Q1: What are the primary federal highway functional classifications? support your answer with a diagram that illustrate the hierarchy of a functional classification system for a rural area and the proportion of service provided by each functionally classified category.

Solution:

There are three primary federal highway functional classifications: arterial, collector, and local roads. All streets and highways are grouped into one of these classes, depending on the character of the traffic (i.e., local or long distance) and the degree of land access that they allow.
Arterial: Provides the highest level of service at the greatest speed for the longest uninterrupted distance, with some degree of access control. (provide direct service for cities and larger towns which generate and attract a large proportion of trips).
Collector: Provides a less highly developed level of service at a lower speed for shorter distances by collecting traffic from local roads and connecting them with arterials. (serve small towns directly and connect them to the arterial network. Collectors also collect traffic from local roads).
Local: Consists of all roads not defined as arterials or collectors; primarily provides access to land with little or no through movement. (the bottom level of the classification system, which serve individual farms and other rural land usage).

Table 2-1: Relationship between Functional Classification and Travel Characteristics
$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline & \begin{array}{c}\text { Distance } \\ \text { Served } \\ \text { (and } \\ \text { Functional } \\ \text { Classification }\end{array} & \begin{array}{c}\text { Rongth of } \\ \text { Route) }\end{array} & \begin{array}{c}\text { Access } \\ \text { Points }\end{array} & \begin{array}{c}\text { Speed } \\ \text { Limit }\end{array} & \begin{array}{c}\text { Distance } \\ \text { between } \\ \text { Routes }\end{array} & \begin{array}{c}\text { Usage } \\ \text { (AADT } \\ \text { and } \\ \text { DVMT) }\end{array} & \text { Significance }\end{array} \begin{array}{c}\text { Number } \\ \text { of Travel } \\ \text { Lanes }\end{array}\right]$

The hierarchy of a functional classification system for a rural area is illustrated in figure 1.
The proportion of service provided by each functionally classified category is illustrated in figure 2 .
Arterial networks emphasize a high level of mobility for through traffic movements. Local facilities emphasize more on the land access function. Collectors offer a compromise between both functions of land access and mobility.

Q2/What is a mass diagram? what the properties of it?

Certain characteristics of the mass curve must be understood before it can be used successfully. They are:

1. A rising mass curve denotes excavation at that point on the roadway; a falling curve denotes embankment. Where the roadway lies on a sidehill, the same cross section often shows both excavation and embankment. In such cases, a rising curve indicates an excess of excavation and a falling curve an excess of embankment.
2. Steep slopes of the mass curve reflect heavy cuts or fills; flat slopes indicate small earthwork quantities.
3. Points of zero slope on the mass curve represent points where the roadway goes from cut to fill, or vice versa. These low or high points on the mass curve may not come at the exact station at which the profile goes from cut to fill. There may be a net excess of excavation or embankment at this point if the cross slope is irregular.
4. The difference in ordinate between two points on the curve represents the net excess of excavation over embankment between those points, or conversely, the net excess of embankment over excavation.
5. If a horizontal line intersects the mass curve at two points, the excalvation and embankment are in balance (equal in amount) between those points.

Q3/ define the term of the following :
a) Street
b) Road
c) Haul
d) Borrow
e) Free haul distance

- Street: is an urban road facility.
- Road: is a lower order facility designed for relatively lower speed and volume of traffic in the non-urban area.
- Haul: The distance over which material is transported, it is also used to describe the volumedistance of material moved.
- Borrow: Fill Materials that was not initially excavated from the project site.
- Free haul distance: The distance the contractor has agreed to move earth without additional fees.

Q4/ On a 4 lane highway with $\mathbf{3 . 6 m}$ lane width It is proposed to design a circular curve for $\mathbf{8 0} \mathbf{K p h}$ speed. The station of TS is $\mathbf{5 + 5 3 0}$ and the station of ST is $\mathbf{5 + 8 8 0}$. If The angle ${ }_{\mathrm{C}}$ is $\mathbf{3 3}^{\circ}$ and $\mathbf{R}>\mathbf{3 0 0 m}$. Determine: 1- The radius of the circular curve
2- The intersection angle between the two tangents
3- The station of a place at the exit to the curve, where the cross-slope is at $\mathbf{1 0 \%}$ of maximum superelevation. 4- The station of end of transition in the cross-slope at the exit of the curve.
Hint: bw=0.75, design super elevation $=\mathbf{0 . 0 2}$ and Maximum relative gradient is $\mathbf{0 . 0 0 5}$
given $\mathrm{R}>300 \mathrm{~m}$ we can assign the equation of LS for the problem
by solving all the equations we realise that $\mathrm{LS}=\operatorname{SQRT}\left(24^{*} 0.2 * \mathrm{R}\right)$ has the optimum value of LS and can be used
st ST- st TS $=350=\mathrm{CL}+2 * \mathrm{Ls}=\mathrm{pi} * 33 / 180 * \mathrm{R}+2 *(24 * 0.2 * \mathrm{R})^{0.5}$
1 - by solution we get $R=447 \mathrm{~m}$
$s=L S / 24 R$
$2-\quad=c+2^{*} \quad \mathrm{~s}=38.938$
3- station $=$ station ST $-0.1 * \mathrm{Ls}=5+875.368$
$4-$ station $=$ station $\mathrm{ST}+\mathrm{LT}$ where $\mathrm{Lt}=\mathrm{Ls}$ as we can assume $\mathrm{eNc}=2 \%=5+926.321$

Q5/ Complete the table below assuming the shrinkage $=\mathbf{1 4 \%}$, and determine the cost of anyeither waste or borrow volume if you know both cost $\mathbf{1 8}$ US\$ per yard, then plot the mass diagram on the graphic paper you have provided:

Stations	End Area ft ${ }^{2}$		Volume		Adjusted	Mass Diagram Ordinate
	Cut	Fill	Cut (yd)	Fill (yd)	Fill (yd)	
		115				
$0+50$		112				
$1+00$		54				
$2+00$		30				
$2+50$	64					
$3+00$	120					
$4+00$	160					
$5+00$	217					
$6+00$		146				
$6+50$		183				
$7+50$		191				

Answer:

Stations	End Area ft ${ }^{\mathbf{2}}$		Volume		Shrinkage	Acjusted	Mass Diagram Ordinate
	Cut	Fill	Cut (vd)	Fill (vd)	14%	Fill (vd)	
$0+00$		115		0	0		0
$0+50$		112		210	29	239	-239
$1+00$		54		154	22	176	-415
$2+00$		30		156	22	178	-593
$2+50$	64		59				-534
$3+00$	120		170				-364
$4+00$	160		519				155
$5+00$	217		698				853
$6+00$		146		270	38	308	545
$6+50$		183		305	43	348	197
$7+50$		191		693	97	790	-593

Total Fill Vol. - Total Cut Vol. $=2039-1446=593$ yard $($ Borrow $)$.
Cost of Borrow $=593 * 18=10,674$ US\$.

Q6/ What are the stages of constructing a highway?

Solution:

- Highway administration and finance
- Highway planning (20years)
- Economics
- Urban transportation planning
- Route location
- Acquisition of right-of-way
- Traffic engineering
- Earthwork
- Geometric design
- Structural design
- Drainage
- Contracts and specifications
- Highway maintenance
- Rehabilitation and evaluation

Q7/ What are the primary federal highway functional classifications? support your answer with a diagram that illustrate the hierarchy of a functional classification system for a rural area and the proportion of service provided by each functionally classified category.

Solution:

There are three primary federal highway functional classifications: arterial, collector, and local roads. All streets and highways are grouped into one of these classes, depending on the character of the traffic (i.e., local or long distance) and the degree of land access that they allow.
Arterial: Provides the highest level of service at the greatest speed for the longest uninterrupted distance, with some degree of access control. (provide direct service for cities and larger towns which generate and attract a large proportion of trips).
Collector: Provides a less highly developed level of service at a lower speed for shorter distances by collecting traffic from local roads and connecting them with arterials. (serve small towns directly and connect them to the arterial network. Collectors also collect traffic from local roads).
Local: Consists of all roads not defined as arterials or collectors; primarily provides access to land with little or no through movement. (the bottom level of the classification system, which serve individual farms and other rural land usage).

Table 2-1: Relationship between Functional Classification and Travel Characteristics

	Distance Served (and						
Functional Classification	Usage Route)	Access Points	Speed Limit	Number between Routes	Travel and aVMT)	Significance	Lanes

The hierarchy of a functional classification system for a rural area is illustrated in figure 1.
The proportion of service provided by each functionally classified category is illustrated in figure 2.
Arterial networks emphasize a high level of mobility for through traffic movements. Local facilities emphasize more on the land access function. Collectors offer a compromise between both functions of land access and mobility.

Q8/ What the Purposes of Earthwork?
Solution:

- 1- to bring the sub-grade together with shoulders and slopes to the contours called for by the plans
- 2- to eliminate unsuitable materials from the sub-grade and from other portions of embankments and their foundations or to disperse such materials through the earth mass in such a manner that they will not be harmful.
- 3- to prevent saturation of soil in service or if the water cannot be eliminated, to neutralize any bad effects by the use of appropriate materials that are stable even when saturated.

Q9/ A 6 lane highway is designed for 90 kph speed. Two tangents intersect at the station of $24+00$ on a certain place of the highway with an angle of intersection of 36°. It is proposed to design a circular curve between the two tangents with $(0.01 e+f)=0.158$, Determine:

1- The station of beginning of transition in the cross-slope at the entrance to the curve.
2- The length of the circular curve with full superelevation.
3- The station of a place at the exit to the curve, where the cross-slope is at 79% of the maximum superelevation (the elevation of that place is 450 m at the centerline).

4 - the elevation of the inner and outer edge of the cross-section at the place mentioned in point " 3 " above.
5- The stopping sight distance on the curve for a 10 m middle ordinate.
Solution:
$\mathrm{w}=3.6 \mathrm{~m}, \quad \mathrm{n} 1=3, \mathrm{bw}=0.67, \quad \mathrm{f}=0.13, \quad \mathrm{ed}=2.8 \%, \quad=0.47 \%, \quad=36^{\circ}, \quad$ enc $=2 \%$
$\mathrm{R}=\mathrm{V}^{2} /(127(0.01 \mathrm{e}+\mathrm{f}))=403.668 \mathrm{~m}$
$\mathrm{T}=131.160 \mathrm{~m} \quad \mathrm{CL}=253.632 \mathrm{~m}$
$\mathrm{Lr}=\mathrm{W} * \mathrm{n} 1 * \mathrm{bw}^{*} \mathrm{ed} /=43.108 \mathrm{~m}$
$\mathrm{Lt}=30.791 \mathrm{~m}$
1 - st IP - T - $2 / 3 \mathrm{Lr}-\mathrm{Lt}=2400-131.16-2 / 3 * 43.108-30.791=\underline{2+209.310}$
$2-\mathrm{CL}-1 / 3 \mathrm{Lr}-1 / 3 \mathrm{Lr}=\underline{224.893 \mathrm{~m}}$

3- Station $=$ st PT $+2 / 3 \mathrm{Lr}-0.79 \mathrm{Lr}=2+517.155$
$4-\sin \left(\tan ^{-1}(2.8 * 0.79 / 100)\right) * 3 * 3.6=x=0.239 \mathrm{~m}$
elevation inner $=450-0.239=449.761 \mathrm{~m}$
elevation outer $=450+0.239=\underline{450.239 m}$
5- $\mathrm{M}=\mathrm{R}(1-\cos (28.65 * \mathrm{~S} / \mathrm{R})), \mathrm{M}=10 \mathrm{~m}$ so $\quad \underline{\mathrm{S}}=180.064 \mathrm{~m}$

Q10/ If the volume after compaction was 1001 m 3 , the shrinkage factor and bulkingfactor were 0.909 and 1.009 respectively. Determine:

1- Volume of natural state soil
2- Volume of loose soil
3- Percentage of shrinkage
4- Percentage of bulking
volume after compaction $=1001 \mathrm{~m}^{3}$
S.F. $=0.909 \quad$ and \quad B.F. $=1.009$

1-S.F. = volume after compaction $/$ volume before excavation
$0.909=1001 /$ volume before excavation
so the volume of natural state soil $=1001 / 0.909=\underline{1101.21 \mathrm{~m}^{3}}$
$2-\mathrm{B} . \mathrm{F}=$ volume after excavation $/$ volume before excavation
$1.009=$ volume after excavation / 1101.21
so the volume of loose soil $=1101.21^{*} 1.009=1111.121 \mathrm{~m}^{3}$
$3-\%$ of shrinkage $=1-$ S.F. $=\underline{9.1 \%}$
$4-\%$ of bulking $=$ B.F. $-1=\underline{0.9 \%}$
Q11/ Given the mass diagram in figure 1 and if the free haul distance was 60 m , calculate:
1- The haul distance 2- the overhaul distance 3- the overhaul and present full calculation process.
mass diagram

aton 1 :
(1) Ara \& zone (1) for 60 m freehual distance:
$\begin{aligned} \text { whoa of one pixel } & =20 \mathrm{~m}^{3} \times 20 \mathrm{~m}=400 \mathrm{~m}^{3} \mathrm{~m} \\ n^{3} \times 1 \text { station } & =20 \mathrm{~m}^{3} \cdot \mathrm{st}=200 \mathrm{~m}^{3} \cdot \mathrm{~m} \text { for one pixel }\end{aligned}$

$$
\begin{aligned}
\text { who on } n_{n} & =200 \mathrm{~m}^{3} \cdot \mathrm{~m} \text { for one pixel } \\
& =20 \mathrm{~m}^{3} \times 1 \text { station }=20 \mathrm{~m}^{3} \cdot \mathrm{st}
\end{aligned}=10 \mathrm{~m}^{3} \cdot \mathrm{st} \text {. for one pixel }
$$

No. $/$ Sf (pixies $($ complete $)=6$, incomplete pixies No. $=3$

$$
\therefore \text { total Bray mosel } 3=6 \times 10+\frac{3}{2} \times 10=75 \mathrm{~m}^{3} \cdot \mathrm{st} .
$$

(1) haul ${ }^{3}$ distance $=\frac{75}{20}=3.75$ Stations \rightarrow height ${ }^{2}$ o under $=20 \mathrm{~m}^{3}$
(2) verbal distance $=3.75-3=0.75$ stations $=15 \mathrm{~m}$

- the over had $=0.75 * 20=15 \mathrm{~m}^{3} \cdot \mathrm{st}=300 \mathrm{~m}^{3} \mathrm{~m}$.

Aral zone (2)
No. f complete pixels $=38 \quad$, incomplete $N_{0}=20$
total Area ${ }^{5}=38 \times 10+\frac{20}{2} \times 10=380+100=480 \mathrm{~m}^{3} \cdot \mathrm{st}$.
(1) haul $\operatorname{dis}^{3} \sin ^{3} e=\frac{480}{83}=508$ stations \quad height $=83 \mathrm{~m}^{3}$
(2) var haul ${ }^{2}$ distance $=5.8-3=2.8$ stations. $=56 \mathrm{~m}$

- Heihaul $=^{2} 2.8 \times 83=232.4 \mathrm{~m}^{3} \cdot \mathrm{st} .=4648 \mathrm{~m}^{3} \cdot \mathrm{~m}$
(3)

$$
\begin{aligned}
\text { the over havel }=15+232 \cdot 4 & =847 \cdot 4 \mathrm{~m}^{3} \cdot \mathrm{st} \\
& =4948 \mathrm{~m}^{3} \cdot \mathrm{~m}
\end{aligned}
$$

Q12/ A horizontal curve with $\mathrm{R}=245 \mathrm{~m}$ is part of a 2-lane highway (3.8 each), and the minimum distance that large billboard can be placed from the centerline of the inside lane of the curve is 20 m . Find the maximum speed in (Km/hr.) on the curve without reducing required SSD ? Assume $t=2.5 \mathrm{sec}$. and $\mathrm{a}=3.5 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

Data: $R=425 \mathrm{~m}, \mathrm{Ms}=20 \mathrm{~m}, \mathrm{t}=2.5 \mathrm{sec}, \mathrm{a}=3.5 \mathrm{~m} / \mathrm{s}^{2}$, Find V ?

$$
R_{x}=R-\frac{w}{2} \Rightarrow 245-3.8 / 2=243.1 \mathrm{~m} .
$$

$$
\mathrm{SSD}=\frac{\pi R_{v}}{90}\left[\cos ^{-1}\left(\frac{R_{v}-M_{v}}{R_{v}}\right)\right]
$$

$$
\operatorname{SSD}=\frac{\pi * 243.1}{90}\left[\cos ^{-1}\left(\frac{243.1-20}{243.1}\right)\right]
$$

$$
S S D=198.6 \mathrm{~m}
$$

Necessary data:

Number of lanes rotated n	Adjustment factor b_{w}	
1	1	
1.5	0.83	
2	0.75	
2.5	0.7	
3	0.67	
3.5	0.64	
60	70	80
0.15	0.14	0.14

Speed kph	50	70	90	110
$\mathrm{f}_{\max }$	0.16	0.15	0.12	0.11
$\mathrm{e}_{\max }$	6.0%	8.2%	9.5%	11.0%

table: $f_{\text {max }}$ and $e_{\text {max }}$ for various speeds

Compcnent of passirg manєuyer	Metric			
	Speəd range (km / h)			
	5066	66-3C	81.6	26-110
	Average passirg speed iknihi			
	53.2	700	845	99.8
Iritial nane Jver: $\begin{aligned} & \varepsilon=\text { averye auceleralior } \\ & L=\text { Lirtorest } \end{aligned}$	$\begin{aligned} & 225 \\ & 36 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 40 \end{aligned}$	$\begin{aligned} & 237 \\ & 43 \end{aligned}$	$\begin{aligned} & 2<1 \\ & 45 \end{aligned}$
Occup:ation of lét laาe. $\mathrm{t}_{2}=\operatorname{time}(\mathrm{SP}, C)^{9}$	93	100	107	113
Clearance length: C_{3} - distance traveleda	30	55	75	50

Exhibit 3-5. Elements of Safe Passing Sight Distance for Desion of Two-Lane IIighways

Q13/ Design an equal-tangent vertical curve to meet a railroad crossing which exists at STA $53+50$ and elevation 1271.20'. The back grade (g1) of $\mathbf{- 4 \%}$ meets the forward grade (g2) of $+\mathbf{3 . 8 \%}$ at PVI STA 52 +00 with elevation 1261.50.

$x=\frac{L}{2}+(5350-5200)=\frac{L}{2}+150^{\circ}=\frac{L}{2}+1.5 \operatorname{stations}$
$y=y_{B y C}+g_{1} x+\frac{r}{2} x^{2}$
$x=\frac{g_{2}-g_{1}}{L}$
$Y_{B V C}=1261.50+4.00\left(\frac{\Sigma}{2}\right)$
$g_{1} x=-4.00 x=-4.00\left(\frac{L}{2}+1.5\right)$
$r=\frac{3.80+4.00}{L}$
$\frac{r}{2} x^{2}=\frac{3.80+4.00}{2 L}\left(\frac{L}{2}+1.5\right)^{2}$
$1271.20=\left[1261.50+4.00\left(\frac{L}{2}\right)\right]+\left[-4.00\left(\frac{L}{2}+1.5\right)\right]+\left[\frac{3.80+4.00}{2 L}\left(\frac{L}{2}+1.5\right)^{2}\right]$

$$
\begin{array}{r}
0.975 L^{2}-9.85 L+8.775=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
L=9.1152 \text { stations }-911.52^{\prime} \\
\mathbf{I}=\mathbf{9 1 1 . 5 2}
\end{array}
$$

Check hy subsfifuting

 elevation equation to see if it matches a value of 1271.20 .Q14/ A horizontal curve with $R=245 m$ is part of a 2-lane highway (3.8 each), and the minimum distance that large billboard can be placed from the centerline of the inside lane of the curve is 20 m . Find the maximum speed in ($\mathrm{Km} / \mathrm{hr}$.) on the curve without reducing required SSD? Assume $\mathbf{t}=\mathbf{2 . 5}$ sec. and $\mathrm{a}=3.5 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

Data: $R=425 \mathrm{~m}, M s=20 \mathrm{~m}, \mathrm{t}=2.5 \mathrm{sec}, \mathrm{a}=3.5 \mathrm{~m} / \mathrm{s}^{2}$,
Find V?
$R_{\mathrm{N}} \quad R-\underset{2}{w}>245-3.3 / 2 \quad 243.1 \mathrm{mn}$.

$$
\begin{aligned}
& \operatorname{SSD}=\frac{\pi R_{v}}{90}\left[\cos ^{-1}\left(\frac{R_{v}-M_{*}}{R}\right)\right] \\
& S S D=\frac{\pi * 243.1}{90}\left[\cos ^{-1}\left(\frac{243.1-20}{243.1}\right)\right]
\end{aligned}
$$

$\sin D-198.6 m$

$$
\begin{aligned}
& \sin -0.28 v e+\frac{0.033 v^{2}}{a} \\
& 198.6=0.28 v+2.5+\frac{0.0 .39 v^{2}}{3.5}
\end{aligned}
$$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
V-+105.7 \frac{\mathrm{KII}}{\mathrm{hr}} \quad \text { or } \quad V--168.6 \frac{\mathrm{KII}}{\mathrm{hr}}
$$

So maximum speed is
 $$
V=105.7 \approx 2 ?
$$

Q15/ A 4 lane highway with 3.6 m lane width is designed for 100 kph speed. Two tangents intersect at the station of $3+700$ on a certain place of the highway and The angle of intersection is 37°. It is proposed to design a circular curve without transition curves. If the elevation of station $3+580$ is 420.2 m at the centerline. Determine:
1- The remained length of the curve without full superelevation.
2- The elevation of inner and outer side of the road at station $3+580$
3- The station of a place at the entrance to the curve, where the cross-slope is at 61% of the maximum superelevation.
4- The station of end of transition in cross-slope at the exit of the curve.
$\mathrm{R}=\mathrm{V}^{2} / 127(0.01 \mathrm{e}+\mathrm{f})=\mathbf{5 3 9 . 3} \mathbf{m}$
$\mathrm{Lr}=\mathrm{W} * \mathrm{n} 1 * \mathrm{ed} * \mathrm{bw} / \quad$ from table: $=0.44, \mathrm{bw}=0.75, \mathrm{f}=0.12$ so ed $=2.6 \%$
$\mathrm{Lr}=3.6 * 2 * 2.6 * 0.75 / 0.44=\mathbf{3 1 . 9 m}$
$\mathrm{Lt}=\mathrm{eNc} / \mathrm{ed} * \mathrm{Lr} \quad$ assume $\mathrm{eNc}=2 \%$

$\mathbf{L t}=\mathbf{2 4 . 5 3} \mathrm{m}$

$\mathrm{T}=\mathrm{R} * \tan (/ 2)=\mathbf{1 8 0 . 4 5 m}$
$\mathrm{CL}=\mathrm{R}^{*}{ }^{\mathrm{rad}}=\mathbf{3 4 8 . 2 6 m}$

1- Length $=1 / 3 * \operatorname{Lr}+1 / 3 * \operatorname{Lr}=\underline{\mathbf{2 1 . 3 m}}$
2 - at station $3+580$ the superelevation is full, since the elevation of centreline is 420.2 m
the elevation of inner side $=310.2$ - no. of lanes rotated * lane width* emax

$$
=420.2-2 * 3.6 * 0.026=\underline{\mathbf{4 2 0} .0 \mathrm{~m}}
$$

the elevation of outer side $=420.2+2 * 3.6 * 0.026=\underline{\mathbf{4 2 0} .4 \mathbf{m}}$
3 - required station $=$ station of IP-T- $2 / 3 * \operatorname{Lr}+0.61 * \operatorname{Lr}=\underline{(3+517)}$
$4-$ required station $=$ station of $\mathrm{IP}-\mathrm{T}+\mathrm{CL}+2 / 3 * \mathrm{Lr}+\mathrm{Lt}=\underline{(\mathbf{3}+\mathbf{9 1 4})}$

Q16/ If the density after compaction is more than the density of natural state soil by 20%, the density after excavation is $1460 \mathrm{~kg} / \mathrm{m}^{3}$ and the percentage of bulking is 4% Determine: 1-Shrinkage factor. 2- Density of natural state soil. 3- Volume of excavation needed for $25 \mathrm{~m}^{3}$ of material. 4- Percentage of shrinkage. 5-Density after compaction.

Solution:
problem \mid |A/ Density after compaction is and than the density fore sal by $20 x$.
Densityaftoc privation $=146 \mathrm{rg} / \mathrm{m}^{2}$
\therefore of bulking $=4 \%$
$\begin{aligned} & \text { assume Density after exaction }=A \\ & \text { assume Density f nefurat state Soil }=B\end{aligned} \Rightarrow A=B+20 \% \cdot A B=1 \cdot 2 B$
Qshrixax factor $=\frac{B}{1.8 B}=\frac{1}{1.2}=0.833$
(30) acc.

$$
\% \text { \&bul/ing }=B \cdot F \cdot-1 \Rightarrow 4 \%=B \cdot F \cdot-1 \rightarrow B \cdot F=1.04
$$

$$
B \cdot F=\frac{B}{1460} \Rightarrow 1.04=\frac{B}{1460} \Rightarrow B=15 / 8.4 \mathrm{~kg} / \mathrm{m}^{3}
$$

(3) Volume \& cucaution needed $=25 \frac{1}{5 \cdot 1 .}=\frac{25}{0.833}=30 \mathrm{~m}^{3}$
(4) $\%$ Shratage $=1-$ S.F $=1-0.833=0167=16.7 \%$.
(5) Density after compilation $=1 \cdot 2 \mathrm{~B}=1.2 \times 1518.4=1822.1 \mathrm{~kg} / \mathrm{m}^{3}$.

Q17/Find the safe speed for a stopping sight distance of 87 m on a 3.5% downgrade terrain. Solution:

The decision sight distances for avoidance maneuvers C, D, and E are determined as:

safe speed for SSD of $\mathbf{8 7 m}$ with down grade of $\mathbf{3 . 5 \%}$
$0.278 \mathrm{~V}(2.5)+V^{2} /(254(3.4 / 9.81-3.5 / 100))=87$
$\mathrm{V} 1=+60 \mathrm{kph} \quad \mathrm{V} 2=-115 \mathrm{kph}$ so safe speed $=\mathrm{V} 1$
Q18/ Find the passing sight distance for 90 kph design speed.
Solution:

The distance d_{1} traveled daring the initial maneuver period is computed with the following equation:

Metric	Us Customary
$d_{1}=0.27 R t_{i}\left(v-m+\frac{a t_{1}}{2}\right)$	$d_{1}=L 47 t_{t}\left(v-m+\frac{a i_{t}}{2}\right) \quad(3-6)$
where: $t_{i}=$ time of inital maneuver, s: $a=$ average acceleration. $\mathrm{km} / \mathrm{h} / \mathrm{s}$: $v=$ average speed of passing vehicle, kr / h : $\mathrm{m}=$ difterencein speed or passed venkle and passing vehicle, kmih	where: $t_{i}=$ time of initial maneuver, s: $a=$ average acceleration. mph/s: $v=$ average speed of passing vehicle, mph; $\mathrm{m}=$ difference in speed of passed venicle and passing vehicle, mph

Metric	US Customary
$d_{2}=0.278 v t_{2}$	$d_{2}=1.47 v t_{2}$ (3-7)
where: t_{2} - time passing vethicle occupies the lefl lanie, s; v - average speed of passing vohicio. km / h	where: t_{2} - tirne passing vethicle occupies the left lame, s, v - average speed of passing vohicio, mph

Component of passing mancuver	Metric				US Customary			
	Specd range (km/h)				Specd range (mph)			
	$\begin{gathered} 50-65 \text { 66-80 } 81-95 \quad 96-110 \\ \text { rvergge pasaing speed }(\mathrm{km} / \mathrm{h}) \end{gathered}$				$30-40$, $40-50$ soring speed (mph)Average parsaing			
	56.2	70.0	84.5	99.8	34.9	43.8	52.6	02.0
Initial maneirver: 	234	2315	331	341	140	$14: 3$	14%	1 b?
t . $=$ time $(\sec)^{2}$	3.6	4.0	4.3	4.5	3.6	4.0	43	4.5
d_{3} - distance traveled			89	113	145°	216	289	360
cocrapation of tett tane: t_{2} - time (sec)	9.3	40.0	10.7	11.3	9.3	10.0	10.7	11.3
d d 2 distance traveled	145	195	251	314	477	643	827	1030
Clearance lengt: $d_{1}=$ distance travelod ${ }^{*}$	30	50	75	90	700	180	250	300
Opposing vehicle Cl_{4} - distance traveled	91	13:3	16!	- ${ }^{\text {ata }}$:118	ィ奖	- 250	-1\%
Tulal distance, $\mathrm{d}_{1}-\mathrm{d}_{2}+\mathrm{d}_{3}+\mathrm{d}_{4}$	317	446	583	726	1040	7468	1918	2383
 in meters. In the U.S. customary portion of the table, speed values are in mph, acceleration rates in mph'ser, and distances are in teet								

Exhibit 3-5. Elements of Safe Passing Sight Distance for Design of Two-Lane Highways
from table, $\mathrm{t} 1=4.3, \mathrm{a}=2.37, \mathrm{t} 2=10.7, \mathrm{~d} 3=75$
$\mathrm{d} 1=0.278 * \mathrm{t} *(\mathrm{~V}-\mathrm{m}+\mathrm{a} * \mathrm{t} / 2)=95.746 \mathrm{~m}$
$\mathrm{d} 2=0.278 \mathrm{v} * \mathrm{t} 2=\mathbf{2 6 7 . 7 1 4} \mathrm{m}$
d3 $=75 \mathrm{~m}$
$\mathrm{d} 4=2 / 3 * d 2=178.476$
$P S D=d 1+d 2+d 3+d 4=616.936 m$

Q19/ A 6 lane highway is designed for $\mathbf{9 0} \mathbf{~ k p h}$ speed. Two tangents intersect at the station of $\mathbf{2 + 4 0 0}$ on a certain place of the highway with an angle of intersection of $\mathbf{3 6}^{\circ}$. It is proposed to design a circular curve between the two tangents with $(\mathbf{0 . 0 1 e}+\mathbf{f})=\mathbf{0 . 1 5 8}$, Determine:

- Minimum radius of circular curve
- Superelevation Runoff length
- Tangent Runout length
- Station of P.C. \& P.T.

Solution:
$\mathbf{w}=\mathbf{3 . 6 m}, \quad \mathrm{n} 1=3, \mathbf{b w}=\mathbf{0 . 6 7}, \quad \mathbf{f}=\mathbf{0 . 1 3}, \quad \mathrm{ed}=2.8 \%, \quad=\mathbf{0 . 4 7 \%}, \quad=36^{\circ}, \quad$ enc=2\%
$\mathrm{R}=\mathrm{V}^{2} /(127(0.01 \mathrm{e}+\mathrm{f}))=403.668 \mathrm{~m}$
$\mathrm{T}=\mathrm{R} \tan \quad / 2=403.668 * \tan 36 / 2=131.160 \mathrm{~m}$
$\mathrm{CL}=* \mathbf{R}=(36 * \mathrm{pi}) / 180 * 403.668=253.632 \mathrm{~m}$
$\mathrm{Lr}=\mathrm{W} * \mathrm{n} 1 * \mathrm{bw} * \mathrm{ed} /=43.108 \mathrm{~m}$
$\mathrm{Lt}=(\mathrm{enc} / \mathrm{ed}) * \mathrm{Lr}=30.791 \mathrm{~m}$
$\mathrm{PC}=\mathrm{PI}-\mathrm{T}=$
$\mathrm{PT}=\mathrm{PC}+\mathrm{CL}=$

Q20/ Find the minimum radius of a horizontal curve on a highway for a design speed of 85 kph , when the $\mathrm{f}_{\text {max }}$ and $\mathrm{e}_{\text {max }}$ are controlling the minimum radius.
Solution:

Q21/ Draw the mass-haul diagram for the following earthwork volumes. Note: between stations $1+160$ and $1+180$ earthwork volume $=0 \mathrm{~m}^{3}$ then draw an approximate profile that follow and coincide the mass-haul diagram.

Station	Excavation m^{3}	Embankment m^{3}	Station	Excavation m^{3}	Embankment m^{3}
$1+20$			$1+180$		
	0	10		12	6
$1+40$			$1+200$		
	0	18		0	35
$1+60$			$1+220$		
	7	2		0	40
$1+80$		0	$1+240$		
	21	0		0	27
$1+100$			$1+260$		
	32	0	$1+280$		36
$1+120$				0	
	25				
$1+140$					
	47				
$1+160$					

Solution:

Q22/ A 4 lane highway with 3.7 m lane width is designed for 90 kph speed. station of IP is $26+00$. The angle of intersection is 35°. It is proposed to design a circular curve with transition curves. If the cross-slope at midway of spiral curve length is 1.5%. Lateral offset between tangent and circular curve $=5^{*} \mathrm{~s}$ where s is in radians and by neglecting the equation of $\mathrm{Ls}_{\max }$ for this problem, Determine: (20 Marks)
1- The radius of the curve (bigger value if applicable).
2- The station of a place at the exit to the curve, where the cross-slope is at 61% of the maximum superelevation.
3- The length at which the whole transition process is performed.
Use: Adjustment factor for number of lanes corrected is 0.75 and maximum relative gradient is 0.47%

Solution:

$\mathrm{p}=5^{*}$ s so $\mathrm{Ls}^{2} / 24 \mathrm{R}=5^{*} \mathrm{Ls} / 2 \mathrm{R} \quad$ so $\mathrm{Ls}=60 \mathrm{~m}$
to find R we need to see which equation is used
$\mathrm{Ls}=(24 * 0.2 * \mathrm{R})^{0.5} \quad$ so $\mathrm{R}=750 \mathrm{~m}$
$\mathrm{Ls}=0.0214 * \mathrm{~V}^{3} / \mathrm{RC} \mathrm{C}=1.2$ default value so $\mathrm{R}=217 \mathrm{~m}$
so $\mathrm{R}=750 \mathrm{~m}$
given at 50% of $\mathrm{e}_{\text {design }}$ slope is $1.5 \% \quad$ so $\mathrm{e}_{\text {design }}=3 \%$
$\mathrm{Lr}=\mathrm{W} * \mathrm{n} 1 * \mathrm{ed} * \mathrm{bw} / \quad=3.7 * 2 * 0.75 * 3 / 0.47=35.42 \mathrm{~m} \quad$ from table: $=0.47 \%, \mathrm{bw}=0.75$
$\mathrm{Lt}=\mathrm{eNc} / \mathrm{ed} * \mathrm{Ls}=3 / 2 * 60=90 \mathrm{~m}$ assuming default value of 2% for eNc
$\mathrm{Ts}=(\mathrm{R}+\mathrm{p}) * \tan \left(0.5^{*}\right)+\mathrm{Ls} / 2$
$\mathrm{s}=\mathrm{Ls} / 2 \mathrm{R}=2.29^{\circ}$
$\mathrm{C}=-2 \mathrm{~s}=30.42^{\circ}$
$\mathrm{CL}=398.2 \mathrm{~m}$
$\mathrm{Ts}=266.54 \mathrm{~m}$
station of place required $=$ station of ST $-61 / 100 * 60=2600-266.54+60 * 2+398.2-0.61 * 60=28+15.06$
required length $=2 \mathrm{Lt}+2 \mathrm{Ls}+\mathrm{CL}=698.2 \mathrm{~m}$
Q23/ An equal tangent vertical curve is to be constructed between grades -4% initial and -1% final. The station of VPI is $12+800$ and the elevation of VPI is 300 m . There is a street crossing the road at station of $12+710$ and the elevation must be 304 m at that point. Find:

1- Elevation of VPC and VPT
2- Stopping sight distance

3- Safe speed on the curve

Solution:

$a=(-1-(-4)) / 200 L=3 / 200 L \quad A=3$
$\mathrm{b}=-0.04$
$\mathrm{c}=300+0.5 * \mathrm{~L} * 0.04=300+0.02 \mathrm{~L}$
$y=a^{*} X^{2}+b^{*} X+c$
at station $12+710$, the elevation is 304 m
$\mathrm{X}=\mathrm{L} / 2-(12800-12710)=\mathrm{L} / 2-90$
$304=3 / 200 \mathrm{~L} *(\mathrm{~L} / 2-90)^{2}-0.04(\mathrm{~L} / 2-90)+(300+0.02 \mathrm{~L})$
solving the equation:
$\mathrm{L} 1=382 \mathrm{~m}, \mathrm{~L} 2=85$, so $\mathrm{L}=382 \mathrm{~m}$ because the curve is longer than 90 m
1 - elevation of VPC $=$ elev. of VPI $+\mathrm{L} / 2 * \mathrm{G} 1=\underline{307.64 m}$
elevation of VPT $=$ elev. of VPI $-\mathrm{L} / 2 * \mathrm{G} 2=\underline{298.1 \mathrm{~m}}$
2- assume $\mathrm{S}>\mathrm{L} \quad$ so $\mathrm{L}=2 \mathrm{~S}-(120+3.5 * \mathrm{~S}) / \mathrm{A} \quad \mathrm{S}=\mathrm{SSD}=506.4 \mathrm{~m}$
$3-\mathrm{SSD}=0.278 * \mathrm{~V} * \mathrm{t}+0.039 * \mathrm{~V}^{2} / \mathrm{a}\left(\mathrm{a}=3.4 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mathrm{t}=2.5$ seconds)
$\mathrm{V} 1=182 \mathrm{kph}$ and $\mathrm{V} 2=-243 \mathrm{kph}$
so the safe speed is 182 kph

Q24/ For intermediate semi-trailer WB-12, find the extra widening on a horizontal curve. Then find the distance to be cleared from the centerline of the highway to provide safe stopping sight distance, using the following data: 6- lane highway, $\mathrm{V}=110 \mathrm{kph}, \mathrm{R}=360 \mathrm{~m}$, Lane width $=3.7 \mathrm{~m}$. lateral clearance $=0.9 \mathrm{~m}$ solution:
6- lane highway, $\mathrm{V}=110 \mathrm{kph}, \mathrm{R}=360 \mathrm{~m}$, Lane width $=3.7 \mathrm{~m}$. lateral clearance $=0.9 \mathrm{~m}$
for $\mathrm{WB}-12$ from table $\mathrm{A}=0.9 \mathrm{~m}, \mathrm{WB} 1=\mathrm{L}=3.8 \mathrm{~m}, \mathrm{WB} 2=8.4 \mathrm{~m}, \mathrm{u}=2.4 \mathrm{~m}$
$\mathrm{N}=2, \mathrm{C}=0.9 \mathrm{~m} \quad \mathrm{~W}_{\mathrm{N}}=2 * 3.7=7.4 \mathrm{~m}$
$\mathrm{Z}=0.1 * \mathrm{~V} / \mathrm{R}^{0.5}=0.58 \mathrm{~m}$
$\mathrm{F}_{\mathrm{A}}=\left(\mathrm{R}^{2}+\mathrm{A}(2 \mathrm{~L}+\mathrm{A})\right)^{0.5}-\mathrm{R}=0.011$
$\mathrm{U}=\mathrm{u}+\mathrm{R}-\left(\mathrm{R}^{2}-\sum \mathrm{Li}^{2}\right)^{0.5}$ here $\sum \mathrm{Li}^{2}=\mathrm{WB} 1^{2}+\mathrm{WB} 2^{2} \quad \mathrm{U}=2.52 \mathrm{~m}$
$\mathrm{Wc}=\mathrm{N}(\mathrm{U}+\mathrm{C})+(\mathrm{N}-1) \mathrm{F}_{\mathrm{A}}+\mathrm{Z}=7.43$
$\mathrm{W}=\mathrm{Wc}-\mathrm{W}_{\mathrm{N}}=7.43-7.4=0.03 \mathrm{~m}$ for 2 lanes $<0.6 \mathrm{~m}$ so use 0.6 m
so total widening for 6 lanes $=0.6 * 3=\underline{1.8 \mathrm{~m}}$

* Distance to be cleared $=\mathrm{M}=\mathrm{R}(1-\cos (28.65 * \mathrm{~S} / \mathrm{R})) \quad \mathrm{S}=0.278 * \mathrm{~V} * \mathrm{t}+0.039 * \mathrm{~V}^{2} / \mathrm{a}\left(\mathrm{a}=3.4 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mathrm{t}=2.5$ seconds)
$\mathrm{S}=215.2 \mathrm{~m}$ so the distance $\mathrm{M}=16 \mathrm{~m}$

Q25/ Calculate the intersection sight distance along the major and minor roads, If an intersection is controlled by Stop sign. There is a grade of 3.5% on the minor road (downward). major road speed is 85 kph and minor road speed is 65 kph

Lanes:	$\underline{\text { Major Road }}$	
Left:	2 lanes	
Right:	1 laner Road	
Cross:	2 lanes	1 lane
		1 lanes

Solution:

Case B
Case B1 tg from table $=7.5 \mathrm{~s}$
correction for tg for multilane: $3 * 0.5+\operatorname{tg}=9 \mathrm{~s}$
no correction for downgrade slope
$\mathrm{a}=4.4 \mathrm{~m}$
$\mathrm{b}=0.278 * \mathrm{~V} * \operatorname{tg}=0.278 * 85 * 9=\underline{212.67 \mathrm{~m}}$
Case B2:
$\mathrm{a}=4.4 \mathrm{~m}$
$\mathrm{b}=0.278 * \mathrm{~V} *(\operatorname{tg}-1) \quad$ no correction for multilane and downgrade
$\mathrm{b}=0.278 * 85 *(7.5-1)=\underline{153.60 \mathrm{~m}}$
case B3:
no check required as the total number of lanes to be crossed is not greater than 6
Q26/ On a 4 lane highway with 3.6 m lane width. It is proposed to design a circular curve for 80 Kph speed. The station of TS is $5+530$ and the station of ST is $5+880$. If the angle c_{C} is 33° and $\mathrm{R}>300 \mathrm{~m}$. Determine:
1- The radius of the circular curve
2- The intersection angle between the two tangents
3- The station of a place at the exit to the curve, where the cross-slope is at 10% of maximum superelevation.
4- The station of end of transition in the cross-slope at the exit of the curve.
Hint: $b w=0.75$, design super elevation $=0.02$ and Maximum relative gradient is 0.005
Solution:
given $\mathrm{R}>300 \mathrm{~m}$ we can assign the equation of LS for the problem
by solving all the equations we realise that $\mathrm{LS}=\operatorname{SQRT}\left(24^{*} 0.2 * \mathrm{R}\right)$ has the optimum value of LS and can be used
st ST- st TS $=350=\mathrm{CL}+2 * \mathrm{Ls}=\mathrm{pi} * 33 / 180^{*} \mathrm{R}+2 *(24 * 0.2 * \mathrm{R})^{0.5}$
1 - by solution we get $R=447 \mathrm{~m}$

$$
\mathrm{s}=\mathrm{LS} / 24 \mathrm{R}
$$

$2-\quad={ }_{c}+2^{*} \quad \mathrm{~s}=38.938$
3- station $=$ station ST $-0.1 *$ Ls $=5+875.368$
$4-$ station $=$ station $\mathrm{ST}+\mathrm{LT}$ where $\mathrm{Lt}=\mathrm{Ls}$ as we can assume $\mathrm{eNc}=2 \%=5+926.321$

Q27/ A 4 lane highway with 3.7 m lane width is designed for 90 kph speed. Two tangents intersect at the station of $1+600$ on a certain place of the highway and The angle of intersection is 35°. It is proposed to design a circular curve without transition curves at the beginning and the end of the circular curve. If the elevation of station $1+580$ is 410.2 m at the centerline. Determine:
1- The length of the curve with full superelevation only.
2- The elevation of inner and outer side of the road at station $1+580$
3- The station of a place at the entrance to the curve, where the cross-slope is at 67% of the maximum superelevation.

Solution:

$$
\begin{aligned}
& R=436.846 \mathrm{~m} \\
& L_{r}=\frac{\text { Wnied }}{\Delta} \text { bw / rombhd } \\
& =\frac{3.7 \times 2 \times 0.75 \times 1.6}{0.47} \quad \begin{array}{l}
\Delta=0.47 \\
\hat{f}=0.13
\end{array} \\
& \mathrm{Lr}=18.894 \mathrm{~m}
\end{aligned}
$$

Q28/Calculate the intersection sight distance along the major and minor roads, if an intersection is controlled by FLASHING RED. There is a grade of 3.5% on the minor road (downward). Major road speed is 85 kph and minor road speed is 65 kph

Lanes:
Left:

Right:
1 lane
2 lanes

1 lane
1 lanes

Solution:

Flashing RED is like Case B
Case B1 tg from table $=7.5 \mathrm{~s}$
correction for tg for multilane: $3 * 0.5+\operatorname{tg}=9 \mathrm{~s}$ no correction for downgrade slope
$\mathrm{a}=4.4 \mathrm{~m}$
$\mathrm{b}=0.278 * \mathrm{~V} * \operatorname{tg}=0.278 * 85 * 9=\underline{212.67 \mathrm{~m}}$
Case B2:
$\mathrm{a}=4.4 \mathrm{~m}$
$\mathrm{b}=0.278 * \mathrm{~V}^{*}(\operatorname{tg}-1) \quad$ no correction for multilane and downgrade
$\mathrm{b}=0.278 * 85 *(7.5-1)=\underline{153.60 \mathrm{~m}}$
case B3:
no check required as the total number of lanes to be crossed is not greater than 6

Dasifu which	Time gep (s) at dasign speed of malor rade (L.
Passerger car	7.5
Singlo-minit tuck	9.5
Conbination Ifuck	11.5

