Ministry of Higher Education and Scientific research

Department of Water Resources Engineering

College of Engineering

Salahaddin University - Erbil

Subject: Foundation Engineering

Course Book of Third Year

Lecturer's name: Hawkar Hashim Ibrahim

Academic Year: 2022-2023

Ministry of Higher Education and Scientific research

Course Book

1. Course name	Foundation Engineering (E)
2. Lecturer in charge	Hawkar Hashim Ibrahim
3. Department/ College	Water Resource Engineering Department/
	College of Engineering
4. Contact	e-mail: hawkar.ibrahim@su.edu.krd
	Tel: 07501999899
5. Time (hr. / week)	Theory: 3
	Practical: 0
6. Office hours	12 hrs/week
7. Course code	6140
8. Teacher's academic	More than ten years of experience in teaching
profile	different subjects
9. Keywords	Shallow Foundation, Bearing Capacity,
-	Settlement, Retaining walls

7. Course overview:

Foundation is the substructure, which transfers the weight of a structure to the underling soil or rock. The term "foundation engineering" is used to include the design of foundations for buildings and other structures. In addition, this term is also used for non-foundation problems such as designs of retaining walls, bulkheads, cofferdams, tunnels, and earth dams, as well as the design of natural slopes, dewatering of soils, and stabilization of soils mechanically and chemically.

Foundation is the interfacing element between the superstructure and the underling soil or rock layer. The loads transmitted by the foundation to the underling soil must not cause soil shear failure or damage the settlement of the superstructure. Generally, Foundations can be divided into two main groups: shallow and deep foundations.

8. Course objective:

The main objectives of the Foundation Engineering course are:

- Students should be able to classify types of foundations. What are the differences between them?
- Students should be able to determine and check the bearing capacity for

Ministry of Higher Education and Scientific research

shallow foundations.

- Students will learn how to find a settlement of foundations over layered soil.
- Students should be able to analyse and design single foundations, combined foundations, mat foundations and retaining structures.

9. Student's obligation

Students must attend the majority of lectures on time. Those who fail to attend a certain number of classes would face the department decision of being considered as failed in the course.

10. Forms of teaching

Different methods will be used to explain the principle of foundation engineering which related to this course. PowerPoints presentation will be used to illustrate the important points of the course. The Microsoft Surface Pro 3 and a whiteboard will be used to elucidate details of the course and solve examples. A set of printed lectures will be provided before lectures.

11. Assessment scheme

Students are required to do the midterm exam, classroom activities, quizzes, home works and the final exam. The final grading will be based on the following table:

Midterm exam	20 %
All activities	20 %
Final exam	60 %

12. Course Reading List:

- DAS, B. M. (2016). Principles of foundation engineering. Stanford, CT, Cengage Learning.
- Bowles, J. E. (1997). Foundation analysis and design. New York: McGraw-Hill.
- Kameswara, R. N. S. V. (2011). Foundation design: Theory and practice. Hoboken, N.J: Wiley.
- Tomlinson, M. J., & Boorman, R. (1986). Foundation design and construction. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical.
- Varghese, P. C. (2009). Design of reinforced concrete foundations. New Delhi: PHI Learning.
- Gunaratne, Manjriker, ed. The foundation engineering handbook. CRC Press, 2006.
- Das, B. M. (1999). Fundamentals of geotechnical engineering. Pacific Grove, CA: Brooks/Cole.
- Cernica, J. N. (1995). Geotechnical engineering. New York: Wiley.
- Coduto, D. P. (2012). Foundation design: Principles and practices. Upper Saddle River, N.J [u.a.: Prentice Hall.

Ministry of Higher Education and Scientific research

Ministry of Higher Education and Scientific research 16 Weeks: From the 12 th of February		
1 st Week	Foundation Engineering-Course Book	
2 nd Week	Introduction to Foundation Engineering, Terzaghi's Ultimate Bearing Capacity Theory	
3 rd Week	The General Bearing Capacity Equation	
4 th Week	Modification of Bearing Capacity Equations for Water Table	
5 th Week	Eccentrically Loaded Foundations	
6 th Week	Introduction to Settlement of Shallow Foundations	
7 th Week	Calculation of Increase in Stress ($\Delta \sigma$)	
8th Week	Immediate settlement (Si)	
9 th Week	Consolidation settlement (Sc)	
10 th Week	Structural Design of Shallow Foundations	
11 th Week	Design of Isolated Footings	
12 th Week	Design of Combined Footings	
13th Week	Design of mat Footings	
14 th Week	Retaining Structures	
15 th Week	Final Exam	
16 th Week	Final Exam	