

- **Department of Chemistry**
- **College of Science**

University of Salahaddin

Subject: Electro-Chemistry

Course Book – third stage

Lecturer's name: AsistproffDr.RounakMerzaShariffJaff

Academic Year: 2022-2023

Assistant(for Practical): Asst.Prof.Dr.Heman A.Smail, lawen esmail and rezan jalal.

Course Book

1. Course name	Electro-Chemistry
2. Lecturer in charge	AsistproffDr.RounakMerzaShariffJaff
3. Department/ College	Chemistry/ Science
4. Contact	rounak.shariff@su.edu.krd
5. Time (in hours) per week	theory: 3
6. Office hours	10 hours per week to the student during the week
7. Course code	6h
8. Teacher's academic profile	I received my Bachelors B.SC of Science in Chemistry from Salahaddin University, Erbil-Iraq in 1988. From 1983-1988, I worked as a lab instructor at the Department of Chemistry; and also received Master of Science in Analytical Chemistry from Salahaddin University, Erbil-Iraq in 1994. Finally I received PH. D. of Science in PhysicalChemistry from Salahaddin University, Erbil-Iraq in 2008.Finally I upgraded to assist proffers in 2015.
9. Keywords	Physical Chemistry, Electro Chemistry, Reaction Kinetics, Conductance, Thermodynamics.

10. Course overview:

This course includes a detailed overview of physical aspect for the equation that are impotent theory for conductance. Description the kinetic theory for gas, and solution and its application for reaction rate. Study of electricity and how it relates to chemical reactions, How chemical cell converts chemical energy into electrical energy. A chemical reaction takes place inside the battery and causes electric current to flow. Definition and types of electrolyte, conductivity types, Conductance behavior as a function of concentration for strong and weak electrolytes. Applications of conductivity to find some of variables. The concentrations of species at any time after the start of the reaction, The form of the rate law also provides insight into the series of elementary steps by which a reaction takes place, The key task in this connection is the construction of a rate law from a proposed mechanism and its comparison with experiment. Simple elementary steps have simple rate laws, and these rate laws can be combined together by invoking one or more approximations, These approximations include the concept of the rate determining stage of a reaction, the steady-state concentration of a reaction intermediate, and the existence of a pre-equilibrium. The introduces the principles of chemical kinetics, the study of reaction rates, by showing how the rates of reactions may be measured and interpreted. The develop this material in more detail and apply it to

more complicated or more specialized cases. The rate of a chemical reaction might depend on variables under our control, such as the pressure, the temperature, and the presence of a catalyst, and we may be able to optimize the rate by the appropriate choice of conditions. The study of reaction rates also leads to an understanding of the mechanisms of reactions, their analysis into a sequence of elementary steps.

11. Course objective:

Learning the student:

- Prepare the chemical solution.
- Using the instruments and equipment.
- Plot the graph depending on specific laws.
- Compare and discuss practical and theoretical value.
- Writing report for each experiment.

12. Student's obligation

the attendance & completion of all tests exams assignments

Reports Seminar&etc....

13. Forms of teaching

Power point text andwhite board.

14. Assessment scheme

- Quizzes: About 12 quizzes will be given throughout the semester. They will be given at the beginning of the class period and last 10 minutes.
- Report: writing report for each experiment.
- Oral examinations in the laboratory each week.
- Written Exams: There will be three closed book exams given throughout the semester. Each test will be scheduled for 90 minutes.
- Final Exam: The Final Exam is Comprehensive in all course outlines.

15. Student learning outcome:

This course includes a detailed overview of the relationship between chemical change and electrical work and most impotent theory and the equation that used in .Electrochemical cell

16. Course Reading List and References:

Physical chemistry, 4th Edition by N. Ira. Levin. Physical Chemistry, 6th Edition. By: ATKINS.

Physical Chemistry, 2ed Edition. By: Gilbert W. Castellan.

The Chemistry of molecular nature and change, 1st Edition. By: Martin Siberbeg.

17. The Topics:	Lecturer's name

Introduction in Electrochemistry:	AsistproffDr.RounakMerzaShariffJaffex:(3hrs)
1.1. Introduction	
1.2. Course outline	ex: 14/10/2016
1.3. Classification of electro-conductivity.	
1.3.1. Ohms law.	
1.3.2. Some important	
definition.	
1.3.3. Examples.	
2nd Week:	
Classification of electrolytes	
2.1 Introduction	
2.2 Law that used for conductance	
2.3 Examples how to use the equations:	
2.3.1 Wheteston bridge	
2.3.1. Wheteston bruge.	
conductance cell	
2 3 1 2 Conductance water	
2313 Demal solution	
2.3.2 Degree of dissociation:	
2.3.2. Degree of dissociation.	
for determining the ionic mobility	
2 3 2 2 Moving boundary	
2 3 2 3 Hydrogen mobility	
2.3.2.5. Hydrogen mobility.	
2.5.5. LAMPIES.	
3rd Week	
Conductance titration:	
3.1 Introduction	
3.2. Strong acid vise strong base	
3.3. Strong acid vise weak base	
3.4. Weak acid vise weak base	
3.5. Displacement titration	
3.6 Examples	
S.O. Examples.	
4th Week:	
Theory of electrolytic conductance:	
4.1. Deby –Hukel theory.	
4.1.1. Asymmetric effect	
4.1.2. Electrophortic effect	
4.2. In complete dissociation	
4.3 Ionic Thickness	
4 3 1 Some examples	
4.4 Significance of the degree of the	
dissociation	
4.5 Ionization	
1.5. Tomzaton.	

بەر يومبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

4.6. Ionic Association.	
4.7. Weak electrolyte.	
4.8. Determination of hydrolysis constant.	
4.9. Examples.	
5th Week:	
Migration of Ions;	
5.1. Introduction.	
5.2. Transport number (t±).	
5.2.1. Hytroff	
method.	
5.2.2. Moving	
boundary method.	
5.3. Activity and activity coefficient.	
5.3.1 Activity effect on conductance	
5.3.2 Activity effect on ionic strength	
5.3.2. Activity effect on solubility	
5 3 4 Examples	
5.5.4. Examples. 6th Week:	
Determination of Hydrogen concentration:	
6 1 Bronsted – Lawry acid	
6.1.1. Strong acid	
6.1.2 Weak acid	
6.2. Buffer solution	
6.2.1. Solution of work acid and its	
salt	
5.2.1 Solution of work base and	
its solt	
6.2.1 Solution of work acid and	
work base	
C 2 Hudrolysis and Noutralization	
C.S. ΠγυιοιγSIS dilu Neutralization.	
6.3.1. Sait of strong acid and	
strong base.	
6.3.2. Salt of strong acid and	
strong base.	
6.3.3. Salt of strong acid and	
weak base.	
6.3.4. Salt of weak acid and	
weak base.	
6.3.5. Examples.	

بېريومبەرايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

Course Syllabus for Electro- Chemistry II-Electricity

The course will be covered as follows:

Introduction in Electrochemical cell.

2 Westen cell and the classification of the reversible cell.

- Relative reactive ties of metals.
- Polarization and over voltage.

Thermodynamic phenomena of the

cell.

- Corrosion of the metals
- Butler Volumer equation.

Course Description:

This course includes a detailed overview of the relationship between chemical change and electrical work and most impotent theory and the equation that used in Electrochemical cell.

Course program

Directorate of Quality Assurance and Accreditation بەر نيو بەر ايەتى دانديايى جۆرى و متمانە بەخشىن

Ministry of Higher Education and Scientific research

7th -8th Week:	
Introduction Electrochemical cell:	
1.1. Introduction in voltaic cell.	
1.2. Balance of the oxd-red equation.	
1.3. Origin of potentiometer.	
1.3.1. Weston cell and	
classification of reversible cell.	
1.3.2. Salt bridge and the	
notation of Electrochemical cell.	
1.3.3. Relative strength of	
metals.	
1.3.4. E.M.F calculation of and	
the Electrochemical cell.	
1.4. Examples.	
9thWeek:	
Standard cell potential and electrical work:	
2.1. Introduction.	
2.2. Determination of ΔoG , ΔoH , ΔoS ,	
Ecell,and K of the Electrochemical cell.	
2.3. Nernist equation.	
2.4. Examples.	
10th -11th-12th Week:	
Concentration cell :	
3.1. Introduction.	
3.2. Transference number.	
3.3. Reference electrode.	
3.3.1. Standard calomel electrode.	
3.3.2. Silver-silver chloride electrode.	
3.4. Indicator electrode.	
3.4.1. pH electrode.	
3.4.2. combine pH	
electrode.	
3.4.3. Ion – selective electrode.	
3.5. Concentration cell with liquid junction.	
3.9. Concentration cell without liquid	
junction.	
3.10. Examples.	
13th-14th Week:	
Classification of Batteries:	
14.1. Primary type.	
14.1.1. Alkaline Batteries.	
1 4.1.2. Mercury and silver Batteries.	
14.2. Secondary Batteries.	

Ministry of Higher Education and Scientific research

14.3. Rechargeable.	
14.3.1. Lead –acid battery.	
14.3.2. Nickel –Cadmiume battery.	
14.4. Fuel cells.	
14.5. Examples.	
15th Week:	
Processes at electrodes:	
15.1. Introduction.	
15.2. Helmholtz model.	
15.3. Gouy – Chpman model.	
15.4. Stren model.	
16th Week:	
The electrode potential at the interphase.	
16.1. First order.	
16.2. Activation Gibbs energy.	
16.3. Tafelplote.	
16.4. Butler Volumerequation .	
1 6.5. Examples.	
17th Week:	
Most important methods that used :	
17.1 Voltametry	
17.1.1 Introduction	
17.1.2 Linear – Sween Voltametry	
17.1.2. Different nulsVoltametry	
1714 Cyclic Voltametry	
1 7.3. Polarization.	
17.2.1. Concentration Polarization.	
17.2.2. Current Polarization.	
1 7.4. Examples.	
18th Week:	
Types of over potential:	
18.1. Introduction.	
18.1.1. Activation over potential.	
18.1.2. Diffusion over potential.	
18.1.3. Resistance over potential	
18.2. Examples.	

Ministry of Higher Education and Scientific research

19th Week:	
Corrosion	
1 9 1 Introduction	
19.1.2. protecting material against	
corrosion.	
20th Week:	
Electro kinetic effect:	
20.1. Introduction.	
20.1.2. Electro osmosis phenomena.	
20.1.3. Streaming potential.	
20.2. Electrophoresis phenomena.	
18. Practical Topics (If there is any)	
Experiment -1-Determination of cell	1st Week
constant.	2nd Week
Experiment -2-Dissociation constant of	
weak acid from conductivity	3rd Week:
measurement.	
Experiment -3-Determination of	
equivalent conductance of strong	4th Week
electrolytes.	5th Week
Experiment -4-Conduct metric titration.	6th Week
a) Strong acid x Strong base.	7th Week
b) Weak acid x Strong base.	8th Week
c) Mixture of acids X Strong base.	9th Week
d) Weak acid x Weak base	10th Week
e) Precipitation titration.	
F) Displacement titration.	11th Week
Experiment -5-Determination of solubility	
product of sparingly soluble salt by	12th Week
conduct metric method.	13th Week
Experiment -6-Determination the degree	14th Week
of hydrolysis and hydrolysis constant of	
salt by conduct metric method.	15th Week
Experiment -7-Effect of viscosity on	
conductance of solutions.	16th Week
Experiment -8-Thermodynamic constants	17th Week
for chemical cell.	
Experiment -9-a-Application of Nernest	18th Week
equation to Cu/Cu+2 electrodes.	19th Week

بەر يو مبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

Experiment -9-b-Application of Nernest	
equation to Zn/Zn+2 electrodes.	20th Week
Experiment -10-Determination of	
electrode Potential.	
Experiment -11-Potentiometric	21th Week
determination of the dissociation	
constant of weak acid.	22th Week
Experiment -12-Determination of	
decomposition Potential:	23th Week
Experiment -13-Determination of	
Avogadro numbers and Faradayconstant	24th Week
from electrolysis of dilute sulphuric acid.	
Experiment -1-Determination the order of	25th Week
the reaction for sodium sulphite with	
potassium iodate in acidic medium using	26th Week
differential method.	
Experiment -2-Determination the order of the	27th Week
reaction for sodium sulphite with potassium	
iodate in acidic medium usinghalf time method.	28th Week
Experiment -3-Determination the reaction	
order of potassiumper sulphate with	
potassium iodate.	29th Week
Experiment -4-Kinetics study for the	
reaction between acetone and iodine.	30th Week
Experiment -5-Reaction for Ethyl acetate	31th Week
with hydroxyl ion using titration method.	
Experiment -6-Determination of rate	32th Week
constant for Inversion of Sucrose	
catalyzed by hydrogen ion using	
polarimeter.	
Experiment -7- Kinetic study for	
decomposition of hydrogen peroxide	
catalyzed by MnO ₂ .	
Experiment -8-Determination of rate	
constant by gas evolution method for	
hydrolysis of Benzene diazonium chloride.	
Experiment -9-Determination of	
activation energy for the reaction	
Bromide/ Bromate ions without	
measuring rate constant.	

بەر يو بەس ايەتى دانيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

Experiment -10-Kinetic study for	
hydrolysis of methyl acetate with	
hydrochloric acid;	
Experiment -11-Simulation of chemical	
reactions	
Experiment -12-Effect of Ionic strength on	
chemical reaction rate.	
Experiment -13-Determination of	
activation energy for the sodium sulphite	
with potassium iodate in acidic medium.	

19. Examinations:

a- In a particular cell a 0.01 demal solution of KCl gave a resistance of 150 ohm at 25oC, while a 0.01N solution of hydrochloric acid gave a resistance of 51.4 ohm at the same temperature. The specific conductance of demal solution is 0.0014 ohm-1cm-1. Calculate the equivalent conductance of this electrolyte.

b- Calculate the equivalent conductance at infinite dilution of acetic acid if it's of HCl, CH3COONa and NaCl are 426.16, 91 and 126.45 equiv-1mho cm2 respectively at 25oC. c- The equivalent conductance for acetic acid is 48.15 equiv-1mho.cm2in a solution Concentration is 0.001N.Calculate Λo for acetic acid if λo H+ and λo CH3COO- is (349.8 and 40.9) equiv-1mho.cm2 respectively at 25oC.Calculate the degree of dissociation for acetic acid and dissociation constant.

d- A measurement with a conductivity- measuring cell at 25oC shows a resistance of 747.5 ohm for a 0.01M solution of KCl and a value of 876 ohm when the electrolyte is a 0.005M solution Calcium chloride. Calculate the conductivity and the molar conductivity of the solution of CaCl2, if (Λo .is149 Ω -1cm2 mol-1).

e- Prove that L = Kcell C-

Q2/Define the following terms:

(10marks) 1-Ohm's law, 2-volt, 3-Electrolytes, 4-Walden, s rule ,5-types of protons in solution .

Q2-B/ Explain the following

(40marks)

1– The Type of conductance cells.

2- Comment on the most modification in the Wheatstone bridge.

3- Explain the Kohlrausch's law.

4- Comment on the rounding in the titration curve for weak acid vise the strong abase.

20. Extra notes:

I will try to do my best to cover the course very well.

21. Peer review

I will try to contact with my practical team.

Directorate of Quality Assurance and Accreditation بەر يو مىمانەبەخشىن