Nuclear chemistry question bank

(chapter one, chapter two and chapter three)

1 - The most common kind of iron nucleus has a mass number of 56 . Find the radius, approximate mass, and approximate density of the nucleus?

2- Assuming that a nucleus is a sphere of nuclear matter of radius $1.2 \mathrm{xA}^{1 / 3} \mathrm{Fm}$, express the average nuclear density in SI unit?

3-How many protons and how many neutrons are there in a nucleus of the most common isotope of ${ }^{28}{ }_{14} \mathrm{Si},{ }^{85}{ }_{37} \mathrm{Rb}$ and ${ }^{205}{ }_{81} \mathrm{Tl}$? then estimate (a) the radius, (b)the volume of each nucleus, (c) the mass density (in $\mathrm{Kg} / \mathrm{m} 3$) and (d) the nucleon density (in nucleons per cubic meter) for each nucleus?

4- Calculate magnetic dipole moment for deuteron nucleus ${ }^{2}{ }_{1} \mathrm{H}$ and ${ }^{4}{ }_{2} \mathrm{He}$ nucleus?

5- Calculate the value of nuclear magneton $\left(\mu_{N}\right)$ in units of $J T^{-1}$ and $\mathrm{eV} \mathrm{T}{ }^{-1}$, where (T) is tesla?

6- Calculate the distance of closest approach of alpha particle of kinetic energy 7.7 MeV from gold ${ }^{197}{ }_{79} \mathrm{Au}$ in head on collision and which is scattering at angle of 180° ?

7- The atomic mass of ${ }^{16}{ }_{8} \mathrm{O}$ is 15.99494 amu . Find (a) Its binding energy and (b) Its binding energy per nucleon?

8- Show that 1 amu unit is equivalent to 931.48 MeV ?

9- Define each of the following? isotopes, isotones and isobars (Give these element (${ }_{8}^{16} O,{ }_{7}^{14} N,{ }_{6}^{14} C,{ }_{8}^{17} O,{ }_{7}^{15} N$) as an example for each of them).

10- What are the properties of nuclear force?
11- Calculate the separation energy of the neutron and proton from ${ }_{56}^{57} \mathrm{Fe}$?

12- The binding energy of neon isotope ${ }^{20}{ }_{10} \mathrm{Ne}$ is 160.647 MeV . Find its atomic mass?

13- Find the mass defect and mass excess of ${ }_{2} \mathrm{He}$ nucleus?

14- What angular momentum and parities are predicted by the shell model for the ground state of ${ }^{12} \mathrm{C},,^{11}{ }_{5} \mathrm{~B},{ }^{67}{ }_{30} \mathrm{Zn}$ and ${ }^{16}{ }_{7} \mathrm{~N}$?

15-Predict the characteristics of the ground state of ${ }^{17}{ }_{8} \mathrm{O},{ }^{63}{ }_{29} \mathrm{Cu}$?

16- Calculate the total binding energy of ${ }^{27}{ }_{13} \mathrm{Al}$ nucleus from the semiempirical binding energy formula?

17- Calculate the mass of ${ }_{4}{ }_{4} \mathrm{Be}$ nucleus from the semi-empirical mass formula?

18- Calculate the repulsive potential energy due to coulomb force among the protons of ${ }^{235}{ }_{92} \mathrm{U}$ nucleus?

19- According to the shell model, calculate the orbital angular momentum (L), spin angular momentum(S), total angular momentum(J), magnetic moment ($\mu \mathrm{n}$) and parity in ground state of ${ }_{21}^{45} S c$ nuclei?

Constants:

- Mass of proton $=1.007276 \mathrm{amu}$
- Mass of hydrogen atom $M_{H}=1.007825 \mathrm{amu}$
- Mass of neutron ${ }_{0}^{1} n=1.008665 \mathrm{amu}$
- Electron $=0.000549$ amu
- Atomic mass of $\left({ }_{2}^{4} \mathrm{He}\right)=4.002603$ a.m.u
- Atomic mass of $\left({ }_{10}^{20} \mathrm{Ne}\right)=19.992440$ a.m.u
- Atomic mass of $\left({ }_{28}^{64} \mathrm{Ni}\right)=63.927969$ a.m.u
- Atomic mass of $\left({ }_{29}^{64} \mathrm{Cu}\right)=63.929766$ a.m.u
- Atomic mass of $\left({ }_{30}^{64} \mathrm{Zn}\right)=63.929146$ a.m.u
- Atomic mass of $\left({ }_{86}^{222} \mathrm{Rn}\right)=222.017570$ a.m.u
- Atomic mass of $\left({ }_{88}^{226} \mathrm{Ra}\right)=226.025402$ a.m.u
- Mass of ${ }_{92}{ }^{235} \mathrm{U}$ atom $=235.0439 \mathrm{amu}$
- Mass of Manganese Atom $\mathrm{M}\left({ }_{25}{ }^{56} \mathrm{Mn}\right)=55.938907 \mathrm{amu}$
- $M\left(8^{16} O\right)=15.9949 \mathrm{amu}$

Radiation Chemistry

Example 1: 1) Find the energy released in the alpha decay of ${ }_{92}^{232} U$:

$$
{ }_{92}^{232} U_{140} \rightarrow{ }_{90}^{228} T h_{138}+\alpha
$$

Answer:
1- $Q \alpha=\left(M_{p}-M_{D}-M_{\alpha}\right) c^{2}$
$Q=(232.0371463-228.0287313-4.002603) u c^{2} \frac{931.502 \mathrm{MeV}}{u c^{2}}=5.414 \mathrm{MeV}$.
2- Find the kinetic energy of alpha particle:
${ }_{92}^{232} U_{140} \rightarrow{ }_{90}^{228} T h_{138}+\alpha \quad T_{\alpha}=Q\left(1-\frac{4}{A}\right)=5.414 \mathrm{MeV}\left(1-\frac{4}{228}\right)=5.32 \mathrm{MeV}$

Example 2: What is the maximum energy of the electron emitted in the β decay of ${ }_{1}^{3} H$?

Answer:

$$
\begin{aligned}
& \text { The reaction is: }{ }_{1}^{3} \mathrm{H} \rightarrow
\end{aligned}{ }_{2}^{3} \mathrm{He}+e^{-}+\bar{v}-\left(M_{\mathrm{H}}-M_{\mathrm{He}}\right) c^{2} \quad \begin{aligned}
Q= & (3.016050 u-3.016030 u)(931.5 \mathrm{MeV} / \mathrm{u}) \\
& =0.0186 \mathrm{MeV}=K_{\mathrm{He}}+K_{e}+K_{\mathrm{v}}
\end{aligned} .
$$

Neglecting the kinetic energy of the nucleus, and mass of the neutrino the Q is shared between e and $v . \mathrm{K}_{e}$ at maximum when $K_{\mathrm{v}} \rightarrow 0$, so

$$
K_{e}^{\max }=0.0186 \mathrm{MeV}
$$

Example 3 :

${ }^{240}{ }_{94} \mathrm{P}$ decays with a half-life of 6760 Y by emitting two groups of alpha particles, with energy 5.17 MeV and 5.12 MeV .
a) What are the decay energy (disintegration energy)?
b) Calculate the recoil kinetic energy of the daughter nucleus.

Answer ; The decay energy Q_{α} is given by;
(a) $Q_{\alpha}=\frac{A}{A-4} T_{\alpha}$
For ${ }^{240}{ }_{94} \mathrm{P}, \mathrm{A}=240$. The kinetic energy of the first group of α-particles;
$T_{\alpha 1}=5.17 \mathrm{Mev}$
The decay energy of first group of emitted alpha particles $Q_{\alpha 1}$ is
$Q_{\alpha 1}=\frac{240}{240-4} \times 5.17=5.25 \mathrm{Mev}$
The decay energy of second group of emitted alpha particles $Q_{\alpha 2}$ is
$Q_{\alpha 2}=\frac{A}{A-4} T_{\alpha 2}$
Where $T_{\alpha 2}$ is the kinetic energy of the second group of α-particles; $T_{\alpha 2}=$ 5.12 Mev
$Q_{\alpha 2}=\frac{240}{240-4} \times 5.12=5.20 \mathrm{MeV}$
(b) The recoil kinetic energy of the first group of daughter nuclei $T_{D 1}$ is;

$$
Q_{\alpha 1}=T_{\alpha 1}+T_{D 1}
$$

$5.25=5.17+T_{D 1}$
$T_{D 1}=0.08 \mathrm{MeV}$
For $Q_{\alpha 2}=5.2 \mathrm{MeV}$ and $T_{\alpha 2}=5.12 \mathrm{MeV}$
The recoil kinetic energy of the second group of daughter nuclei $T_{D 2}$ is
$Q_{\alpha 2}=T_{\alpha 2}+T_{D 2}$
$T_{D 2}=5.2-5.12=0.08 \mathrm{MeV}$

Example 4:

Show that a radioactive isotope ${ }_{29}{ }^{64} \mathrm{Cu}$ satisfied the conditions for decaying by $\boldsymbol{\beta}^{-}, \boldsymbol{\beta}^{+}$and electron capture processes.

Answer: The value of atomic masses is;
$\mathrm{M}\left(29^{64} \mathrm{Cu}\right)=63.9297 \mathrm{amu}, \quad \mathrm{M}\left({ }_{28}{ }^{64} \mathrm{Ni}\right)=63.928 \mathrm{amu}$
$\mathrm{M}(\mathrm{e})=0.000548 \mathrm{amu} \quad \mathrm{M}\left(30^{64} \mathrm{Zn}\right)=63.9291 \mathrm{amu}$
For $\boldsymbol{\beta}^{-}$- decy of ${ }_{29}{ }^{64} \mathrm{Cu}$;

$$
{ }^{29^{64}} \mathrm{Cu} \rightarrow{ }_{30^{64}} \mathrm{Zn}+\beta^{-}+\bar{v}
$$

The Q-value of β^{-}-decay is, $Q_{\beta^{-}}=\left(\mathrm{M}_{\mathrm{p}}-\mathrm{M}_{\mathrm{D}}\right) \mathrm{c}^{2}$

$$
Q_{\beta^{-}}=(63.9297-63.9291) \mathrm{c}^{2}
$$

Since $1 \mathrm{amu} \mathrm{x} \mathrm{c}^{2}=931.48 \mathrm{MeV}$ or $c^{2}=\frac{931.4 \mathrm{MeV}}{1 \mathrm{amu}}$
$\therefore Q_{\beta^{-}}=(63.9297-63.9291) \times 931.48=0.558 \mathrm{MeV}$
Since the value of $Q_{\beta^{-}}$is positive quantity , therefor β^{-}-decay is possible.

For $\boldsymbol{\beta}^{+}$-decay of ${ }_{29}{ }^{64} \mathrm{Cu}$;
${ }_{29}{ }^{64} \mathrm{Cu} \rightarrow{ }_{28} 8^{64} \mathrm{Ni}+\beta^{+}+v$
The Q -value of β^{+}-decay is; $Q_{\beta^{+}=}\left[\left(\mathrm{M}_{\mathrm{p}}-\mathrm{M}_{\mathrm{D}}-2 \mathrm{~m}_{0}\right) \mathrm{c}^{2}\right.$
$Q_{\beta^{+}=}[63.9297-63.928-2 \times 0.000548] \mathrm{c}^{2}$
$Q_{\beta^{+}=}=[63.9297-63.928-2 \times 0.000548] \times 931.48$
$Q_{\beta^{+}=} 0.562 \mathrm{MeV}$
Since $Q_{\beta^{+}}$is positive quantity ,therefor β^{+}-decay is possible .
For electron capture decay of ${ }^{29}{ }^{64} \mathrm{Cu}$;
${ }_{29}{ }^{64} \mathrm{Cu}+e^{-} \rightarrow{ }_{28}{ }^{64} \mathrm{Ni}+v$
The Q -value of β^{+}-decay is; $Q_{e . c}=\left[\mathrm{M}_{\mathrm{p}}-\mathrm{M}_{\mathrm{D}}\right] \mathrm{c}^{2}$
$Q_{e . c}=[63.9297-63.928] \mathrm{c}^{2}$
$Q_{e . c}=[63.9297-63.928] \times 931.48$
$Q_{\text {e.c }}=1.58 \mathrm{MeV}$
Since the value of $Q_{e . c}$ is positive quantity ,therefor $Q_{e . c}$ - decay is possible.
Example 5:
What is the most predominate multipole transition in the $\mathbf{2}^{+} \rightarrow \mathbf{2}^{+}$gamma transition?

Answer:

Initial nuclear angular momentum $\mathrm{J}_{\mathrm{i}}=2$, and initial parity is , $\pi_{\mathrm{i}}=+1$

Final nuclear angular momentum $\mathrm{J}_{\mathrm{f}}=2$. and final parity is, $\pi_{\mathrm{f}}=+1$
$\left|J_{i}-J_{f}\right| \leq L_{\gamma} \leq J_{i}+J_{f}$
$|2-2| \leq L_{\gamma} \leq 2+2$
$0 \leq L_{\gamma} \leq 4$
$L_{\gamma}=0,1,2,3,4$ or $\quad L_{\gamma}=1,2,3,4$ because $L_{\gamma}=0$ not allowed From conservation of parity the parity of the system π_{γ},
$\pi_{\gamma}=\pi_{i} \pi_{f}$
$\pi_{\gamma}=(+1)(+1)=+1$ parity is positive (not changed)
for electric multipole transition EL the parity of the system is ; $\pi_{\gamma}=$ $(-1)^{L_{\gamma}}$,
since, $\pi_{\gamma}=(-1)^{2}=+1$ and $\pi_{\gamma}=(-1)^{4}=+1 \quad$ which means that L_{γ} $=2,4$
gives π_{γ} positive ,therefor we have $\mathbf{E L}=\mathbf{E} 2, \mathbf{E 4}$ allowed Electric transition.
for magnetic multipole transition ML , the parity of the system ; $\pi_{\gamma}=$ $(-1)^{L_{\gamma}+1}$
since $; \pi_{\gamma}=(-1)^{1+1}=+1$ and $\pi_{\gamma}=(-1)^{3+1}=+1$
$\therefore L_{\gamma}=1,3$ gives no change in the parity of the system, the ML transitions will be $\mathbf{M L}=\mathbf{M 1}, \mathbf{M} 3$ probable etic multipole transition.

It is well known that; E2>>E4 and $M 1 \gg M 3$
Therefor we have the most mixed predominate (E2+M1) gamma multipole -transition.

Example 6:

${ }^{137} \mathrm{Cs}$ decays by $\boldsymbol{\beta}^{-}$- emission , as shown in the figure. When the nucleus left in excited state, its decay to the ground state via gamma transition .What are the energies between of the beta rays? Given that

Answer:

The mass of ${ }^{137} \mathrm{Cs}$ and ${ }^{137} \mathrm{Ba}$ from physical tables are ; $\mathrm{M}\left({ }^{137} \mathrm{Cs}\right)=136.90677$ $\mathrm{amu}, \mathrm{M}\left({ }^{137} \mathrm{Ba}\right)=136.9055 \mathrm{amu}$
$1 /$ The Q- value of β_{0}^{-}-decay is ; $Q_{\beta 0^{-}}$

The decay Scheme of ${ }^{137}$ Cs
$Q_{\beta 0^{-}}=\left(\mathrm{M}_{\mathrm{p}}-\mathrm{M}_{\mathrm{D}}\right) \mathrm{c}^{2}$

$$
Q_{\beta 0^{-}}=(136.90677-136.9055) \mathrm{c}^{2}
$$

Since $1 \mathrm{amu} \times \mathrm{c}^{2}=931.48 \mathrm{MeV}$ or $\quad c^{2}=\frac{931.4 \mathrm{MeV}}{1 \mathrm{amu}}$
$\therefore Q_{\beta 0^{-}}=(136.90677-136.9055) \times 931.48=1.1829 \mathrm{MeV}$
2/ $\quad E_{\gamma}=E_{i}-E_{f}$

$$
E_{\gamma}=0.661-0=0.661 \mathrm{MeV}
$$

3 / The Q- value of β_{1}^{-}-decay is ; $\quad Q_{\beta 1^{-}}=Q_{\beta 0^{-}}-E_{\gamma}$

$$
Q_{\beta 1^{-}}=1.1829-0.662=0.521 \mathrm{MeV}
$$

Example 7:

In terms of the parent and daughter rest masses, determine the Q-values for β^{-}decay, β^{+}decay, and electron capture.

Ans. The three reactions are ($P=$ parent, $D=$ daughter):

$$
\begin{array}{ll}
{ }_{Z}^{A} P \rightarrow z+{ }_{1}^{A} D+e^{-}+\bar{v} & \left(\beta^{-}\right. \text {decay } \\
{ }_{Z}^{A} P \rightarrow{ }_{z-1} D+e^{+}+v & \left(\beta^{+}\right. \text {decay) } \\
{ }_{Z}^{A} P+e^{-} \rightarrow{ }_{z-1}^{A} D+v & \text { (electron capture) }
\end{array}
$$

The corresponding mass-energy relations are, after subtracting the electron masses from the atomic masses to obtain the nuclear masses,

$$
\left.\begin{array}{rl}
\left(M_{P}-Z m_{e}\right) c^{2} & =\left[M_{D}-(Z+1) m_{e}\right] c^{2}+m_{e} c^{2}+Q \\
Q & =\left(M_{P}-M_{D}\right) c^{2} \\
\left(M_{P}-Z m_{e}\right) c^{2} & =\left[M_{D}-(Z-1) m_{e}\right] c^{2}+m_{e} c^{2}+Q \\
Q & =\left(M_{P}-M_{D}-2 m_{e}\right) c^{2} \\
\left(M_{P}-Z m_{e}\right) c^{2}+m_{e} c^{2} & =\left[M_{D}-(Z-1) m_{e}\right] c^{2}+Q \\
Q & =\left(M_{P}-M_{D}\right) c^{2}
\end{array}\right\}\left(\beta^{+} \text {decay }\right) \text { (electron capture) }
$$

Example 8:

Determine the energy and momentum of the daughter and the neutrino that are produced when ${ }_{4}^{7} \mathrm{Be}$ undergoes electron capture at rest.
Ans. The electron capture reaction is

$$
{ }_{4}^{7} \mathrm{Be}+e^{-} \rightarrow{ }_{3}^{7} \mathrm{Li}+v
$$

From Problem 19.8

$$
\begin{aligned}
Q & =\left(M_{\mathrm{Be}}-M_{\mathrm{L}}\right) c^{2} \\
& =(7.016929 \mathrm{u}-7.016004 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=0.862 \mathrm{MeV}
\end{aligned}
$$

This energy is split between the neutrino and the ${ }_{3}^{7} \mathrm{Li}$ nucleus. However, because of the large mass of the ${ }_{3}^{7} \mathrm{Li}$ nucleus and the zero rest mass of the neutrino, almost all the energy is carried by the neutrino, so that

$$
E_{\mathrm{v}} \approx 0.862 \mathrm{MeV}
$$

Assuming that the ${ }_{4}^{7} \mathrm{Be}$ nucleus was initially at rest, the magnitudes of the momenta of the neutrino and ${ }_{3}^{7} \mathrm{Li}$ nucleus must be equal. Using $p_{v}=E_{\mathrm{v}} / c$, we then have

$$
p_{\mathrm{r}}=p_{\mathrm{Li}}=0.862 \mathrm{MeV} / c
$$

The kinetic energy of the ${ }_{3}^{7} \mathrm{Li}$ nucleus can now be found from

$$
K_{\mathrm{Li}}=\frac{p_{\mathrm{Li}}^{2}}{2 M_{\mathrm{Li}}}=\frac{\left(p_{\mathrm{L},} c\right)^{2}}{2 M_{\mathrm{Li}} c^{2}}=\frac{(0.862 \mathrm{MeV})^{2}}{2(7.02 \mathrm{u} \times 931.5 \mathrm{MeV} / \mathrm{u})}=5.68 \times 10^{-5} \mathrm{MeV}=56.8 \mathrm{cV}
$$

H.W.Ch.1,2 (Radiation Chemistry)

Q1/ How much time is required for 5 gm of ${ }^{22} \mathrm{Na}\left(\mathrm{T}_{1 / 2}=2.6 \mathrm{y}\right)$ to reduce to 1 gm .
Q2/ A sample of Radium contains 1 gm . If its half-life is 1620 y , find:
a-The initial activity.
b-The mean life time.
C-The activity of ${ }^{226} \mathrm{Ra}$ after $\mathrm{t}=\mathrm{T}_{1 / 2}$.
d-The activity after 810 y .
Q3/ The radioactive isotope ${ }^{57} \mathrm{Co}$ decays by electron capture with a half-life of 272days. (a) Find the decay constant and the life-time. (b) If you have a radiation source containing ${ }^{57} \mathrm{Co}$, with radioactivity $2.0 \mu \mathrm{Ci}$, how many radioactive nuclei does it contain. (c) what will be the activity of your source after one year.

Q4/ What is the energy of the alpha particle emitted in the alpha decay of ${ }_{88}^{226} R a$? if the recoil energy of the radium nucleus is neglected.

Q5/What nuclide is produced in the following radioactive decays?

1) α decay of ${ }_{94}^{239} \mathrm{Pu}$. 2) β-decay of ${ }_{11}^{24} N a$. 3) $\beta+$ decay of ${ }_{8}^{15} O$

Q6/ Determine the energy of neutrino emitted in E.C for ${ }_{20}^{41} C a$?

Q7/What particle (α, β-or $\beta+$) is emitted in the following radiation decays?

$$
{ }_{14}^{27} S i \rightarrow{ }_{13}^{27} A l,{ }_{92}^{238} U \rightarrow{ }_{90}^{234} \text { Th },{ }_{33}^{74} A s \rightarrow{ }_{34}^{74} S c .
$$

Q8/Calculate the activity of ${ }^{40} \mathrm{~K}$ in 100 kg . man assuming that 0.35% of the body weight is potassium. The abundance of ${ }^{40} \mathrm{~K}$ is 0.012%, its half-life is 1.31*109years?

Q9/ What is the maximum energy of the positron emitted in the β-decay of ${ }_{2}^{3} \mathrm{He}$?

Q10/ Show that ${ }_{94}^{236} P u$ is unstable and will α decay?

Q11/Determine the Q values of (α, proton, neutron) decays of Uranium ${ }_{92}^{232} U$?

Q12/What is the type of radioactivity equilibrium where occurs between ${ }^{226} \mathrm{Ra}$ (with half-life 1620 years) and ${ }^{222} \mathrm{Rn}$ (with half-life 3.8 days). Why?

Q13/The half-life of radioactive element ${ }^{60} \mathrm{Co}$ is 5.26 years, what is the radioactivity of a (1gm) sample of ${ }^{60} \mathrm{Co}$ in units of curie, and its activity after 3 years?
Q14/ Calculate the mean life-time for ${ }^{210} \mathrm{Po}$ nucleus?
Q15/ The activity of 20 g of ${ }^{232} \mathrm{Th}$ is $2.18 \mu \mathrm{ci}$.Calculate the disintegration constant and the half-life of ${ }^{232} \mathrm{Th}$?

Q16/ Calculate the maximum kinetic energy of electron ($\mathrm{T}_{\mathrm{e}-}$), and positron, ($\mathrm{T}_{\mathrm{e}^{+}}$), in the following decays:

$$
\beta^{-}-\text {decay , and } \beta^{+} \text {-decay of }{ }^{29}{ }^{64} \mathrm{Cu} .
$$

Q17/ What is the most predominate multipole transition in the $3^{-} \rightarrow 1^{-}$ gamma transition for the indicated transition in ${ }^{16} \mathrm{O}$?

Q18/ ${ }_{88}^{226} \mathrm{Ra}$ nucleus undergoes alpha decay to ${ }_{86}^{222} \mathrm{Rn}$, calculate:
1- Find the amount of energy liberated in this decay (Q -value)?
2- Calculate the recoil kinetic energy of the daughter nucleus?
3 - What is the activity of one gram of ${ }_{88}^{226} \mathrm{Ra}$, whose half-life is 1621 y ?

Q19/ Explain the interaction of gamma rays with matter?
Q20/ Draw the distinguishing graph of the three types of radiations (alpha, beta and gamma rays) from a radium sample?

Q21/ Plutonium ${ }^{239} \mathrm{Pu}$, has a half-life of 24,360 years.
1.What is the decay constant?
2. How much of $1 \mathrm{~kg}{ }^{239} \mathrm{Pu}$ is left after 100 years?

Appendix

SOME FUNDAMENTAL CONSTANTS IN CONVENIENT UNITS

$$
\begin{aligned}
& \begin{array}{l}
c=\text { speed of light }=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
e
\end{array}=\text { electron charge }=1.602 \times 10^{-19} \mathrm{C} \\
& h=\text { Planck's constant }=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \\
& =4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}
\end{aligned} \quad \begin{aligned}
\begin{aligned}
h & =\frac{h}{2 \pi}=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=0.658 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}
\end{aligned} \\
\begin{aligned}
k=\frac{1}{4 \pi \epsilon_{0}}=\text { Coulomb constant } & =8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}
\end{aligned} \\
\begin{aligned}
k=\frac{R}{N}=\text { Boltzmann's constant } & =1 / 38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& =8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}
\end{aligned}
\end{aligned}
$$

SOME USEFUL CONVERSIONS

$$
\begin{aligned}
1 \mathrm{eV} & =1.602 \times 10^{-19} \mathrm{~J} \\
1 \AA & =10^{-10} \mathrm{~m}=10^{5} \mathrm{fm} \\
h c & =19.865 \times 10^{-26} \mathrm{~J} \cdot \mathrm{~m}=12.41 \times 10^{3} \mathrm{eV} \cdot \dot{\mathrm{~A}}=1241 \mathrm{MeV} \cdot \mathrm{fm} \\
\hbar c & =3.165 \times 10^{-26} \mathrm{~J} \cdot \mathrm{~m}=1973 \times 1 \mathrm{eV} \cdot \dot{\mathrm{~A}}=197.3 \mathrm{MeV} \cdot \mathrm{fm} \\
k e^{2} & =1.44 \mathrm{MeV} \cdot \mathrm{fm} \\
\frac{k e^{2}}{A c} & =\text { fine structure constant } \approx \frac{1}{137} \\
\frac{e \hbar}{2 m_{e}} & =\text { Bohr magneton }=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T} \\
& =5.79 \times 10^{-5} \mathrm{EV} / \mathrm{T}
\end{aligned}
$$

MASSES OF SOME PARTICLES

Particle	Rest Mass, m_{0} $(\mathrm{~kg})$	$m_{0} \mathrm{c}^{2}$ (MeV)
Electron	9.109×10^{-31}	0.511
Proton	1.673×10^{-27}	938.3
Neutron	1.675×10^{-27}	939.6
Atomic mass unit $(1 \mathrm{u})$	1.661×10^{-27}	931.5

MASSES OF NEUTRAL ATOMS
In the fifth column of the table an asterisk on the mass number indicates a radioactive isotope, the half-life of which is given in the seventh column.

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
0	(Neutron)	n		$1 *$	1.008665	12 min
1	Hydrogen	H	1.0079	1	1.007825	
	Deuterium	D		2	2.014102	
	Tritium	T	4.0026	$3 *$	3.016050	12.26y
2	Helium	He		3	3.016030	
				4_{6}	4.002603	
				6^{*}	6.018892 6.015125	0.802 s
3	Lithum	Li	6.939	6 7	6.015125 7.016004	
4	Beryllium	Be	9.0122	$7 *$	7.016929	53.4 d
				9	9.012186	
5	Boron	B	10.811	10	10.013534 10.012939	
				11	11.009305	
6	Carbon	C	12.01115	12	12.000000	
				13	13.003354	
				14^{*}	14.003242	5730 y
7	Nitrogen	N	14.0067	14	14.003074	
8	Oxygen	0	15.9994	15 $15 *$	15.000108 15.003070	1225
				16	15.994915 1509	1228
				17	16.999133	
				18	17.999160	
910	Fluorine Neon	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Ne} \end{aligned}$	$\begin{aligned} & 18.9984 \\ & 20.183 \end{aligned}$	19	18.998405	
				20	19.992440	
				21	20.993849	
11	Sodium			22.	21.991385 21.994437	
		Na	22.9898	23	21.994437 22.989771	2.60 y
12	Magnesium	Mg	24.312	$23 *$	22.994125	12 s
				24	23.985042	
				25	24.986809	
				26	25.982593	
13	Aluminum	Al	26.9815	26^{*}	25.986892	$7.4 \times 10^{5} y$
	Silicon	Si	28.086	27 28	26.981539 27.976929	
14				29	28.976496	
				30	29.973763	
				32^{*}	31.974020	* 700 y
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Phosphorus Sulfur	S	$\begin{aligned} & 30.9738 \\ & 32.064 \end{aligned}$	31	30.973765	
				32	31.972074	
				33	32.971462	
				34	33.967865	
				36	35.967089	
17	Chlorine	Cl	35.453	35 36 36	34.968851 35.968309	$3 \times 10^{3} y$
				37	36.965898	$3 \times 10^{2} y$
18	Argon	A	39.948	36	35.967544	
				38.	37.962728	
				$39 *$ 40	38.964317 39.962384	$270 y$
				42^{*}	41.963048	33 y
19	Potassium	K	39.102	39 40	38.963710 39.964000	$1.3 \times 10^{9} \mathrm{y}$

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
$\begin{aligned} & (19) \\ & 20 \end{aligned}$	(Potassium) Calcium	Ca	40.08	41 39^{*} 40 41^{*} 42 43 44 46 48	$\begin{aligned} & 40.961832 \\ & 38.970 \\ & 3991 \\ & 39.962589 \\ & 40.962275 \\ & 41.958 \\ & 42925 \\ & 43.958 \\ & 4890 \\ & 45.955 \\ & 4952 \\ & 47.952 \\ & 4892 \end{aligned}$	$\begin{gathered} 0.877 \mathrm{~s} \\ 7.7 \times 10^{4} \mathrm{y} \end{gathered}$
21	Scandium	Sc	44.956	$\begin{aligned} & 45 \\ & 50^{\circ} \end{aligned}$	44.955920	1.73 min
22	Titanium	Ti	47.90	$\begin{aligned} & 44^{*} \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 43.959572 \\ & 45.952632 \\ & 46.951768 \\ & 47.947950 \\ & 48.947870 \\ & 49.944786 \end{aligned}$	47 y
23	Vanadium	V	50.942	$\begin{aligned} & 50^{*} \\ & 51 \end{aligned}$	$\begin{aligned} & 49.947164 \\ & 50.943961 \end{aligned}$	$\approx 6 \times 10^{15} \mathrm{y}$
24	Chromium	Cr	51.996	$\begin{aligned} & 50 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	49.946055 51.940513 52.940653 53.938882	
25	Manganese	Mn	54.9380	$50 *$ 55	49.954215 54.938050	0.29 s
26	Iron	Fe	55.847	$\begin{aligned} & 54 \\ & 55^{*} \\ & 56 \\ & 57 \\ & 58 \\ & 60^{*} \end{aligned}$	53.939616 54.938299 55.939395 56.935398 57.933282 59.933964	$\begin{aligned} & 2.4 y \\ & \approx 10^{5} \mathrm{y}\end{aligned}$
27	Cobalt	Co	58.9332	59 60	$\begin{aligned} & 58.933189 \\ & 59.933813 \end{aligned}$	5.24 y
28	Nickel	Ni	58.71	$\begin{aligned} & 58 \\ & 59^{*} \\ & 60 \\ & 61 \\ & 62 \\ & 63^{*} \\ & 64 \end{aligned}$	57.935342 58.934342 59.930787 60.931056 61.928342 62.929664 61.927958	$8 \times 10^{4} y$ $92 y$
29	Copper	Cu	63.54	63 65	$\begin{aligned} & 62.929592 \\ & 64.927786 \end{aligned}$	
30	Zinc	Zn	65.37	$\begin{aligned} & 64 \\ & 66 \\ & 67 \\ & 68 \\ & 70 \end{aligned}$	$\begin{aligned} & 63.929145 \\ & 65.926052 \\ & 66.927145 \\ & 67.924857 \\ & 69.925334 \end{aligned}$	
31	Gallium	Ga	69.72	69 71	$\begin{aligned} & 68.925574 \\ & 70.924706 \end{aligned}$	
32	Germanium	Ge	72.59	$\begin{aligned} & 70 \\ & 72 \\ & 73 \\ & 74 \\ & 76 \end{aligned}$	69.924252 71.922082 72.923462 73.921181 75.921405	
$\begin{aligned} & 33 \\ & 34 \end{aligned}$	Arsenic Selenium	$\begin{aligned} & \text { As } \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 74.9216 \\ & 78.96 \end{aligned}$	$\begin{aligned} & 75 \\ & 74 \\ & 76 \\ & 77 \\ & 78 \\ & 79^{*} \end{aligned}$	74.921596 73.922476 75.919207 76.919911 77.917314 78.918494	$7 \times 10^{4} y$

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
(34)	(Selenium)			80 82	$\begin{aligned} & 79.916527 \\ & 81.916707 \end{aligned}$	
35	Bromine	Br	79.909	79	78.918329	
		Kr	83.80	81	80.916292	
36	Krypton			78	77.920403	
				80	79.916380 80.916610	
				${ }_{82}{ }^{\circ}$	80.916610 81.913482	$2.1 \times 10^{3} \mathrm{y}$
				83	82.914131	
				84	83.911503	
				$88{ }^{86}$	84.912523 85.910	10.76 y
37	Rubidium	$\mathbf{R b}$	85.47	85	84.911800	
				87^{*}	86.909186	$5.2 \times 10^{10} \mathrm{y}$
38	Strontium	Sr	87.62	84	83.913430	
				86	85.909285	
				87	86.908892	
				88 90	87.905641	
$\begin{aligned} & 39 \\ & 40 \end{aligned}$	Yttrium Zirconium	$\begin{aligned} & \mathbf{Y} \\ & \mathbf{Z r} \end{aligned}$	$\begin{aligned} & 88.905 \\ & 91.22 \end{aligned}$	89	88.905872	8.8
				90	89.904700	
				91	90.905642	
				92.	91.905031	
				$93 *$	92.906450	$9.5 \times 10^{5} \mathrm{y}$
				94	93.906313	
41	Niobium	Nb	92.906	96	95,908286 90.906860	
				92^{*}	91.907211	$\approx 10^{\prime} \mathrm{y}$
				93.	92.906382	
				94^{*}	93.907303	$2 \times 10^{4} \mathrm{y}$
42	Molybdenum	Mo	95.94	92.	91.906810	
				94	92.906830 93.905090	$\approx 10^{4} \mathrm{y}$
				95	94.905839	
				96	95.904674	
				97	96.906021	
				98	97.905409	
				100	99.907475	
43	Technetium	Tc		97**********	96.906340	$2.6 \times 10^{6} \mathrm{y}$
				98********	97.907110 98.906249	$1.5 \times 10^{6} \mathrm{y}$ $2.1 \times 10^{5} \mathrm{y}$
44	Ruthenium	Ru	101.07	96	95.907598	
				98	97.905289	
				99	98.905936	
				100	99.904218	
				101	100.905577	
				102	101.904348	
				104	103.905430	
4546	Rhodium Palladium	Pd	106.4	103	102.905511	
				102	101.905609	
				104	103.904011	
				105	104.905064	
				106 $107 *$	105.903479 106.905132	
				${ }^{107}{ }^{108}$	106.905132 107.903891	$7 \times 10^{6} y$
				110	109.905164	
47	Silver	Ag	107.870	107	106.905 094	
48				109	108.904756	
	Cadmium	Cd	112.40	106	105.906463	
				108	107.904187	

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & & & \text { Chemical } & & & \\ \text { Z } & & & & \\ \text { Atomic } \\ \text { Weight }\end{array}\right]$

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
$\begin{aligned} & (58) \\ & 59 \\ & 60 \end{aligned}$	(Cerium) Praseodymium Neodymium	$\begin{aligned} & \mathrm{Pr} \\ & \mathrm{Nr} \end{aligned}$	$\begin{aligned} & 140.907 \\ & 144.24 \end{aligned}$	142^{*} 141 142 143 144^{*} 145 146 148 150	141.909140 140.907596 141.907663 142.909779 143.910039 144,912538 145.913086 147.916869 149.920960	$5 \times 10^{15} \mathrm{y}$ $2.1 \times 10^{15} \mathrm{y}$
61	Promethium	Pm		$\begin{aligned} & 145^{*} \\ & 146^{*} \\ & 147^{*} \end{aligned}$	$\begin{aligned} & 144.912691 \\ & 145.914632 \\ & 146.915108 \end{aligned}$	$18 y$ 1600 d 2.6 y
62	Samarium	Sm	150,35	144 146^{*} 147^{*} 148^{*} 149^{*} 150 151^{*} 152 154	143.911989 145.912992 146.914867 147.914791 148.917180 149.917276 150.919919 151.919756 153.922282	$\begin{gathered} 1.2 \times 10^{8} y \\ 1.08 \times 10^{11} y \\ 1.2 \times 10^{13} y \\ 4 \times 10^{14} \mathrm{y} \\ 90 \mathrm{y} \end{gathered}$
63	Europium	Eu	151.96	$\begin{aligned} & 151 \\ & 152^{*} \\ & 153 \\ & 154^{*} \\ & 155^{*} \end{aligned}$	$\begin{aligned} & 150.919838 \\ & 151.921749 \\ & 152.921242 \\ & 153.923053 \\ & 154.922930 \end{aligned}$	12.4 y $16 y$
64	Gadolinium	Gd	157.25	$\begin{aligned} & 148^{\circ} \\ & 150^{\circ} \\ & 152^{\circ} \\ & 154 \\ & 155 \\ & 156 \\ & 157 \\ & 158 \\ & 160 \end{aligned}$	147.918101 149.918605 151.919794 153.920929 154.922664 155.922175 156.924025 157.924178 159.927115	$\begin{gathered} 85 y \\ 1.8 \times 10^{6} \mathrm{y} \\ 1.1 \times 10^{14} \mathrm{y} \end{gathered}$
$\begin{aligned} & 65 \\ & 66 \end{aligned}$	Terbium Dysprosium	$\begin{aligned} & \mathrm{Tb} \\ & \mathrm{Dy} \end{aligned}$	$\begin{aligned} & 158.925 \\ & 162.50 \end{aligned}$	$\begin{aligned} & 159 \\ & 156^{*} \\ & 158 \\ & 160 \\ & 161 \\ & 162 \\ & 163 \\ & 164 \end{aligned}$	$\begin{aligned} & 158.925351 \\ & 155.923930 \\ & 157.9244499 \\ & 159.925202 \\ & 160.926945 \\ & 161.926803 \\ & 162.928755 \\ & 163.929200 \end{aligned}$	$2 \times 10^{14} \mathrm{y}$
67	Holmium	Ho	164.930	165 166^{*}	$\begin{aligned} & 164.930421 \\ & 165.932289 \end{aligned}$	$1.2 \times 10^{3} \mathrm{y}$
68	Erbium	Er	167.26	$\begin{aligned} & 162 \\ & 164 \\ & 166 \\ & 167 \\ & 168 \\ & 170 \end{aligned}$	$\begin{aligned} & 161.928740 \\ & 163.929287 \\ & 165.930307 \\ & 166.932060 \\ & 167.932383 \\ & 169.935560 \end{aligned}$	
69	Thulium	Tm	168.934	$\begin{aligned} & 169 \\ & 171^{\circ} \end{aligned}$	$\begin{aligned} & 168.934245 \\ & 170.936530 \end{aligned}$	1.9 y
70	Yterbium	Yb	173.04	$\begin{aligned} & 168 \\ & 170 \\ & 171 \\ & 172 \\ & 173 \\ & 174 \\ & 176 \end{aligned}$	167.934160 169.935020 170.936430 171.936360 172.938060 173.938740 175.942680	

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
71	Lutecium	Lu	174.97	$173 *$ 175	172.938800 174.940640	1.4 y
	Hafnium	Hf	178.49	176**	175.942660	$2.2 \times 10^{10} \mathrm{y}$
72				174**	173.940360	$2.0 \times 10^{15} \mathrm{y}$
				176	175.941570 176.943400	
				177 178	176.943400 177.943880	
				179	178.946030	
				180	179.946820	
73	Tantalum	Ta	180.948	180	179.947544	
74	Wolfram (Tungsten)		183.85	181	180.948007	
		w		180	179.947000	
				182 183	181.948301 182.950324 183	
				184	183.951025	
				186	185.954440	
75	Rhenium	Re	186.2	185	184.953059	
76	Osmaium		190.2	187***	186.955833	$5 \times 10^{10} y$
		Os		184	183.952750	
				186 187	185.953870 186.955832	
				188	187.956081	
				189	188.958300	
				194**	193.965 229	6.0 y
77	Iridium	Ir	192.2	191	190.960640	
78	Platinum	Pt	195.09	193	192.963012	
				190^{*}	189.959950	$7 \times 10^{11} y$
				192 194	191.961150 193.962725	
				195	194.964813	
				196	195.964967	
$\begin{aligned} & 79 \\ & 80 \end{aligned}$	Gold Mercury	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{Hg} \end{aligned}$	$\begin{aligned} & 196.967 \\ & 200.59 \end{aligned}$	198 197	197.967895 196.966541	
				196	195.965820	
				198	197.966756	
				199	198.968 279	
				200	199.968327	
				201	200.970308	
				202 204	201.970642 203973495	
81	Thallium	71	204,19	203	202.972353	
				$204 *$	203.973865	3.75 y
				205	204.974442	
		RaE*		$206 *$	205.976104	4.3 min
		$\mathrm{Ac} \mathrm{C}^{*}$		207*	206.977450	4.78 min
		Th C*		$20{ }^{*}$	207.982013	3.1 min
		$\mathrm{RaC}{ }^{\prime \prime}$		$210{ }^{*}$	209.990054	1.3 min
82	Lead	Pb	207.19	$202 *$	201.927997	$3 \times 10^{5} \mathrm{y}$
				204**	203.973044	$1.4 \times 10^{17} \mathrm{y}$
				$205{ }^{206}$	204.974480 205974468	$3 \times 10^{7} y$
				207	206.975903	
				208	207.976650	
		Ra D		$210 *$	209.984187	22 y
		Ac B		$211 *$	210.988742	36.1 min
		Th B		212^{*}	211.991905	10.64 h
		RaB		214**	213.999764	26.8 min
83	Bismuth		209.980	$207 *$	206.978438	30 y

Z	Element	Symbol	Chemical Atomic Weight	A	Mass (u)	$T_{1 / 2}$
(83)	(Bismuth)			$208 *$ 209	207.979731 208.980394	$3.7 \times 10^{5} \mathrm{y}$
		RaE		210^{*}	209.984121	5.1 d
		Th C		211^{*}	210.987300	2.15 min
				212*	211.991876	60.6 min
		RaC		$214{ }^{*}$	213.998686	19.7 min
				$215 *$	215.001830	8 min
84	Polonium	Po		209**	208.982426	103 y
		RaF		$210 *$	209.982876	138.4 d
		Ac C^{\prime}		$211 *$	210.986657	0.52 s
		Th C^{\prime} $\operatorname{Ra} \mathrm{C}^{\prime}$		212^{*} $214 *$	211.989629 213.995201	$0.30 \mu \mathrm{~s}$ 164
		Ac A		215^{*}	214.999423	0.0018 s
		Th A		216^{*}	216.001790	0.15 s
		RaA		$218{ }^{\circ}$	218.008930	3.05 Hs
85	Astatine	At		${ }^{215 *}$	214.998663	$\approx 100 \mu \mathrm{~s}$
				$218 *$	218.008607	1.38
86	Radon	Rn		219**	219.011290	0.9 min
		An		219*	219.009481	4.0 s
		Tn		220*	220.011401	56 s
		Rn		222*	222.017531	3.823 d
87	Francium	Fr				
		Ac K		223*	223.019736	22 min
88	Radium	${ }_{\text {Ra }} \mathrm{X}$	226.05			
		Ac X Th X		223********	223.018501 224.020218	11.4 d 3.64 d
		Ra		$226{ }^{\circ}$	226.025360	1620y
		Ms Th ${ }_{1}$		228**	228.031139	5.7 y
89	Actinium	$\mathrm{Mc}_{\mathrm{Ms}}^{\mathrm{Mc}} \mathrm{Th}_{2}$		${ }^{2227}{ }^{228}{ }^{*}$	227.027753 228.031	21.2 y 6.13 h
90	Thorium	$\mathrm{Ms} \mathrm{Th}_{2}$	232.038	228		
		Rd Ac		227*	227.027706	18.17 d
		Rd Th		228**	228.028750	1.91 y
		Io		229**	229.031652 230.033087	$7300 y$ $76000 y$
		UY		231*	231.036291	25.6 h
		Th		232**	232.038124	$1.39 \times 10^{10} \mathrm{y}$
				234**	234.043583	24.1 d
91	Proactinium	$\stackrel{\mathrm{Pa}}{\mathrm{UZ}}$	231.0359	231************	231.035877 234.043298	$32480 y$ $6.66 h$
92	Uranium	U	238.03	$230 *$	230.033937	20.8 d
				$231 *$	231.036264	4.3 d
				232*	232.037168	72 y
				$233{ }^{\circ}$	233.039522	$1.62 \times 10^{5} \mathrm{y}$
				234**	234.040904	$2.48 \times 10^{5} \mathrm{y}$
		Ac U		${ }^{235 *}$	235.043915	$7.13 \times 10^{8} \mathrm{y}$
				${ }^{236}{ }^{\circ}$	236.045637 238.048	$2.39 \times 10^{9} \mathrm{y}$ $4.51 \times 10^{\prime} \mathrm{y}$
93	Neptunium	Np	237.0480	$235{ }^{\circ}$	235.044049	410 d
				236*	236.046624	5000 y
94				${ }^{2377^{*}}$	237.048056 236.046071	$2.14 \times 10^{6} y$ $2.85 y$
	Plutonium	Pu	239.0522	${ }^{236}{ }^{238}$	236.046071 238.049511	2.85 y 89
				239*	239.052146	24360 y
				$240{ }^{*}$	240.053882	6700 y
				241^{*}	241.056737	13 y
				242^{*}	242.058725	$3.79 \times 10^{5} \mathrm{y}$
				244*	244.064100	$7.6 \times 10^{7} \mathrm{y}$

