1. Great Circle:

- A great circle is a section of a sphere that contains a diameter of the globe.
- Sections of the sphere that do not contain a diameter are called small circles.
- A great circle becomes a straight line in a gnomonic projection.
- Each meridian and equator is a great circle. The shortest distance between two points on the earth's surface is a great circle route.

It is possible to calculate the shortest distance using the spherical trigonometry equation, $\cos D = (\sin \phi_a) (\sin \phi_b) + (\cos \phi_a) (\cos \phi_b) (\cos \Delta \lambda)$

Where:

 $Ø_a$ Latitude at point a

 $Ø_b$ Latitude at point b

 $\Delta\lambda$ Difference of the longitude between a and b, the difference is not necessarily less than 180. D is the arc distance (central angle) between

points a and b.

Example: Find the shortest distance from Pittsburgh (USA) to Peking(China) on the globe with R=30cm.

If it is known that $\phi_a = 40$, $\lambda_a = -80$, $\phi_b = 40$, and $\lambda_b = 116$.

Solution:

 $\Delta \lambda = 360 - (116 + 80)$

$$\cos D = (\sin \phi_a) (\sin \phi_b) + (\cos \phi_a) (\cos \phi_b) (\cos \Delta \lambda)$$

 $\cos D = (\sin 40) (\sin 40) + (\cos 40) (\cos 40) (\cos 164) = -0.1509$ D=98.68°

Surface Distance = $(2\Pi 30/360)98.68^{\circ} = 51.7$ cm.

And the average length of a degree on a great circle is Surface Distance = $(2\Pi 6370/360)98.68^{\circ}=10,971$ km.

And the length of a 1-second arc is about 30.88m

2. Loxodrome or rhumb line, although a great circle provides the shortest possible route between two points, it may be a challenging route to follow if navigating manually by compass. Therefore, in flying, it would be simpler to follow the route with constant bearing (on the line called follow Loxodrome or rhumb line) than following the route with changing the bearing (on great circle)

3. <u>Spherical triangle</u>

It is a closed figure formed on the surface of a sphere bounded by three arcs of great circles.

The great circle is defined to be the intersection of a sphere with a plane containing the centre of the sphere

- The three arcs of great circles are the sides of the spherical triangle, denoted by lowercase letters a, b, and c.
- The spherical angles formed by the arcs of great circles are called the angles of the spherical triangle, denoted by the uppercase letters A, B, and C.
- A trihedron O-ABC is formed by connecting the vertices of the spherical triangle ABC with the centre of the sphere O.
- The radian measure of a central angle of a circle is equivalent to the length of the arc the angle subtends, which yields:

$$a = \angle BOC, b = \angle AOC, c = \angle AOB.$$

Given are:

$$A = \angle TAT', B = \angle EBE', C = \angle FCF'.$$

The Spherical Law of Sines formula: $(\sin a / \sin A) = (\sin b / \sin B) = (\sin c / \sin C)$ The Spherical Law of Cosines formula: $\cos a = \cos b \cos c + \sin b \sin c \cos A$

The amount by which the sum of the angles of a spherical triangle exceeds the sum of the angles of a plane triangle is called Spherical Excess and is denoted by ε :

$$\varepsilon = A + B + C - 180 - - - - (1)$$

The computational formula of ε is given by:

$$\varepsilon = \frac{S}{R^2} - - - - (2)$$

Where S denotes the area of the spherical triangle and R is the radius of the sphere. The value of ε is in radian to convert it to second multiply by 180/pi*3600=206264.81"

Use the below formula to correct the surface angles:

$$\left. \begin{array}{l} A_1 = A_0 - \varepsilon''/3 \\ B_1 = B_0 - \varepsilon''/3 \\ C_1 = C_0 - \varepsilon''/3 \end{array} \right\},$$

Ex: Calculate the spherical excess and adjust the angles From a=24512m, b=34930m, and, c=36621m. use R=6371km. $a_1=pi/180*a^{\circ}*R$ then $a^{\circ} = 0^{\circ} 13' 13.59''; b^{\circ} = 0^{\circ} 18' 50.88'',$ and ,c^o = 0° 19' 45.63'' Calculate surface angles (A,B,C)

$$\cos(A) = \frac{\cos(00\ 13'\ 13.59''\) - \cos(00\ 18'\ 50.88''\) * \cos\ (00\ 19'\ 45.63''\)}{\sin(00\ 18'\ 50.88''\) * \sin\ (00\ 19'\ 45.63''\)}$$

0

A=39° 58' 50.06''			
$\cos(B) = \frac{\cos(b) - \cos(a)*}{\sin(a)*\sin(b)}$	$\frac{\cos(c)}{(c)} \rightarrow B$	→ B=66° 17 [°] 33.71 ^{°°}	
$\cos(\mathcal{C}) = \frac{\cos(c) - \cos(a)*}{\sin(a) + \sin(a)}$	$\frac{\cos(b)}{(b)} \rightarrow C$	c=73° 43' 38.31"	
Angle	Value	Correction.	
		.,,	-

Angle	Value	Correction.	Corrected angles
Α	39° 58' 50.06"	-0.69	39° 58 [°] 49.37 ^{°°}
В	66° 17 [°] 33.71 ^{°°}	-0.69	66° 17 [°] 33.02 [°]
С	73° 43 [°] 38.31 ^{°°}	-0.70	73° 43 [°] 37.61 ^{°°}
Sum	180° 00' 2.08''	-2.08	180° 00' 00''

Spherical excess=+2.08"

Correction =2.08"/3=0.693"