Ministry of Higher Education and Scientific research

- **Department of Chemistry**
- **College of Science**

University of Salahaddin

Subject: Physical Chemistry

Course Book – (2ndStage.Thermodynamic

Chemistry)

Lecturer's name : Asst.Prof.D. Heman A.Smail

Academic Year: 2022/2023

Assistant: Aveen matte and rezan jalal. (for **Practical**)

1. Course name	Physical Chemistry
2. Lecturer in charge	Heman A.Smail
3. Department/ College	Department of Chemistry/College of Science
4. Contact	e-mail:heman.smail@su.edu.krd
5. Time (in hours) per week	6
6. Office hours	Tuesday,Wednesdayand Thursday 9-1 every week
7. Course code	
8. Teacher's academic	I received my B.Sc of Science in Chemistry from
profile	Salahaddin University, Erbil -Iraq in 2005. I received
	Master of Science in physical chemistry from Salahaddin
	University, Erbil-Iraq in 2009, and PhD. 2017.
9. Keywords	Thermodynamic chemistry ,Thermo chemistry, Viscosity,
	Colligative properties of solution, Physical properties of
	liquid.

10. Course overview:

The course is built around thermodynamic chemistry which are devoted to various aspects of chemical data collection and analysis. Guidelines for preparation of reports will be covered in the first lab meeting. Although students will work in pairs, laboratory reports should be written independently. Occasionally a take-home exam will be given that will require independent reading and research to complete. Although resources may be shared for these take home exams, the writing of the exam should be done by each student independently. You are responsible for attending all lecturs, and you are expected to start all laboratories at the designated times. Any delays or absences must be approved by the instructor. Only excused absences may be made up.

11. Course objective:

This course is composed of ten modules or experiments. All lectures will be performed simultaneously by rotating teams of two students each. Each team will rotate through the set of six experiments, with at least two weeks devoted to each of the labs. There will be occasional take home exams which will require independent study, web and literature searches for completion. These will be devoted to various topics important in experimental physical chemistry, such as temperature measurement, pressure measurement, voltage and current measurement, equipment design, computer interfacing and data logging, vacuum methods, high pressure methods, balances, pH meters, signal averaging, and timing.

12. Student's obligation

Your final grade will be derived as follows:

- <u>Quizzes</u>: About 10 quizzes will be given throughout the semester. They will be given at the beginning of the class period and last 10 minutes.
- *Exams*: There will be three closed book exams given throughout the semester. Each test will be scheduled for 3 hr.

•	Practical Exar	<u>n</u> : This Exar	n is Comprehe	ensive in all co	urse outlines.
---	----------------	----------------------	---------------	------------------	----------------

The grade of this semester distributed as follows?

Activity: 3

Quiz: 2

Absence: 1

Exam: 14.

13. Forms of teaching

Power point text, white board and lectures copied paper.

14. Assessment scheme

Although students will work in pairs, laboratory reports should be written independently. Occasionally a take-home exam will be given that will require independent reading and research to complete. Although resources may be shared for these take home exams, the writing of the exam should be done by each student independently.

15. Student learning outcome:

To convey the joys of experimental physical chemistry and the satisfaction obtained from doing quality work. You should obtain an appreciation and understanding of experimental methods and equipment used in chemical thermodynamics, kinetics, and spectroscopy, including data collection methods, instrumentation, data reduction, error analysis, and report writing.

16. Course Reading List and References:

Course Reading List and References :

1- books :

- Physical Chemistry by P.W. Atkins
- Fundamental Physical Chemistry by Maron & Lando
- Physical Chemistry by Robert A. Alberty
- Physical Chemistry by David & Ball
- Gordon M. Barrow (vi) Physical Chemistry:

- Physical Chemistry by Laidler, Meiser, and Sanctuary

2- Internet .

17. The Topics:	Lecturer's name
Course Topics:	Hemn A.Smail
 (properties of matter and physical/chemical 	ex: (3 hrs)

equilibria)	
-Chemical equilibrium	
-Determination of equilibrium constant	
-Thermodynamic equilibrium constant	
-KP and KC for gaseous reaction	
-Le Châtelier's Principle	
-Properties of equilibrium constant	
-The Phosgene equilibrium	
-Effect of inert gases on equilibrium	
-The equilibrium constant for hetrogenouse reaction	
-Effect of pressure on hetrogenouse equilibria	
-Variation of Ka & Kp with	
Temperature.	
-Physical equilibria involving pure substance	
-Clausius-Clapeyron equation	
-Trouton's Rule	
-Criteria of equilibria	
-Physical Properties of Matter	
-Evidence of Chemical Change	
-Gibbs free energy	
-Properties of Gibbs free energy	
In this section The lecturer shall write titles of all practical topics	
he/she is going to give during the term. This also includes a brief	
description of the objectives of each topic, date and time of the	
Pecture	
Q// Explain the effect of mert gases on equilibrium by exa	ampies:
Answere:	the sume only up a main
The presence of these gases cannot affect in any way the	thermodynamic
equilibrium	the Y's and there
constant . But , the presence of these inert gases modifies	s the T's and there
by also KT	
as a result Kp is changed .	an af the in out
However , even if we neglect this effect on Kp , the presen	ice of the inert
gases still	a at a shuan tatal
affects the partial pressures of the reactants and products	s at a given total
	f
pressure , and nence we may expect a shift in the extent of	of reaction to
permit a	
redistribution of the partial pressures in accord with the d	aemands of the

equilibrium

constant.

To show quantitatively the effect of an inert gas on an equilibrium consider the

reaction:-

COCl2(g) = CO(g) + Cl2(g)

At 394.8:C & total pressure at equilibrium of 1.0 atm. The degree of dissociation of COCl2 = 0.206 .Suppose the equilibrium is established in pressure of N2 gas at partial pressure = 0.4 atm. In total pressure of 1.0 atm..

20. Extra notes:

I will try to do my best to cover the course very well.

Course Book(Practical)

1. Course name	Practical Physical Chemistry
2. Lecturer in charge	Aveen Matti Hanna
3. Department/ College	Department of Chemistry/College of Science
4. Contact	e-mail:aveen.hanna@su.edu.krd
5. Time (in hours) per week	Practical: 2:00
6. Office hours	Tuesday, Wednesdayand Thursday 9-1 every week
7. Course code	
8. Teacher's academic	I received my B.Sc of Science in Chemistry from Mosul
profile	University, Mosul -Iraq in 2004. I received Master of
	Science in physical chemistry from Salahaddin University,
	Erbil-Iraq in 2014
9. Keywords	Thermo chemistry, viscosity, Colligative properties of
	solution, Physical properties of liquid.

10. Course overview:

The course is built around ten sets of experiments which are devoted to various aspects of chemical data collection and analysis. Laboratory reports will be required for all experiments.Reports are due no later than one week after completion of each module. Guidelines for preparation of reports will be covered in the first lab meeting. Students will work in the laboratory in pairs, but each student will be required to keep their own Ministry of Higher Education and Scientific research

laboratory notebook, which will be graded periodically in class by the instructor. Although students will work in pairs, laboratory reports should be written independently. Occasionally a take-home exam will be given that will require independent reading and research to complete. Although resources may be shared for these take home exams, the writing of the exam should be done by each student independently. You are responsible for attending all laboratories, and you are expected to start all laboratories at the designated times. Any delays or absences must be approved by the instructor. Only excused absences may be made up.

11. Course objective:

This course is composed of ten modules or experiments. The six experiments will be performed simultaneously by rotating teams of two students each. Each team will rotate through the set of six experiments, with at least two weeks devoted to each of the labs.There will be occasional take home exams which will require independent study, web and literature searches for completion. These will be devoted to various topics important in experimental physical chemistry, such as temperature measurement, pressure measurement, voltage and current measurement, equipment design, computer interfacing and data logging, vacuum methods, high pressure methods, balances, pH meters, signal averaging, and timing.

12. Student's obligation

Your final grade will be derived as follows:

- <u>*Quizzes*</u>: About 10 quizzes will be given throughout the semester. They will be given at the beginning of the class period and last 10 minutes.
- *Exams*: There will be three closed book exams given throughout the semester. Each test will be scheduled for 1.5 hr.
- *Practical Exam*: This Exam is Comprehensive in all course outlines.

The Practical grade of this semester distributed as follows?

Report: 3

Quiz: 3

Absence: 1

Practical Exam: 3 for practical.

13. Forms of teaching

Power point text, white board and lectures copied paper.

14. Assessment scheme

Although students will work in pairs, laboratory reports should be written independently. Occasionally a take-home exam will be given that will require independent reading and research to complete. Although resources may be shared for these take home exams, the writing of the exam should be done by each student

independently.

15. Student learning outcome:

To convey the joys of experimental physical chemistry and the satisfaction obtained from doing quality work. You should obtain an appreciation and understanding of experimental methods and equipment used in chemical thermodynamics, kinetics, and spectroscopy, including data collection methods, instrumentation, data reduction, error analysis, and report writing.

16. Course Reading List and References:

•"Mathematics for Physical Chemistry, 3rd Edition" by Robert Mortimer, Elsevier, Academic Press, Boston, 2005.

•"Data Reduction and Error Analysis for the Physical Sciences, 3rd Edition" by Philip Bevington, McGraw Hill, 2002.

• F. Daniels, J. W. Williams, P. Bender, R. A. Alberty, C. D. Cornwell and J. E. Harriman, Experimental Physical Chemistry, 7th ed., McGraw-Hill, 1970. QD457.D21.

(http://pubs.acs.org/journals/jpcafh/index.html)

 18. Practical Topics (If there is any)only for first course (15hrs) 1-Determination of liquid mixture composition by Refractive Index. 2- Determination of M.wt by depression of freezing point. 3-M.wt Determination by Victore Meyer method. 4- Determination of M.wt by elevation of boiling point. 5- Determination of surface tention of a liquid. 6. Determination of heat of ionization
 Determination of liquid mixture composition by Refractive Index. Determination of M.wt by depression of freezing point. M.wt Determination by Victore Meyer method. Determination of M.wt by elevation of boiling point. Determination of surface tention of a liquid. Determination of heat of ionization
 2- Determination of M.wt by depression of freezing point. 3-M.wt Determination by Victore Meyer method. 4- Determination of M.wt by elevation of boiling point. 5- Determination of surface tention of a liquid. 6. Determination of heat of ionization.
 3-M.wt Determination by Victore Meyer method. 4- Determination of M.wt by elevation of boiling point. 5- Determination of surface tention of a liquid. 6. Determination of heat of ionization.
 4- Determination of M.wt by elevation of boiling point. 5- Determination of surface tention of a liquid. 6 Determination of heat of ionization
5- Determination of surface tention of a liquid.
6 Determination of heat of ionization
o- Determination of near of ionization
7- Determination of heat of neutralization.
8-Temperature dependence of viscosity
9-The density of a liquid as a function of temperature
10- Determination heat of solution from solubility
11-Thermochemistry Heat of Transition by
Caloremetry.
12-Determination of equilibrium constant by
distribution method.
13-Homogeneous equilibrium in liquid system.
14-Determination of molecular weight by steam

distillation method.
15-Determination of the "Boiling point-composition
curve" for azotropic solution (liquid- vapour
equilibrium in a mixture of two miscible liquids).
16-Liquid and solid phase diagram for two
compositions.
17-Determination of phase diagram for water-phenol
binary system (Mutual solubility).
18-Determination of phase diagram for three
component system.
19-Particle size measurement by viscosity method.
20-Fractional distillation.
In this section The lecturer shall write titles of all practical topics
he/she is going to give during the term. This also includes a brief
description of the objectives of each topic, date and time of the
19 Examinations:
1 Compositional
What are the factors affect viscosity?
,
2.True or false type of exams:
Is Velocity of light is less in dielectric material than it is in vacuum?
answer: True
3. Multiple choices:
Is angle ϕ_v increase, the angle ϕ_m increase, and reach its maximum value ϕ_m when the
angle φ_v becomes equal to a/45 b/90 c/180 angle.
Livil try to do my best to cover the course very well
21. Peer review
come miner changes
some minor changes.
Dr. Mazin