Statistical Data

Prior to mapping, the data are evaluated in terms of their statistics, size, and forms. Because, the data sets used in thematic mapping come in all sizes and characteristics.

Statistical Data indices

The indices used by geographers and cartographers are. The first two are often used interchangeably, but in fact, they differ.

1. Ratio,
2. Proportion,
3. Percent, and,
4. Rate

Statistical Data (Ratio)

A ratio is a good way of expressing the relationship between two data entities. It is expressed as:

$$
\begin{aligned}
& \frac{f_{a}}{f_{b}} \text { Where: fa is the number of items (frequency) in one entity } \\
& \text { and fb is the number in a second entity. }
\end{aligned}
$$

The density of the population can be calculated from: $\frac{\text { Number of people in a county }}{\text { Area of county in square miles }}=$ People per square mile
Example-1: consider the ratio of the sexes enrolled in the population of a major southern university in the fall semester of 2006. There were 10,876 males and 14,248 females matriculating. The ratio is calculated as:

$$
\frac{14.248}{10.876}=1.31
$$

Example-2: find that Appling County's population (POP2000) is 17,419 and the county area (AREA) is 510.3680 square miles producing this calculation:

$$
\frac{17,419}{510.3680}=\frac{34.13}{1}
$$

Therefore the calculated population density for this county is 34.13 people per square mile.

Statistical Data (Percentage)

Percentage change is another frequently calculated variable based on a single variable for two different periods.

$$
\frac{\text { New Value - Old Value }}{\text { Old Value }}
$$

$$
\frac{\text { alue }- \text { Old Value }}{\text { Old Value }} * 100=\text { Percent Change }
$$

EXAMPLE: change in population in the county

$$
\begin{aligned}
& \text { Forsyth County } \begin{array}{r}
\frac{98,407-44,083}{44,083}= \\
=1.2322 * 100=123.23 \% \\
\text { Chatahatachee County } \frac{14,882-16,934}{\frac{16,934}{=}}=\frac{-2.052}{16,934} \\
=-0.1212 * 100=-12.12 \%
\end{array}
\end{aligned}
$$

This negative percent (-12.12%) indicates that the county lost about one-fifth of its population during the specific period and now has 2,052 fewer people living in the county

Statistical Data (Proportion)

Proportion is the ratio of the number of items in one group (class) to the total of all items. It is written

$$
\frac{f_{a}}{N} \quad \begin{aligned}
& \text { where } f_{a} \text { is the number of items (frequency) in a class and } \\
& N \text { is the total number of items or total frequency. }
\end{aligned}
$$

To determine the proportion of housing units that are owner occupied, again using Appling County's data, the calculation would be:

$$
\frac{6,606}{7,854}=0.8411
$$

Typically, proportions are multiplied by 100 , yielding a percentage.
In this case, $0.8411 * 100=84.11 \%$ of the county's housing units are occupied

Statistical Data (Rates)

Rates are similar to percentages except that the relationship is a value per some much larger value. It is determined by the relationship between an observed number compared to a potential number of occurrences for a given time or place. The result is then multiplied by a power of ten, usually relative to the denominator, to make the result meaningful

$$
\frac{\text { Number of Occurrences }}{\text { Number of Possible Occurrences }} \times 1000^{*}
$$

Example: The General Fertility Rate (GFR) for a given county is calculated using the formula:
(Number of Live Births in an age group / Female

$$
\text { population ages } 15-44) \times 1,000
$$

The resulting rate provides us with the number of live births to women of any age per 1,000 females ages 15-44., the data are calculated as:

$$
\frac{278}{3,731}=0.0745 * 1,000=74.5
$$

Data classification selection:

Analysis of the selection of class intervals suggested the following five requirements
should be met:

1. Encompass the full range of the data.
2. Have neither overlapping values nor vacant classes
3. Be great enough in number to avoid sacrificing the accuracy of the data.
4. Divide the data into reasonably equal groups of observations.
5. Have a logical mathematical relationship if practical.

Descriptive Statistics

A common set of statistics about az variable include the data's total, maximum MEAN AND MEDIAN EXAMPIE minimum values, data range, arithmetic mean, frequency of observations (numl of counties), and standard deviation.

The median is the midpoint of the data and should not be confused with the da mean.
The variance is : $\quad \sigma^{2}=\frac{\Sigma(x-\bar{X})^{2}}{N}$
$\begin{aligned} & \text { The square root of the variance to obtain the measure of } \\ & \text { deviation, which is called standard deviation (STD) }\end{aligned} \quad \sigma=\sqrt{\frac{\sum(x-\bar{X})^{2}}{N}}$

The standard deviation is especially useful when comparing two variables. The smaller of two standard deviations indicate
values occur closer to the mean than a larger standard deviation.
 The following wwo hypobeticial datas stst can be wesd to depict thes diftereneses ${ }_{28} \quad \frac{30}{133}$

Thank you

