EXP. No. (1) Short Transmission Line

Introduction:

The effect of capacitance can be neglected in short line in overhead of lines a length of 50 Km to 60 Km in short, but in cables the distance is considerably less before capacitance has an appreciable effect.

So, a short single –phase transmission line may be represented by the equipment circuit shown in fig (1).

Apparatus:

3 voltmeters, 2 watt meters, 1 ammeter, molded line and suitable variable load.

Object:

The aim of the experiment is:

1-To determine the parameters of the line (R and X_L) as:

$$Z = \frac{|\Delta V|}{|Ir|}.....(1)$$

$$P_{loss} = P_s - P_r.....(2)$$

$$P_{loss} = I^2.R$$

$$X_L = \sqrt{Z^2 - R^2}.....(3)$$

2- To study the characteristics of the short line (η and \mathcal{E})

 η is the efficiency and ϵ is the voltage regulation.

3-To plot the phasor diagram at lag, unity and lead power factor.

Procedure:

1-Connect the circuit as shown in fig. (1).

2-Set the sending voltage to 100 V, then record Is, Vr, Ps, Pr and Vd at unity power factor.

3-Repeat several times by varying the value of load.

4-Repeat step 2 and 3 at 0.86 lagging and 0.86 leading power factor.

Engineering College Electrical Department

Report:

- **1**-Plot the phasor diagram at unity, lagging and leading P.F.
- **2**-Calculate the (η %) and (ϵ %).
- **3-** Determine the short transmission line parameters(R and X_L).

Vs.(v)	ls(A)	Ps(W)	Pr(W)	Vr(v)	VD(v)	η%	8%
100							

Engineering College Electrical Department

