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Chapter Six 

CAVITY THEORY 

6.1 Introduction: 

In order to measure the absorbed dose in a medium, it is necessary to introduce a 

radiation sensitive device (dosimeter) into the medium. Generally, the sensitive 

medium of the dosimeter will not be of the same material as the medium in which it is 

embedded. Cavity theory relates the absorbed dose in the dosimeter’s sensitive 

medium (cavity) to the absorbed dose in the surrounding medium containing the 

cavity. Cavity sizes are referred to as small, intermediate or large in comparison with 

the ranges of secondary charged particles produced by photons in the cavity medium. 

If, for example, the range of charged particles (electrons) is much larger than the 

cavity dimensions, the cavity is regarded as small. 

 

Consider a point P within a medium m within a beam of photon radiation (right).The 

absorbed dose at point P can be calculated by: 
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In order to measure the absorbed dose at point P in the medium, it is necessary to 

introduce a radiation sensitive device (dosimeter) into the medium. The sensitive 

medium of the dosimeter is frequently called a cavity. Generally, the sensitive 

medium of the cavity will not be of the same material as the medium in which it is 

embedded. 

 
 

The measured absorbed dose Dcav within the entire cavity can also be calculated by: 
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If the material of the cavity differs in atomic number and density from that of the 

medium, the measured absorbed dose to the cavity will be different from the absorbed 

dose to the medium at point P. 

)(PDD medcav                                                             6.3 

 

Various cavity theories for photon beams have been developed, which depend on the 

size of the cavity; for example, the Bragg– Gray and Spencer–Attix theories for small 

cavities and the Burlin theory for cavities of intermediate sizes. 

 

6.2. Bragg–Gray cavity theory 

     The Bragg–Gray cavity theory was the first cavity theory developed to provide a 

relation between the absorbed dose in a dosimeter and the absorbed dose in the 

medium containing the dosimeter. 
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The conditions for application of the Bragg–Gray cavity theory are: 

(a) The cavity must be small when compared with the range of charged particles 

incident on it, so that its presence does not perturb the fluence of charged particles in 

the medium; 

(b) The absorbed dose in the cavity is deposited solely by charged particles crossing it 

(i.e. photon interactions in the cavity are assumed negligible and thus ignored). 

 

The result of condition (a) is that the electron fluences are the same and equal to the 

equilibrium fluence established in the surrounding medium. This condition can only 

be valid in regions of CPE or TCPE. In addition, the presence of a cavity always 

causes some degree of fluence perturbation that requires the introduction of a fluence 

perturbation correction factor. 

Condition (b) implies that all electrons depositing the dose inside the cavity are 

produced outside the cavity and completely cross the cavity. No secondary electrons 

are therefore produced inside the cavity and no electrons stop within the cavity. 

If one assumes that the energy of the crossers does not change within a small air 

cavity volume, the dose in the cavity is completely due to the crossers as: 
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Where 

Ek is the kinetic energy of crossers; 

Emax is their highest energy equal to the initial energy of the secondary electrons 

produced by photons; 

)(EE  is the energy spectrum of all crossers. 

Using the shorthand notation we have in the cavity: 
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In the medium without the cavity: 

 

med

med

S
PD 








=


)(                                                                                 6.6 

 

Under these two conditions, according to the Bragg–Gray cavity theory, the dose to 

the medium Dmed is related to the dose in the cavity Dcav as follows, Since   is 

identical (not disturbed), it follows: 
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Where 
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  is the ratio of the average unrestricted mass collision stopping powers of 

the medium and the cavity. The use of unrestricted stopping powers rules out the 

production of secondary charged particles (or delta electrons) in the cavity and the 

medium. Although the cavity size is not explicitly taken into account in the Bragg– 

Gray cavity theory, the fulfilment of the two Bragg–Gray conditions will depend on 

the cavity size, which is based on the range of the electrons in the cavity medium, the 

cavity medium and the electron energy. A cavity that qualifies as a Bragg–Gray cavity 

for high energy photon beams, for example, may not behave as a Bragg–Gray cavity 

in a medium energy or low energy X-ray beam. 

 

6.3. Spencer–Attix cavity theory 

The Bragg–Gray cavity theory does not take into account the creation of secondary 

(delta) electrons generated as a result of hard collisions in the slowing down of the 

primary electrons in the sensitive volume of the dosimeter. The Spencer–Attix cavity 

theory is a more general formulation that accounts for the creation of these electrons 

that have sufficient energy to produce further ionization on their own account. The 

Spencer–Attix theory operates under the two Bragg–Gray conditions; however, these 
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conditions now even apply to the secondary particle fluence in addition to the primary 

particle fluence.  

 

 

Some of these electrons released in the gas cavity may have sufficient energy to 

escape from the cavity carrying some of their energy with them out of the volume. 

 

 

 

This reduces the energy absorbed in the cavity and requires a modification to the 

stopping power of the crossers in the gas. 

➢ This is accomplished in the Spencer-Attix cavity theory by explicitly 

considering the 𝛿 electrons. 

➢ Spencer-Attix cavity theory operates under the same two conditions as used in 

the Bragg-Gray cavity theory. 

➢ However, these conditions are now applied also to the fluence of the 𝛿 

electrons. 

 

The concept of the Spencer-Attix cavity theory: 

The secondary electron fluence in the Spencer–Attix theory is divided into two 

components based on a user defined energy threshold ∆. Secondary electrons with 

kinetic energies EK less than ∆ are considered slow electrons that deposit their energy 
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locally; secondary electrons with energies larger than or equal to ∆ are considered fast 

(slowing down) electrons and are part of the electron spectrum.  

 

 

 

All secondary electrons with energies Ek > ∆ are treated as crossers. It means that 

such 𝛿 electrons with Ek > ∆  must be included in the entire electron spectrum. 
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Where 

)( kkE E  is now the energy spectrum of all electrons including the 𝛿 electrons with 

Ek> ∆ . 

However, this equation is not correct because the energy of the 𝛿 electrons is now 

taken into account twice: 

• as part of the spectrum of electrons 

• in the unrestricted stopping power as the energy lost ranging 

up to the maximum energy lost (including that larger than ∆) 

 

Solution to this situation: 

The calculation must refer to the restricted mass stopping power: 
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Secondary electrons withkinetic energies KE < ∆ are considered slow electrons. They 

deposit their energy "locally" 

➢ "Locally" means that they can be treated as so-called "stoppers". D2,cav is 

sometimes called the "track-end term". 

➢ Energy deposition of "stoppers" cannot be described by stopping power. 

➢ Their energy lost is simply their (local) kinetic energy. 

 

                       D2,cav= energy of stoppers per mass                                        6.12 

 
 
 
For practical calculations, the track-end term TE was approximated by A. Nahum as: 
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Finally we have: 
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In the Spencer-Attix cavity theory, the stopping power ratio is therefore obtained by: 
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6.4. Considerations in the application of cavity theory to ionization chamber 

calibration and dosimetry protocols 

A dosimeter can be defined generally as any device that is capable of providing a 

reading that is a measure of the average absorbed dose deposited in its (the 

dosimeter’s) sensitive volume by ionizing radiation. A dosimeter can generally be 

considered as consisting of a sensitive volume filled with a given medium, surrounded 

by a wall of another medium. 

In the context of cavity theories, the sensitive volume of the dosimeter can be 

identified as the ‘cavity’, which may contain a gaseous, liquid or solid medium. Gas is 

often used as the sensitive medium, since it allows a relatively simple electrical means 

for collection of charges released in the sensitive medium by radiation. 

The medium surrounding the cavity of an ionization chamber depends on the situation 

in which the device is used. In an older approach, the wall (often supplemented with a 

build up cap) serves as the buildup medium and the Bragg–Gray theory provides a 

relation between the dose in the gas and the dose in the wall. This is referred to as a 

thick walled ionization chamber and forms the basis of cavity chamber based air 

kerma in-air standards and of the C  based dosimetry protocols of the 1970s. If, 

however, the chamber is used in a phantom without a buildup material, since typical 

wall thicknesses are much thinner than the range of the secondary electrons, the 

proportion of the cavity dose due to electrons generated in the phantom greatly 

exceeds the dose contribution from the wall, and hence the phantom medium serves as 

the medium and the wall is treated as a perturbation to this concept. 

In the case of a thick walled ionization chamber in a high energy photon beam, the 

wall thickness must be greater than the range of secondary electrons in the wall 

material to ensure that the electrons that cross the cavity arise in the wall and not in 

the medium. The Bragg–Gray cavity equation then relates the dose in the cavity to the 

dose in the wall of the chamber. The dose in the medium is related to the dose in the 
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wall by means of a ratio of the mass– energy absorption coefficients of the medium 

and the wall  ( )
wallmeden ,

/    by assuming that: 

(a) The absorbed dose is the same as the collision kerma; 

(b) The photon fluence is not perturbed by the presence of the chamber.  

       The dose to the cavity gas is related to the ionization produced in the cavity as 

follows: 
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where Q is the charge (of either sign) produced in the cavity and m is the mass of the 

gas in the cavity, Wgas is the average energy expended in air per ion pair formed. 

Spencer–Attix cavity theory can be used to calculate the dose in the medium as: 
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where Swall,gas is the ratio of restricted mass collision stopping powers for a cavity wall 

and gas with threshold  . In practice, there are additional correction factors associated 

with Eq. (6.16) to satisfy assumptions (a) and (b) made above. 

 A similar equation to Eq. (6.16) is used for air kerma in-air calibrations; however, 

here the quantity of interest is not the dose to the medium, but the air kerma in air. In 

this case, a substantial wall correction is introduced to ensure the presence of complete 

CPE in the wall to satisfy assumption (a) above. 

In the case of a thin walled ionization chamber in a high energy photon or electron 

beam, the wall, cavity and central electrode are treated as a perturbation to the 
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medium fluence, and the equation now involves the ratio of restricted collision 

stopping powers of the medium to that of the gas S med,gas as: 
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Where: 

 

pfl is the electron fluence perturbation correction factor; 

pdis is the correction factor for displacement of the effective measurement point; 

pwall is the wall correction factor; 

pcel is the correction factor for the central electrode. 

 

Values for these multiplicative correction factors are summarized for photon and 

electron beams in typical dosimetry protocols. 

 

6.5. Large cavities in photon beams 

A large cavity is a cavity with dimensions such that the dose contribution made by 

electrons inside the cavity originating from photon interactions outside the cavity can 

be ignored when compared with the contribution of electrons created by photon 

interactions within the cavity. For a large cavity the ratio of dose cavity to medium is 

calculated as the ratio of the collision kerma in the cavity to the medium and is 

therefore equal to the ratio of the average mass–energy absorption coefficients of the 

cavity gas to that of the medium ( )
medgasen ,

/  : 
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where the mass–energy absorption coefficients have been averaged over the photon 

fluence spectra in the cavity gas (numerator) and in the medium (denominator). 
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6.6. Burlin cavity theory for photon beams 

Burlin extended the Bragg–Gray and Spencer–Attix cavity theories to cavities of 

intermediate dimensions by introducing, on a purely phenomenological basis, a large 

cavity limit to the Spencer–Attix equation using a weighting technique. He provided a 

formalism to calculate the value of the weighting parameter. 

 

      The Burlin cavity theory can be written in its simplest form as follows: 

( )
medgasenmedgas

med

gas
dds

D

D

,, /)1( −+=                                          6.20 

Where 

d  is a parameter related to cavity size, approaching unity for small cavities and zero 

for large cavities; 

S gas,med is the mean ratio of the restricted mass stopping powers of the cavity and the 

medium; 

Dgas is the absorbed dose in the cavity; 

( )
medgasen ,

/   is the mean ratio of the mass–energy absorption coefficients for the 

cavity and the medium. 

 

The Burlin theory effectively requires that: 

● The surrounding medium and the cavity medium be homogeneous; 

● A homogeneous photon field exist everywhere throughout the medium and the 

cavity; 

● CPE exist at all points in the medium and the cavity that are further than the 

maximum electron range from the cavity boundary; 

● The equilibrium spectra of secondary electrons generated in the medium and the 

cavity be the same. 

Burlin provided a method for estimating the weighting parameter d in his theory. It is 

expressed as the average value of the electron fluence reduction in the medium. 

Consistent with experiments with   sources he proposed that the electron fluence in 
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the medium ee
med
−   decays, on average, exponentially. The value of the weighting 

parameter d in conjunction with the stopping power ratio can be calculated as: 
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where    is an effective electron fluence attenuation coefficient that quantifies 

the reduction in particle fluence from its initial medium fluence value through a cavity 

of average length L. For convex cavities and isotropic electron fluence distributions, L 

can be calculated as 4V/S, where V is the cavity volume and S its surface area. Burlin 

described the buildup of the electron fluence ee
med
−  inside the cavity using a similar, 

complementary equation: 
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Burlin’s theory is consistent with the fundamental constraint of cavity theory: that the 

weighting factors of both terms add up to unity (i.e. d and 1 – d). It had relative 

success in calculating ratios of absorbed dose for some types of intermediate cavities. 

More generally, however, Monte Carlo calculations show that, when studying ratios of 

directly calculated absorbed doses in the cavity to absorbed dose in the medium as a 

function of cavity size, the weighting method is too simplistic and additional terms are 

necessary to calculate dose ratios for intermediate cavity sizes. For these and other 

reasons, the Burlin cavity theory is no longer used in practice. 

 

 


