Turning Operations

Chapter 5

Lathe

© rkm2003

Turning Operations

-Machine Tool - LATHE - Job (workpiece) - rotary motion -Tool - linear motions \&"Mother of Machine Tools " \& Cylindrical and flat surfaces
© rkm2003

Some Typical Lathe Jobs

 Turning/Drilling/Grooving/Threading/Knurling/Facing...

© rkm2003

The Lathe

Spindle speed selector

Feed change gearbox

Compound rest and slide(swivels) Bed Carriage

Apron Feed rod
Lead screw

(C) rkm2003

The Lathe

Head Stock

Feed/Lead Screw

© rkm2uos

Tail Stock

Types of Lathes

-Engine Lathe -Speed Lathe -Bench Lathe -Tool Room Lathe -Special Purpose Lathe Gap Bed Lathe

© rkm2003

Size of Lathe

Workpiece Length

Swing

© rkm2003

Size of Lathe ..

Example: 300-1500 Lathe
-Maximum Diameter of Workpiece that can be machined = SWING (= 300 mm)
Maximum Length of Workpiece that can be held between Centers ($=1500 \mathrm{~mm}$)
© rkm2003

Workholding Devices

-Equipment used to hold -Workpiece - fixtures -Tool - jigs

Securely HOLD or Support while machining

© rkm2003

© rkm2003

Headstock center (Live Centre)

Centers

Tailstock center (Dead Centre)

Workpiece

© rkm2003

Operating/Cutting Condifions

1. Cutting Speed v

 2. Feed f 3. Depth of Cut \boldsymbol{d}© rkm2003

Operating Condifions

Tool post
 Workpiece
 Chip
 Tool
 $\mathrm{N},(\mathrm{rev} / \mathrm{min})$ S
 peripheral speed

relative tool travel in 1 rotation $=\pi D$
peripheral speed $=S=\pi D N$
© rkm2003

Depth of Cut

perpendicular distance between machined surface and uncut surface of the Workpiece

$$
\boldsymbol{d}=\left(D_{1}-D_{2}\right) / 2 \quad(\mathrm{~mm})
$$

3 Operating Conditions

Cutting speed Workpiece

Depth of cut (d)

Machined surface

Chuck Feed (f)
Chip
Tool
Depth of cut
© rkm2003

-Workpiece Material -Tool Material - Tool signature _Surface Finish - Accuracy
 -Capability of Machine Tool

© rkm2003

Material Removal Rafe
MRR
Volume of material removed in one revolution $\mathrm{MRR}=\pi D d f \mathrm{~mm}^{3}$

- Job makes N revolutions/min

$$
\mathbf{M R R}=\pi D d f N\left(\mathrm{~mm}^{3} / \mathrm{min}\right)
$$

- In terms of \boldsymbol{v} MRR is given by $\mathbf{M R R}=1000 \mathrm{vdf}\left(\mathrm{mm}^{3} / \mathrm{min}\right)$

MRR

dimensional consistency by substituting the units

MRR: $D d f N \Rightarrow$ $(\mathrm{mm})(\mathrm{mm})(\mathrm{mm} / \mathrm{rev})(\mathrm{rev} / \mathrm{min})$
$=\mathrm{mm}^{3} / \mathrm{min}$

© rkm2003

-Turning
 -Facing
 -knurling
 -Grooving
 - Parting

 Chamfering

 Chamfering

 Taper turning

 Taper turning
 - Drilling
 Threading

© rkm2003

© rkm2003

Excess Material is removed

 to reduce Diameter -Cutting Tool: Turning Tool \checkmark a depth of cut of 1 mm will reduce diameter by 2 mm© rkm2003

Flat Surface/Reduce length

Facing

> Chuck
© rkm2003

Facing ..

- machine end of job \Rightarrow Flat surface or to Reduce Length of Job
- Turning Tool
- Feed: in direction perpendicular to workpiece axis
-Length of Tool Travel = radius of workpiece
- Depth of Cut: in direction parallel to workpiece axis
© rkm2003

Facing ..

Facing

(C) rkm2003

© rkm2003

■ Produce rough textured surface $\stackrel{\text { For Decorative and/or }}{ }$ Functional Purpose - Knurling Tool
 \square A Forming Process \square MRR~0

© rkm2003

It is used to produce regular patterned rough surface. Knurling tool containing a set of hardened steel rollers with teeth cut on them is used.The metal is squeezed against the multiple edges. The speed should be low and plenty of lubricant should be used.

© rkm2003

© rkm2003

-Cutting workpiece into Two -Similar to grooving - Parting Tool - Hogging - tool rides over - at slow feed -Coolant use

© rkm2003

Chamfering
© Beveling sharp machined edges © Similar to form turning \otimes Chamfering tool -45° \& To

- Avoid Sharp Edges
Make Assembly Easier Improve Aesthetics
© rkm2003

© rkm2003

Taper Turning ,, By Compound Rest

Face plate

Direction of feed
Tool post \& Compound rest Tool holder Slide Compound rest
Cross slide Hand crank

Drilling

Drill - cutting tool - held in TS feed from TS

Quill
clamp moving

Tail stock clamp
© rkm2003
Process Sequence

- How to make job from raw material 45 long x 30 dia.?

$$
-15-
$$

Steps: -Operations - Sequence - Tools -Process
© rkm2003

Process Sequence .. Possible Sequences
 - TURNING - FACING - KNURLING $\underset{\varrho}{〔} \quad$ TURNING - KNURLING - FACING X
 ■ FACING - TURNING - KNURLING - FACING - KNURLING - TURNING X - KNURLING - FACING - TURNING - KNURLING - TURNING - FACING What is an Optimal Sequence?

© rkm2003

© Manufacturing Time = Machining Time + Setup Time + Moving Time + Waiting Time

© rkm2003

Example

A mild steel rod having 50 mm diameter and 500 mm length is to be turned on a lathe. Determine the machining time to reduce the rod to 45 mm in one pass when cutting speed is $30 \mathrm{~m} / \mathrm{min}$ and a feed of 0.7 $\mathrm{mm} / \mathrm{rev}$ is used.
© rkm2003

Example

Given data: $D=50 \mathrm{~mm}, L_{j}=500 \mathrm{~mm}$ $v=30 \mathrm{~m} / \mathrm{min}, f=0.7 \mathrm{~mm} / \mathrm{rev}$
Substituting the values of v and D in

$$
v=\frac{\pi D N}{1000} \quad \mathrm{~m} / \mathrm{min}
$$

calculate the required spindle speed as: N = 191 rpm
© rkm2003

Example

Can a machine has speed of

 191 rpm?Machining time:

$$
\begin{aligned}
t & =\frac{L_{j}}{f N} \min \\
t & =500 /(0.7 \times 191) \\
r & =3.74 \text { minutes }
\end{aligned}
$$

© rkm2003

Example

- Determine the angle at which the compound rest would be swiveled for cutting a taper on a workpiece having a length of 150 mm and outside diameter 80 mm . The smallest diameter on the tapered end of the rod should be 50 mm and the required length of the tapered portion is 80 mm .
© rkm2003

Example

■ Given data: $D 1=80 \mathrm{~mm}, D 2=50$ $\mathrm{mm}, \mathrm{Lj}=80 \mathrm{~mm}$ (with usual notations)

$$
\tan \alpha=(80-50) / 2 \times 80
$$

- Or

$$
\alpha=10.620
$$

The compound rest should be swiveled at 10.62°
© rkm2003

Example

- A 150 mm long 12 mm diameter stainless steel rod is to be reduced in diameter to 10 mm by turning on a lathe in one pass. The spindle rotates at 500 rpm , and the tool is traveling at an axial speed of 200 $\mathrm{mm} / \mathrm{min}$. Calculate the cutting speed, material removal rate and the time required for machining the © rkm2003steel rod.

Example

- Given data: $\angle \mathrm{j}=150 \mathrm{~mm}, D 1=12$ mm, $D 2=10 \mathrm{~mm}, N=500 \mathrm{rpm}$
- Using Equation (1)
- $\quad v=\pi \times 12 \times 500 / 1000$
$=18.85 \mathrm{~m} / \mathrm{min}$.
\square depth of cut $=d=(12-10) / 2=1$ mm
© rkm2003

Example

- feed rate $=200 \mathrm{~mm} / \mathrm{min}$, we get the feed f in $\mathrm{mm} /$ rev by dividing feed rate by spindle rpm. That is

$$
f=200 / 500=0.4 \mathrm{~mm} / \mathrm{rev}
$$

- From Equation (4),
- MRR = $3.142 \times 12 \times 0.4 \times 1 \times 500=$
7538.4
mm3/min
\square from Equation (8),
© rkm2003 $t=150 /(0.4 \times 500)=0.75 \mathrm{~min}$.

Example

- Calculate the time required to machine a workpiece 170 mm long, 60 mm diameter to 165 mm long 50 mm diameter. The workpiece rotates at 440 rpm , feed is
$0.3 \mathrm{~mm} / \mathrm{rev}$ and maximum depth of cut is 2 mm . Assume total approach and overtravel distance as 5 mm for turning operation.
© rkm2003

Example

Given data: $\angle \mathrm{j}=170 \mathrm{~mm}, D 1=$ $60 \mathrm{~mm}, ~ D 2=50 \mathrm{~mm}, N=440$ $\mathrm{rpm}, f^{\prime}=0.3 \mathrm{~mm} / \mathrm{rev}, d=2 \mathrm{~mm}$,

-How to calculate the machining time when there is more than one operation?
© rkm2003

Example

Time for Turning:

Total length of tool travel = job length + length of approach and overtravel

$$
L=170+5=175 \mathrm{~mm}
$$

Required depth to be cut $=(60-50) / 2=5$ mm

- Since maximum depth of cut is $2 \mathrm{~mm}, 5 \mathrm{~mm}$ cannot be cut in one pass. Therefore, we calculate number of cuts or passes required. Number of cuts required $=5 / 2=2.5$ or 3 (since cuts cannot be a fraction)
- Machining time for one cut $=L /(\not \subset N)$

Example

Time for facing:

Now, the diameter of the job is reduced to 50 mm . Recall that in case of facing operations, length of tool travel is equal to half the diameter of the job. That is, $/=25$ mm . Substituting in equation 8 , we get

$$
\begin{aligned}
t & =25 /(0.3 \times 440) \\
& =0.18 \mathrm{~min} .
\end{aligned}
$$

© rkm2003

Example

- Total time:

- Total time for machining = Time for Turning + Time for Facing

$$
\begin{aligned}
& =3.97+0.18 \\
& =4.15 \mathrm{~min} .
\end{aligned}
$$

- The reader should find out the total machining time if first facing is done.
© rkm2003

Example

- From a raw material of 100 mm length and 10 mm diameter, a component having length 100 mm and diameter 8 mm is to be produced using a cutting speed of $31.41 \mathrm{~m} / \mathrm{min}$ and a feed rate of 0.7 $\mathrm{mm} /$ revolution. How many times we have to resharpen or regrind, if 1000 work-pieces are to be produced. In the taylor's expression
© rkm2003 use constants as $n=1.2$ and $C=$

Example

- Given $D=10 \mathrm{~mm}, N=1000 \mathrm{rpm}$, $v=31.41 \mathrm{~m} /$ minute
- From Taylor's tool life expression, we have $v T n=C$
- Substituting the values we get,
- $(31.40)(T) 1.2=180$
- or $T=4.28 \mathrm{~min}$
© rkm2003

Example

- Machining time/piece $=L /(f \times N)$
- $=100 /(0.7 \times 1000)$ $=0.142$ minute.
- Machining time for 1000 work-pieces
$=1000 \times 0.142=142.86 \mathrm{~min}$
- Number of resharpenings $=142.86 /$ 4.28

$=33.37$ or 33 resharpenings

© rkm2003

Example

- 6: While turning a carbon steel cylinder bar of length 3 m and diameter 0.2 m at a feed rate of 0.5 $\mathrm{mm} /$ revolution with an HSS tool, one of the two available cutting speeds is to be selected. These two cutting speeds are $100 \mathrm{~m} / \mathrm{min}$ and $57 \mathrm{~m} / \mathrm{min}$. The tool life corresponding to the speed of 100 $\mathrm{m} / \mathrm{min}$ is known to be 16 minutes with $n=0.5$. The cost of machining time, setup time and unproductive time together is Rs. $1 / \mathrm{sec}$. The cost of one
© rkm200tool re-sharpening is Rs. 20.

Example

- Given $71=16$ minute, $И 1=100$ $\mathrm{m} /$ minute, $V_{2}=57 \mathrm{~m} /$ minute, $D=$ $200 \mathrm{~mm}, /=300 \mathrm{~mm}, f=0.5 \mathrm{~mm} / \mathrm{rev}$ - Consider Speed of $100 \mathrm{~m} /$ minute
- $N 1=(1000 \times V) /(\pi \times D)=$ $(1000 \times 100) /(\pi \times 200)=159.2 \mathrm{rpm}$
- 37.7 minute

Tool life corresponding to speed of 100 m /minute is 16 minute.

- Number of resharpening required $=37.7$ / $16=2.35$
© rkm2003

Example

-Total cost = - Machining cost + Cost of resharpening \times Number of resharpening

$$
=37.7 \times 60 \times 1+20 \times 2
$$

$$
\text { = Rs. } 2302
$$

© rkm2003

Example

- Consider Speed of $57 \mathrm{~m} /$ minute
- Using Taylor's expression $72=71$ $\times(V 1 / v 2) 2$ with usual notations

$$
=16 \times(100 / 57) 2=
$$

49 minute

- Repeating the same procedure we get $t 2=66$ minute, number of reshparpening=1 and total cost = Rs. 3980.
© rem2003

Example

-Write the process sequence to be used for manufacturing the component

from raw material of 175 mm length and 60 mm diameter
© rkm2003

Example

© rkm2003

Example

- To write the process sequence, first list the operations to be performed. The raw material is having size of 175 mm length and 60 mm diameter. The component shown in Figure 5.23 is having major diameter of 50 mm , step diameter of 40 mm , groove of 20 mm and threading for a length of 50 mm . The total length of job is 160 mm . Hence, the list of operations to be © rkm2003carried out on the job are turning,

Example

- A possible sequence for producing the component would be:
- Turning (reducing completely to 50 mm)
- Facing (to reduce the length to 160 mm)
- Step turning (reducing from 50 mm to 40 mm)
- Thread cutting.
© rkmzobgrooving

