EXP. No. (1)

Short Transmission Line

Introduction:

The effect of capacitance can be neglected in short line in overhead of lines a length of 50 Km to 60 Km in short, but in cables the distance is considerably less before capacitance has an appreciable effect.

So, a short single -phase transmission line may be represented by the equipment circuit shown in fig (1).

Apparatus:

3 voltmeters, 2 watt meters, 1 ammeter, molded line and suitable variable load.

Object:

The aim of the experiment is:
1-To determine the parameters of the line (R and X_{L}) as:

$$
\begin{equation*}
\mathrm{Z}=\frac{|\Delta V|}{|I r|} . \tag{1}
\end{equation*}
$$

$P_{\text {loss }}=P_{s}-P_{r}$.
$P_{\text {loss }}=I^{2}$.R
$X_{L}=\sqrt{Z^{2}-R^{2}}$.
2- To study the characteristics of the short line (η and \mathcal{I})
η is the efficiency and \mathcal{E} is the voltage regulation.
3-To plot the phasor diagram at lag, unity and lead power factor.

Procedure:

1-Connect the circuit as shown in fig. (1).
2-Set the sending voltage to 100 V , then record $\mathrm{Is}, \mathrm{Vr}, \mathrm{Ps}, \mathrm{Pr}$ and Vd at unity power factor.

3-Repeat several times by varying the value of load.
4-Repeat step 2 and 3 at 0.86 lagging and 0.86 leading power factor.

Report:

1-Plot the phasor diagram at unity, lagging and leading P.F.
2-Calculate the ($\eta \%$) and ($\mathcal{\%} \%$).
3- Determine the short transmission line parameters $\left(\mathrm{R}\right.$ and $\left.X_{L}\right)$.

Vs.(v)	Is(A)	$\operatorname{Ps}(\mathrm{W})$	$\operatorname{Pr}(\mathrm{W})$	$\operatorname{Vr}(\mathrm{v})$	$\mathrm{VD}(\mathrm{v})$	$\eta \%$	$\varepsilon \%$
100							

Load=Inductive Load/0.86 Lagging P.F

