitor: Have

Ic =
∫ ∫

J · dS = 2πρlJ = 20πl cos(105t) = 8π cos(105t) A

c) the total displacement current, Id , through the capacitor: First find

Jd = ∂D
∂t

= ∂

∂t
(εE) = − (105)(10−11)(106)

ρ
sin(105t)aρ = − 1

ρ
sin(105t) A/m

Now
Id = 2πρlJd = −2πl sin(105t) = −0.8π sin(105t) A

d) the ratio of the amplitude of Id to that of Ic, the quality factor of the capacitor: This will be

|Id |
|Ic| = 0.8

8
= 0.1



10.15. Let µ = 3 × 10−5 H/m, ε = 1.2 × 10−10 F/m, and σ = 0 everywhere. If H = 2 cos(1010t −
βx)az A/m, use Maxwell’s equations to obtain expressions for B, D, E, and β: First, B = µH =
6 × 10−5 cos(1010t − βx)az T. Next we use

∇ × H = −∂H
∂x

ay = 2β sin(1010t − βx)ay = ∂D
∂t

from which

D =
∫

2β sin(1010t − βx) dt + C = − 2β

1010 cos(1010t − βx)ay C/m2

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

E = D
ε

= − 2β

(1.2 × 10−10)(1010)
cos(1010t − βx)ay = −1.67β cos(1010t − βx)ay V/m

Now

∇ × E = ∂Ey

∂x
az = 1.67β2 sin(1010t − βx)az = −∂B

∂t

So

B = −
∫

1.67β2 sin(1010t − βx)azdt = (1.67 × 10−10)β2 cos(1010t − βx)az

We require this result to be consistent with the expression for B originally found. So

(1.67 × 10−10)β2 = 6 × 10−5 ⇒ β = ±600 rad/m
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