EXP. No (6)

Determine the Transmission Line Parameters by ABCD Constants

Object:

To find experimentally the magnitude and angle of each of the four general constants of T.L.

The relationship between the parameters of the four terminal work is:
$\mathbf{V s}=\mathbf{A V r}+\mathbf{B} \mathbf{I r}$
Is $=\mathbf{C V r}+\mathbf{D} \mathbf{I r}$
Where:
$\mathbf{A}=|\mathbf{A}| \mid \boldsymbol{\alpha}$
$\mathbf{B}=|\mathbf{B}| \boldsymbol{\beta}$
$\mathbf{C}=|\mathbf{C}| \boldsymbol{\theta}$
$\mathrm{D}=|\mathrm{D}| \mid \delta$

Procedure:

1- To determine the constant of (A):
a- Connect the circuit diagram as shown in the fig (1), no load test.
b- Read the value of (Vs, Vr, and Vdrop).
c- Calculate the magnitude of A as:

$$
|\mathrm{A}|=\frac{|V s|}{|V r|}
$$

And its angle from the plot as:

$$
\alpha=A
$$

2- To determine the constant of (B):
The receiving end should be short circuited as shown in fig (2) and read Vs, Is and P.
And the angle (β) is determined as:

$$
\mathrm{Ps}=\mathrm{Vs} \operatorname{Ir} \cos \beta
$$

And hence B can be determined as:

$$
|B|=\frac{|V s|}{|I r|}
$$

T.L
π Model
Fig(1)

Fig(2)

3- To determine the constant of (C):
a-Connect the circuit as shown in fig (3), (no load test) but introducing the wattmeter as shown in the diagram. Read the meters and then calculate:

To find θ :

$$
|\mathbf{C}|=\frac{|I s|}{|\boldsymbol{V r}|}
$$

$$
\mathbf{P}=\mathrm{Vs} \operatorname{Ir} \cos \theta
$$

4- To determine the constant of (D):
In the transmission lines the constant D is identical as A :
Verify the relation:
AD-BC=1

