Ministry of Higher Education and Scientific research

University of Salahaddin- Erbil

College of Science

Department of Earth Sciences and Petroleum

Course Book

Subject: Brittle Structural geology (Theory) – Third Year Lecturer's name: Dr. Hassan Ghazi KakAmeen Academic Year: 2022/2023

بەر يو دېمر ايەتىدانيايى جۆرى دىتمانەبەخشىن Directorate of Quality Assurance and Accreditation

1. Course name	Brittle Structural Geology(Theory)
2. Lecturer in charge	Dr. Hasan Ghazi KakAmeen
3. Department/ College	Earth sciences and Petroleum/Science
4. Contact	e-mail: <u>HassanKakAmeen@yahoo.com</u> Tel: (07504821465)
5. Time (in hours) per week	Theory: 2 hrs. Practical: 2 hrs-3group
6. Office hours	22 hours per week
7. Course code	
8. Teacher's academic profile	I employed as assistant research in geology department since 1995.Iobtained M.Sc. and PhD in structural geology from geology department-college of science-university of salahaddin in 2004 and 2019. I contributed in teaching several practical geological subjects: igneous and metamorphic rocks, Stratigraphy, Biostratigraphy, Paleoecology, Remote sensing, Field work, Crystallography, Paleontology and sedimentary rock. Also, I contributed about ten times in summer field application course, as well as, I supervised several research project of under graduated students. But, now I teaching Ductile Structural Geology and Brittle Structural Geology for third year-geology department-college of science.
9. Keywords	Structural Geology, Ductile Structural Geology, Brittle Structural Geology, Folds, Faults ,Fractures
5. Reywords	Structural Geology, Folds, Faults ,Fractures

10. Course overview:

Brittle Structural Geology provides an introduction to the theory and principles of rock deformation and classifications of common geologic structures. Two main crustal deformation will be introduced first one structures formed due to ductile deformation, while the second part concerning structures formed due to brittle deformation within the crust of the earths. Conceptual, theoretical, and historical aspects of structural geology are covered in the lecture, whereas the laboratory focuses on methods of analysis and problem solving. Topics are discussed in the contexts of case studies and plate tectonics. This course is intended to be the undergraduate student's first course in brittle structural geology.

Directorate of Quality Assurance and Accreditation

بەر يو ەبەر ايەتىدلنيايىجۆر يو متمانەبەخشىن

11. Course objective:

This course is concerned with the deformation of rock in the Earth's lithosphere, as viewed from the outcrop scale, and the mountain range scale. A deformational feature observed on one scale typically reflects processes occurring on other scales. Brittle Structural Geology has significant role in deciphering many geological problems for example; we can't understand continental deformation without understanding mountains, we can't understand mountains without understanding folding and faulting, and we can't understand folding and faulting without understanding ductile and brittle deformation mechanisms at the atomic scale.

12. Student's obligation

In this course the students participate in the lectures through answering questions and asking any question about subjects that taken at each lecture/lesson. Furthermore, they have homework about lectures. All of the students are approximately attend to the lectures. Whereas, all of the students are obliged to do all tests throughout the academic year.

13. Forms of teaching

As structural geology required imagination and visualization to understand their subjects. Therefore, different forms of teaching are used in the lectures to reach the objectives of the course, such as:

a- Power point slides and occasionally white board at each lecture, for

explanation, as well as, block diagrams and figures representing

field/natural picture of the structures.

b- Debate part at each lecture, allowing students to discuss any part of given lecture.

c- Homework presents in the lecture to strengthen abilities of students.

d-Three dimensional models used as explanatory devices.

14. Assessment scheme

Two monthly examinations achieved for Brittle structural geology (Theory). Besides, quiz tests in the begging of the lectures.

The final score of Brittle Structural Geology-Theory equals 15% which represents quiz and monthly tests. Thus, the total score of structural Geology-Theory is 65%, throughout academic year.

15. Student learning outcome:

Since structural geology represents as principal science among geological sciences, in addition to petrology and paleontology. Therefore, taking principles of structural geology will help graduated students to be qualified to work in different specialties such as oil exploration, hydrology, hydrogeology, ore deposits, geophysics, engineering geology, geomorphology, stratigraphy.......etc.

Therefore, graduated students could benefit from structural geology information to tackle many problems that face them especially during their field work for various aspects. Moreover, the essential role of structural geology in oil and gas exploration, investigation of ground water, construction of huge and infrastructural projects like dams, main roads, railways, tunnels.....etc.

In the last decade several oil companies come to Kurdistan Region for oil exploration and production, in Iraqi Kurdistan Zagros Fold and Thrust Belt. Many graduated geologists are appointed in these companies and others are work with the geological survey. Some of the graduated students employed in water resources companies in public and private sectors.

16. Course Reading List and References:

Billings, M.P., 1972. Structural geology. 3rd ed. Prentice-Hall, USA.606p.

Bles, J.L. and Feuga, B., 1986. The fracture of rocks. North Oxford Academic Publishers Ltd, 131p

Davis G. H. and Reynolds S. J., 1996. Structural Geology of rock and Regions, second edition, Joun

Wiley & Sons, Inc. 790p.

DeSitter, L. U., 1964. Structural geology, 2nd ed., McGraw Hill, New York, 551p.

Fossen, H. (2016) Structural Geology. Cambridge University Press, Cambridge. 463p.

Groshong, R.H. (2006) 3-D Structural Geology. Berlin, Springer-Verlag.324pp.

Hills, E. S., 1962, Outlines of structural geology, 4th ed., Methuen and Co. Ltd., London, 182P.

Hobbs, B. E., Means, W. D. and Williams, P.F., 1976. An outline of structural geology. John Wiley

and sons, USA, 571p.

بەر يو دېس ايەتىيى نانيايى جۆرى دەمانە بە ئەخشىن _____ Directorate of Quality Assurance and Accreditation

Marshak, S. and Mitra, G., 1988. Basic methods of structural geology, Prentice- Hall, Inc., New Jersey, 446P.
Ragan, D.M.,2012. Structural Geology: An Introduction to geometrical Techniques, John Wiley
&Sons, New York,393p.
Ramsay, J. G., 1967. Folding and fracturing of rocks. McGraw-Hill book Co., New York, 568p.
Ramsay, J. G and Huber, M. I., 1983. Basic methods of structural geology. Vol (1), Academic press,
London.
Ramsay, J. G and Huber, M. I., 1987. The techniques of modern structural geology. V.2, Folds and Fractures. Academic press, London, 700p.
Ramsay, J. G. and Lisle, R. J., 2000. The technique of modern structural geology. V.3, Applications of continuum mechanics in structural geology. Academic press, USA, 1061p.
Rowland, S. M. and Duebendorfer, E. M., 2007, Structural Analysis and Synthesis. Oxford: Blackwell Science. Schultz, R.A., 2019, Geologic Fracture Mechanics. Cambridge University Press, Cambridge. 527p.
Suppe, J., 2005. Principle of Structural geology. Prentice-Hall, Inc, New Jersey, 537p.
Twiss, R. J., and Moores, E.M. (2007) Structural geology. W.H. Freeman, USA, 717p.
Van der Pluijm, B. A., and Marshak, S. (2004) Earth structure: An introduction to structural geology
and tectonics, WCB/ Mc Graw-Hill, USA. P. 468-479.
Wilson., (1982) Introduction to Small-scale Geological Structures. George Allen & Unwin
(Publishers) Ltd,112p.
Woodward, N.B., Boyer, S.E., Suppe, J. (1989) Balanced Geological cross- sections: An Essential Technique in Geological Research and Exploration.

A Directorate of Quality Assurance and Accreditation

بەر يو ەبەر ايەتىدانىيايىجۆر يو متمانەبەخشىن

Short Course in Geology, Washington, DC. American Geophysical Union. v. 6. 132p ,Blackwell Publishing Ltd.30IP.

- Theoretical lectures
- Journal of structural geology and geology
- Internet sites relevant to structural geology

17. The Topics of the Ductile Structural Geology-Theory:

Lectures 1&2: Brittle deformation structures: Deforming Rocks in	
the Laboratory, Mohr circle and diagram, Mechanics of fracturing,	
extension fractures, shear fractures, Modes of Crack-Surface	
Displacement, Exploring Tensile Crack Development, Tensile	
fracture (cracks), A fracture criterion for tension fractures, Shear	
fractures, Shear-Fracture Criteria and Failure	
Envelopes.	
Lectures 3&4: Joints: joint set, joint system, systematic joint,	
nonsystematic joint, dihedral angle, orthogonal system, conjugate	
system, Joint trace, Joint spacing, Joint density, Importance of	
joints, Joint classification, classification of joints with respect to	
the bedding, Geometrical Classification, ab joints, ac joints, bc	
joints, hko system, hol system, synthetic set and antithetic set, okl	
system, hkl system.	
Differentiation/Distinction between extension and shear joints,	
Plumose structure.	
Lecture 5: Relative timing of joint formation (Joint sequence)	
رايهتىدننيايى جورى ومتمان Bainso Vain fill types Astilarous and inso Tenaionosash or (gash in a straight of the	بەريومبە

, ,	
fractures), Sigmoidal tension gashes, Stylolite, Bedding-parallel	
stylolite, Tectonic stylolite, Fissures.	
Lectures 6&7: Faults, Fault Geometry, Nature of movement along	
the faults, Translational movement, Rotational movement Relative	
movement (Net Slip), Shear sense, Types of the net slip, Dip-slip,	
Strike-slip, Oblique slip, cissors(rotational) fault, Fault separation,	
Classification of faults, Geometrical Classification, classification	
based on net slip, classification based on attitude of fault relative	
to attitude of adjacent beds or fold axis, classification based on	
fault pattern, classification based on dip angle of fault,	
classification based on Pitch(rake) angle, Slickensides, Genetic	
classification of the faults, Reverse/thrust faults, Normal faults,	
strike –slip faults. Relation of faulting to stress (Anderson's theory	
of faulting). Recognizing faults. Features Intrinsic to Faults. Criteria	
for determining the sense of slip. Effects of faulting on geologic or	
stratigraphic units. Repetition of strata or omission of strata, deep-	
seated faults inferred by seismic data. Drag folds. Rollover	
anticlines Physiographic Criteria for Faulting, Scarps,	
Lecture 8: Normal faults (extensional regime). Normal fault	
settings Displacement on Normal Faults STRUCTURAL	
ASSOCIATIONS OF NORMAL FALLES, KINEMATIC MODELS OF	
NORMAL FALLET SYSTEMS DETERMINATION OF EXTENSION	
ASSOCIATED WITH NORMAL FALLITS Estimates of Extension	
Based on Fault Geometry	
Lectures 98:10: Thrust faults (contractional regime) and thrust	
faults system definitions. Thrust fault settings. Thrusts at	
Compressive Plate Boundaries Thrust Faults in Secondary	
Sottings Structures associated with thrust faults. Geometry of	
fold thrust holt. Movement direction of thrust faults, GEOMETRY	
AND VINEMATICS OF THRUST SYSTEMS IN THE HINTERIAND Main	
tupos of thrust related structures. Imprisate fans, Compressional	
duplox	
aupiex. Losturo 11. Striko - alia fault faulta dofinitiona - Toar faulta	
Transprossion Transformic Coometry displacement and	
Palated structures: Palaesing hand, Pastraining hand, Pull enert	
keiated structures; keieasing bend, kestraining bend, Pull-apart	
basin, Strike-slip Duplexes, Flower structures, Subsidiary	
structures associated with strike-slip snear zone.	
Lecture 12: Tectonic Inversion	
Lecture 13: Growth structures	
Lecture 14 : Foreland basin	
18. Practical Topics (If there is any)	

Directorate of Quality Assurance and Accreditation

بەر يو ەبەر ايەتىدانىيايىجۆر يو متمانەبەخشىن

Week 1: Stereographic projection.	Dr.
Basic concepts; spherical projection, lower	Hasan
hemisphere; schmidt net, great circle, small circle,	Ghazi
primitive circle; technique of plotting; plotting line,	Mr
plane and its pole; visualization through lower	Soran
hemisphere.	Soran
Week 2: Stereographic projection.	Hasan
Finding angle between two lines and attitude of	
the plane, which containing two lines itself.	
Week 3: Stereographic Projection-Apparent dip	
and True dip. Finding apparent dip. construction	
and finding true dip and strike.	
Week 4: Stereographic projection intersection	
between planes. Finding the attitude of	
intersection line between two plane, measuring	
pitch (rake) angle.	
Week 5: Stereographic projection-attitude of axial	
surface. Finding folding angle; interlimb angle;	
fold orientations; attitude of hinge line, attitude of	
axial surface.	
Week 6: Stereographic Projection-Pi and Beta	
diagrams. Perfect cylindrical fold, cylindrical fold,	
sub-cylindrical fold, non-cylindrical fold, tightness	
of folds (fleuty, 1964), calculating the mean	
orientation of fold axes.	
Week 7: Stereographic projection Extension and	
silear ifactures classification. Geometrical	
Turner 8 Maiss (1962) and Price (1968)	
systematic joint extension and shear joints joint	
systematic joint, extension and shear joints, joint	
Week 8: Stereographic projection-shear fracture	
analyses Geometrical classification of shear	
ioints: bisector of the acute angle: bisector of the	
obtuse angle: intersection line of two set of ioints:	
principal stress directions.	
Week 9: Stereographic projection-faults and	
stresses. Normal and reverse fault: lineation.	
movement plane. slip direction. determining	
principal stress directions.	
Week 10: Balancing cross section-local	
balancing. Rules of balancing, pin lines, restored	
cross section, line length balancing, area	
balancing, criteria of balanced cross section.	
WeeK 11, 12, 13 &14: Application of the soft	
Directorate of Ware's which are relevant to structural geology.	به نی در مرابقات داندا
بورى في معالية بحسين تعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية ا	بىريوىبى بايىسىيى

19 Examinations:				
Salahaddin University- Erbil	Final Examination 2022			
College of Science	Brittle Structural Geology: 3rd year			
Denouter of Fouth Sciences and Detuclour	Times 2 hours			
Department of Earth Sciences and Petroleum	11me: 2 hours			
Note: Support your answer by diagram, v	where it's necessary			
Q.7 Respond to the following statements with true or false, and correct the underlined word(s) if they are wrong. (14 Marks)				
1- In triaxial stress the state of stress equals <u>o</u>	$\sigma 1 = -\sigma 3$ and $\sigma 2 = 0$.			
2- A <u>antithetic fault</u> is a relatively uplifted block bounded by two conjugate normal faults that dip away from the uplifted block on both sides.				
3- (T) and (+) shapes characterize conjugate	sets of hybrid and shear fractures.			
4- A kinematic model of any fault system is a description of the <u>deposition</u> that has occurred on the faults in the system				
5- <u>Slickenfibers</u> may result from scratching a	nd from the development of irregularities in the			
fault surface itself.				
6- Extension joints develop as $(\sigma 2 - \sigma 3) > 8T$. 7 Toor faults is a traditional torm for strike	slip faults that again in a thrust shoat			
7- Tear faults is a traditional term for strike-	sup faults that occur in a <u>thrust sneet</u> .			
$\mathbf{Q.2}$) Complete these sentences with the com	rect structural word(s). (14 Marks)			
1 is the angle between the σ 1 and the normal to the fracture plane.				
2is a combination of strike-slip and compressional deformation.				
4- Stylolite are surfaces of dissolution associ	ated withstrains.			
5- Jointis the total trace lengt	h of the all joints in the unit area.			
6 are used as evidence for recognizing the stages of joint development.				
7- If the shear stress acting on the fracture continues to exceed the to sliding the fracture grows				
$\mathbf{Q.3}$) What are differences between: (24 Ma	rks)			
1- tension fracture and extension fracture.				
2- second model and third model of slip on listric normal faults.				
5- plumose structures and slickensides.				
${f Q.4})$ Talk about: (24 Marks)				
1- Thrust duplex. 2- Gash fractures. 3- Fault	-propagation folds.			

20. Extra notes:

► A major problem appeared during education processes is absence of modern scientific equipment and laboratories for research projects.

► Modern subjects will introduce in the new course and about 10% of the syllabus will be changed in new academic year. Moreover, some details are introduced within subsidiary subjects.

پيداچوونه وه ی هاوه ن 21. Peer review