1- Analytical chemistry is generally classified into And (Ans: qualitative and quantitative)

2- Always the amount of \qquad more than the amount of in solution. (Ans: solvent, solute)
3is the number of moles of solute on one liter of solution.
(Ans: Molarity)
4- A titration curve is a plot of \qquad vs. the amount of
\qquad added. (Ans: pH vs. titrant)
5- For substances that \qquad in solution, such as NaCl , molarity and formality are (Ans: ionize, different)
6 and techniques for the separation and determination of the analyte qualitatively and quantitatively. (Ans: Analytical chemistry)
7. \qquad attempting to identify what materials are present in sample. (Ans: Qualitative analysis)
8- Sugar dissolves in water by \qquad process . (Ans: Dispersion)
9- The most \qquad indicators are colorless in acidic solutions and shows different color in basic solution. (Ans: phthalein) 10-Many of \qquad indicator exhibit two useful color change ranges. One occurs in acidic solutions ($\mathrm{pH} 1.5-3$) and the other in neutral or moderately basic media (pH 6.4-8). (Ans: Sulfonphthaleins)
11-Titration curves are useful for determining and
......................... of weak acids or bases. (Ans: end-points and dissociation constants)
12-Volumetric analysis involves using volumes of liquids of \qquad concentration to determine a concentration of an \qquad (Ans: known, analyte)
13-What is the range of pH for indicator if you now that the dissociation constant Ka equal to 1×10^{-5}.
(Ans: $\mathrm{Ka}=1 \times 10-5 \mathrm{pKa}=-\log 10-5 \mathrm{pH}=5 \pm 1 \mathrm{pH}=6-4$ the pH range)
14-Describe the most critical conditions for sampling.

(Ans:

a) The sample must be representative (reflect entire body from which it came).
b) The sample must be homogeneous (having the composition everywhere)
c) Transportation, from the field (sample place) to the laboratory without altering sample.)
15- Describe the methods for the preparation of anhydrous ethanol:

1) 500 ml of $6 \%(\mathrm{w} / \mathrm{v})$
2) 500 ml of 6% (w/w)
3) 500 ml of $6 \%(\mathrm{v} / \mathrm{v})$
(Ans: 1) 6% (w/v) meaning dissolving 6 g of ethanol in 100 ml of water this is meaning $(6 \times 5)=30 \mathrm{~g}$ of ethanol in 500 ml of water.
4) $6 \%(\mathrm{w} / \mathrm{w})$ meaning dissolving 6 g of ethanol in 100 g of water this is meaning $(6 \times 5)=30 \mathrm{~g}$ of ethanol in 500 g of water.
5) $6 \%(\mathrm{v} / \mathrm{v})$ meaning mixing 6 ml of ethanol in 94 ml of water this is meaning $(6 \times 5)=30 \mathrm{ml}$ of ethanol in $(94 \times 5)=470 \mathrm{ml}$ of water

16-Prepare solution 0.1 N of $\mathrm{Ca}(\mathrm{OH})_{2}$ in 1 L volumetric flask. $\quad(\mathrm{M} . \mathrm{wt}=74.093$ $\mathrm{g} / \mathrm{mol}$)
(Ans: Wt=N*eq.wt*V(L)
M.wt= $74.093 \mathrm{~g} / \mathrm{mol}$

Eq.wtl= M.wt/2= 37.0465
Wt=3.70465g)
17-Explain the ionic theory of acid-base indicator only by chemical reaction.
(Ans: A) $\mathrm{H}_{2} \mathrm{O}+\mathrm{HIn} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ln}^{-}$
(Acid color) (Base color)
or: $\mathrm{In}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{InH}+\mathrm{OH}^{-}$
(Base color) (Acid color))
18-What are the Important requirements for primary standard materials?
(Ans:

1. High purity.
2. Atmospheric stability.
3. Absence of hydrate water so that the composition of the solid does not change with variations in humidity.
4. Modest cost.
5. Reasonable solubility in the titration medium.
6. Reasonably large molar mass (M.wt) so that the relative error associated with weighing the standard is minimized.)
19-Concentration of diclofenac-sodium in a voltaren ointment equal to 1%. How many milligrams of diclofenac-sodium is containing in 60 g ointment? (Ans:

Ex2:

Concentration of diclofenac-sodium in a voltaren ointment equal to 1%.
How many milligrams of diclofenac-sodium is contain in 60 g ointment?
$\% w / w=\frac{\text { Wt. } \text { of } \text { solute }_{(g)}}{W t \text { of } \text { solution }_{(g)}} * 100$
Wt.of solute $_{(g)} \times 100=\% w / w \times W t$. of solution) g)

Wt. of solute $_{(g)}=\frac{\% w / w \times W t . \text { of } \text { solution }_{(g)}}{100}$

Wt. of solute $_{(g)}=\frac{1 \times 60}{100}=0.6 \mathrm{~g}=600 \mathrm{mg}$ diclofenac - sodium
20- Calculate the molar concentration of the solute species in:
a) An aqueous solution that contain 2.30 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)(\mathrm{M} . \mathrm{Wt}=46.1$ $\mathrm{g} / \mathrm{mol}$), in 3.50 L .
b) An aqueous solution that contains 285 mg of trichloroacetic acid $\left(\mathrm{Cl}_{3} \mathrm{CCOOH}\right)(\mathrm{M} . \mathrm{Wt} .=163 \mathrm{~g} / \mathrm{mol})$, in 10 ml (the acid is 73% ionized in water).

(Ans:

A) no. of moles $=\mathrm{wt} .(\mathrm{g}) / \mathrm{M} . \mathrm{Wt} .(\mathrm{g} / \mathrm{mol})=2.30(\mathrm{~g}) / 46.1(\mathrm{~g} / \mathrm{mol})=0.0498$ mole Molarity $=$ no.of mole (mole)/Volume (L) $=0.0498($ mole)/ $3.5(\mathrm{~L})=$ $0.0143 \mathrm{~mol} / \mathrm{L}(\mathrm{M})$
B) no. of moles $=\mathrm{wt} .(\mathrm{g}) / \mathrm{M} . \mathrm{Wt} .(\mathrm{g} / \mathrm{mol})=285(\mathrm{mg}) / 163(\mathrm{~g} \mathrm{~mol})=1.7484$ mmole Molarity $=$ no.of mole (mole) $/$ Volume (L) $=1.7484$ (mole) $/ 10$ $(\mathrm{mL})=0.17484 \mathrm{~mol} / \mathrm{L}(\mathrm{M})$
But 27% of the $\mathrm{Cl}_{3} \mathrm{CCOOH}$ is undissociated as $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{Cl}_{3} \mathrm{CCOO}^{-}$, the species concentration of $\mathrm{Cl}_{3} \mathrm{CCOOH}$ is given by: $\mathrm{M} \mathrm{Cl}_{3} \mathrm{CCOOH} \times(27$ I $100)=0.17484 \times 0.27=0.047 \mathrm{~mol} / \mathrm{L}(\mathrm{M})$)
21-Calculate the weight in gram of AgNO_{3} required to convert 2.33 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. (M.Wt $\left.\mathrm{AgNO}_{3}=170 \mathrm{~g} / \mathrm{mol}\right)$, (M.Wt $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} / \mathrm{mol}\right)$ (Ans:
$2 \mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}$
moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=W$ t. / M. Wt. $=2.33 / 106=0.02 \mathrm{~mol}$

$$
2 \mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}
$$

Mole $=2 \quad 1$
Mole $=\mathrm{X} \quad 0.02$
$\mathrm{X}=(2 * 0.02) / 1=0.04 \mathrm{~mol} \mathrm{AgNO}_{3}$
Wt. $\mathrm{AgNO}_{3}=$ No. of moles X M. Wt. $\left.=0.04 X 170=6.8 \mathrm{~g} \mathrm{AgNO} \mathrm{S}_{3}\right)$
22-Prepare $500 \mathrm{~mL}(6 \mathrm{M})$ from the concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$. Sp.gr. $=1.696$, percentage $=\% 85$, At.Wt: $P=31,0=16$.
(Ans:

$$
\begin{aligned}
& \mathrm{M}=\frac{\% \times \mathrm{Sp.g} \mathrm{\times 1000}}{\mathrm{M} . \mathrm{wt}} \\
& M=\frac{S p . G r . * \% * 10}{M . W t .}=\frac{1.696 * 85 * 10}{98}=14.7 \mathrm{~mol} / \mathrm{L} \\
& \left(M_{1} \mathrm{~V}_{1}\right)_{\text {concentrated }}=\left(M_{2} \mathrm{~V}_{2}\right)_{\text {diluted }} \\
& \left(14.7 \times \mathrm{V}_{1}\right)=(6 \times 500) \\
& \mathrm{V}_{1}=(6 \times 500) / 14.7=204.1 \mathrm{~mL} \\
& \text { This is meaning we take } 204.1 \mathrm{~mL} \text { from the concentrated solution (bottle) and diluted to } 500 \\
& \mathrm{~mL} \text { with distilled water to obtain } 6 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4} .
\end{aligned}
$$

23-Drive a curve for the titration of 50.0 mL of 0.05 M HCl (Titrand) with 0.10 M NaOH (Titrant).
(Ans:
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
no. of moles $\mathrm{HCl}=$ no. of moles NaOH
$(\mathrm{M} \times \mathrm{V})_{\mathrm{HCl}}=(\mathrm{M} \times \mathrm{V})_{\mathrm{NaOH}}$
The volume of NaOH needed to reach the equivalence point is:

$$
V_{\mathrm{NaOH} \text { at equivalence point }}=\frac{(M \times V)_{H C l}}{M_{\mathrm{NaOH}}}=\frac{50 \times 0.05}{0.1}=25 \mathrm{ml}
$$

1- Initial pH: The solution is 0.05 M HCl : Since HCl is completely dissociated:
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.05 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.05)=1.30$

2- Before Equivalence point

pH after addition of 10 ml NaOH . The volume of the solution is now 60 ml and part of the HCl has been neutralized. Thus:

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{(M \times V)_{\mathrm{HCl}}-(M \times V)_{\mathrm{NaOH}}}{V_{\text {Total }}}} \\
=\frac{(0.05 \times 50)_{\mathrm{HCl}}-(0.1 \times 10)_{\mathrm{NaOH}}}{(50+10)}=0.025 M
\end{gathered}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.025)=1.60$
3- At Equivalence point
pH after addition of 25 ml of NaOH . Here the solution contains neither an excess of HCl nor of NaOH ; thus, the pH is obtained from the dissociation of water:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{w}}=\sqrt{\mathbf{1 \times 1 0 ^ { - 1 4 }}=1 \times 10^{-7} \mathrm{M}}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1 \times 10^{-7}\right)=7.00
\end{aligned}
$$

4- After Equivalence point

pH after addition of 25.1 ml NaOH . Here there are an excess of the base after equivalence point, thus:

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=\frac{(\mathrm{M} \times \mathrm{V})_{\mathrm{NaOH}}-(\mathrm{M} \times \mathrm{V})_{\mathrm{HCl}}}{V_{\text {Total }}}} \\
{\left[\mathrm{OH}^{-}\right]=\frac{(0.1 \times 25.1)_{\mathrm{NaOH}}-(0.05 \times 50)_{\mathrm{HCl}}}{(25.1+50)}=1.33 \times 10^{-4} \mathrm{M}}
\end{gathered}
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1.33 \times 10^{-4}\right)=3.88
$$

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

$$
\mathrm{pH}=14-3.88=10.12
$$

Strong Acid-Strong Base Titration Curve

24-Describe the method for preparation of 500 ml of 0.03 M K + from the 0.7 M $\mathrm{K}_{4} \mathrm{Fe}\left(\mathrm{CN}_{1} 6\right.$
(Ans:
$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \rightarrow 4 \mathrm{~K}^{+}+\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$
$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ contain $4 \mathrm{~K}+\mathrm{M} \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}=(1 / 4) \mathrm{M} \mathrm{K}+=(1 / 4) \times 0.03=0.0075 \mathrm{M}$
(M1V1) concentrated $=(\mathrm{M} 2 \mathrm{~V} 2)$ diluted
$(0.7 \times \mathrm{V} 1)=(0.0075 \times 500) \Rightarrow \mathrm{V} 1=(0.0075 \times 500) / 0.7=5.357 \mathrm{~mL}$
Taking 5.357 ml from the $0.7 \mathrm{M} \mathrm{K} \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ then diluted to 500 ml with water to prepare $0.03 \mathrm{M} \mathrm{K}^{+}$)
$25-$ What is the volume of 0.1 N HCl which is prepared from dilution of 150 ml of 1.24 N HCl .
(Ans: No. milleq. for acid before dilution $=$ No. milleq for acid after dilution (N1V1) before dilution $=(\mathrm{N} 2 \mathrm{~V} 2)$ after dilution
$(1.24 \times 150)=(0.1 \times \mathrm{V} 2) \Rightarrow \mathrm{V} 2=1860 \mathrm{ml}$
i.e, we can prepare 0.1 N HCl by diluting 150 ml of 1.24 N of HCl to final volume of 1860 ml .

