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Abstract

In this project, we introduce a new method to find the wiener polynomial and
wiener index of maximal ideal graphs m(Z,) of rings Z, where n =

P1%1 D, %2 p3%3 L. p %k, p;’s are distinct primes, o; € Z*,and 1 < i < k.
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INTRODUCTION

Let R be aring. Anideal I; of R is maximal in an ideal I, of R if there is no
ideal I; of R such that I; c I3 € I, (Ahmad and Hummadi 2023). A chain of
properideals I, c I, c I, c --- of R is called maximal chain of ideals of R if I,_;
is maximal in I, for each t € Z*. The maximal ideal graph of R, denoted by m(R),
IS the undirected graph with vertex set, the set of all ideals of R, where two vertices
I and J are adjacent if and only if [ maximal in J, or J maximal in
I (Ahmad and Hummadi 2023). Let d(u,v) denote the distance between
vertices u and v in a graph G. The Wiener index of G is defined as W (G) =

Y. d(u, v) where the sum is over all unordered pairs {u, v} of distinct vertices in
{uv}

G and the Wiener polynomial (with a parameter x) of G isW (G; x) = Y, x¢v)

{uv}
where the sum is taken over the same set of pairs (Sagan , Yeh and Zhang 1996).
In the chapter three we introduce a new method to find diameter, Wiener index
and the Wiener polynomial of maximal ideal graphs m(Z,) where n =
P1%t P %2 P33 .. p %k, p;’s are distinct primes, a; € Z* and 1 < i < k.



CHAPTER ONE

Definitions and Backgrounds of ring theory

Definition 1.1 (M and | 1969, 1). A ring R is a set with two binary operations
(addition and multiplication) such that

1) R is an abelian group with respect to addition (so that R has a zero element,
denoted by 0, and every x € R has an (additive) inverse, —x).

2) Multiplication is associative ((xy)z = x(yz)) and distributive over addition
(x(y+2z)=xy+xz,(y+ z)x =yx + zx).

We shall consider only rings which are commutative:

3) xy =yxforall x,y € R,

and have an identity element (denoted by 1):

4) 31 € Rsuchthat x1 = 1x = x forall x € R.

Example 1.2 (Dummit and Foote 2004, 224).

1. The ring of integers Z, under the usual operations of addition and
multiplication is a commutative ring with identity (the integer 1).

2. The quotient group Z/n Z is a commutative ring with identity (the element 1)

under the operations of addition and multiplication of residue classes.

Definition 1.3 (Dummit and Foote 2004, 228). A subring of the ring R is a

subgroup of R that is closed under multiplication.

Definition 1.4 (Dummit and Foote 2004, 242). Let R be aring, let I be a subset
of R and letr € R.

1) rl ={ra|a€l}andIlr ={ar|a€ I}

2) Asubset] of R is a leftideal of R if

a. Iisasubring of R, and



b. Iis closed under left multiplication by elements from R, i.e., vl < [ for
all r € R.
Similarly I is a right ideal if (a) holds and in place of (b) one has
c. Iisclosed under right multiplication by elements from R, i.e., Ir € |
forallr eR.
3) A subset I that is both a left ideal and a right ideal is called an ideal (or, for

added emphasis, a two-sided ideal) of R.

Example 1.5. Consider the ring of all rational numbers Q. Then Z is a subring of
Q but it is not an ideal of Q.

Definition 1.6 (Dummit and Foote 2004, 255). Assume R is commutative. An
ideal P is called a prime ideal if P # R and whenever the product ab of two
elements a, b € R is an element of P, then at least one of a and b is an element
of P.

Definition 1.7 (Dummit and Foote 2004, 253). An ideal M in an arbitrary ring R

is called a maximal ideal if M # R and the only ideals containing M are M and R.



CHAPTER TWO

Definitions and Backgrounds of Graph Theory

Definition 2.1 (Gross, Yellen and Zhang 2014, 2). A graph G = (V, E) consists
of two sets Vand E.

1) The elements of V are called vertices (or nodes).

2) The elements of E are called edges.

3) Each edge has a set of one or two vertices associated to it, which are called

its endpoints. An edge is said to join its endpoints.

Definition 2.2 (Naduvath 2017, 23). A walk in a graph G is an alternating
sequence of vertices and connecting edges in G. In other words, a walk is any
route through a graph from vertex to vertex along edges. If the starting and end

vertices of a walk are the same, then such a trail is called a closed walk.

Definition 2.3 (Naduvath 2017, 23). A trail is a walk that does not pass over the
same edge twice. A trail might visit the same vertex twice, but only if it comes
and goes from a different edge each time. A tour is a trail that begins and ends on

the same vertex.

Definition 2.4 (Naduvath 2017, 23). A path is a walk that does not include any
vertex twice, except that its first vertex might be the same as its last. A cycle or a
circuit is a path that begins and ends on the same vertex.

Definition 2.5 (Naduvath 2017, 23). The length of a walk or circuit or path or

cycle is the number of edges in it.



Definition 2.6 (Naduvath 2017, 24). The distance between two vertices u and v
in a graph G, denoted by d;(u; v) or simply d(u;v), is the length (number of
edges) of a shortest path (also called a graph geodesic) connecting them. This

distance is also known as the geodesic distance.

Definition 2.7 (Naduvath 2017, 24). The eccentricity of a vertex v, denoted by
e(v), is the greatest geodesic distance between v and any other vertex. It can be

thought of as how far a vertex is from the vertex most distant from it in the graph.

Definition 2.8 (Naduvath, 2017, p. 24). The radiusr of a graph G, denoted
by rad(G), is the minimum eccentricity of any vertex in the graph. That

IS, rad(G) = vrerll/i(rcl;) e(v).

Definition 2.9 (Naduvath 2017, 24).The diameter of a graph G, denoted by
diam(G) is the maximum eccentricity of any vertex in the graph. That is,
diam(G) = UZlVCI(éC) e(v).

Example 2.10 The following figure illustrates a graph with eight vertices
V=1{1,2,3,4,56,7,8} and nine edges E = {(1,2), (1,3), (1,4),(1,5), (1,6),
(1,7), (1,8), (2,3), (2,4), (2,5), (2,6),(2,7), (2,8),(3/4),(3,5), (3,6), (3,7),
(3,8), (4,5),(4,6), (4,7), (4,8), (5,6),(5,7),(5,8), (6,7),(6,8), (7,8)}.

1. The distance between elements are as follows:



d(1,2) = 1,d(1,3) = 1,d(1,4) = 2,d(1,5) = 3,d(1,6) = 2,d(1,7) = 3,
d(1,8) = 3,d(2,3) = 2,d(2,4) = 3,d(2,5) = 2,d(2,6) = 1,d(2,7) = 2,
d(2,8) = 2,d(3,4) = 1,d(3,5) = 2,d(3,6) = 3,d(3,7) = 4,d(3,8) = 4,
d(4,5) = 1,d(4,6) = 2,d(4,7) = 3,d(4,8) = 3,d(5,6) = 1,d(5,7) =
2,d(5,8) =2,d(67) =1,d(68) =1,d(7,8) = 1.

2. The eccentricity of vertices are as follows:

(1) = Max{d(1,2),d(1,3),d(1,4),d(1,5),d(1,6),d(1,7), d(1,8)}
= Max{1,2,3} = 3.

€(2) = Max{d(2,1),d(2,3),d(2,4),d(2,5), d(2,6), d(2,7),d(2,8)}
= Max{1,2,3} =3.

e(3) = Max{d(3,1),d(3,2),d(3,4),d(3,5),d(3,6),d(3,7),d(3,8)}
= Max{1,2,3,4} = 4.

e(4) = Max{d(4,1),d(4,2),d(4,3),d(4,5),d(4,6),d(4,7),d(4,8)}
= Max{1,2,3} =3.

e(5) = Max{d(5,1),d(5,2),d(5,3),d(54),d(5,6),d(5,7),d(5,8) }
= Max{1,2,3} =3.

e(6) = Max{d(6,1),d(6,2),d(6,3),d(6,4),d(6,5),d(6,7),d(6,8)}
= Max{1,2,3} = 3.

e(7) = Max{d(7,1),d(7,2),d(7,3),d(7,4),d(7,5),d(7,6),d(7,8)}
= Max{1,2,3,4} = 4.

£(8) = Max{d(8,1),d(8,2),d(8,3),d(8,4),d(8,5),d(8,6),d(8,7) }
= Max{1,2,3,4}=4.

3. The radius of a graph G is

rad(G) = min{ (1), €(2),&(3),e(4), €(5),6(6),6(7), (8)}
= min{3,3,4,3,3,3,4,4}. So that red(G) = 3.
4. The diameter of a graph G is
Diam(G) = max{ €(1),e(2),e(3),(4),6(5),(6), €(7),(8)}
= max{3,3,4,3,3,3,4,4}. So that Diam(G) = 4.



CHAPTER THREE

In this chapter, we study maximal chain of ideals of rings Z, where n =
P1Y1 D %2 P33 L.pp %, p;’s are distinct primes, o; € ZT, and 1 < i<k # 1.
Then we find the maximal ideal graph m(Z,,) of the ring Z,, for some n € Z*.
Finally the Wiener index, Wiener polynomial, dimeter and radical of the maximal

ideal graphs m(%Z,,) are investigated.

Definition 3.1 (Ahmad and Hummadi 2023). An ideal H; of aring R is maximal
in an ideal H, of R if there is no ideal H; of R suchthat H; € H; € H,.

Example 3.2 Consider the ring of integers Z. Then

1. The ideals of Z are the form nZ where n € Z* U {0}.

2. The nonzero prime (resp. maximal) ideals of Z are the form nZ where n is a
prime number. Furthermore, the zero ideal is prime but it is not maximal.

3. For each prime number p, if n = pm, then nZ is maximal in mZ.

4. In the ring of integers Z, the zero ideal is not maximal in any another ideal.

Definition 3.3 (Ahmad and Hummadi 2023). A chain of proper ideals
Iy, c I, c I, c---ofaring R is called maximal chain of ideals of R if I,_ is
maximal in I, foreacht € Z*. If I, c I, c I, c --- c I, is a finite chain,
then I, is said to be the initial ideal and I;, is the terminal ideal of the chain.
An ideal K, of M is called a maximal ideal of length m with respect to the
maximal chain of ideals K, c K, c K, c .- € K,,,_; € M. The length of
K, is said to be oo, if there is no such finite maximal chain of ideals with

initial ideal K.



Definition 3.4. Let R be a commutative ring with identity. The maximal ideal
graph of R, denoted by m(R), is the undirected graph with vertex set, the set of
all ideals of R, where two vertices I and J are adjacent if and only if I maximal

in J, or ] maximal in 1.

Remark 3.5. Let R be a ring and m(R) is the maximal ideal graph of R. Then

1. The length of the maximal chain I, c I, c I, c --- c I, of R is h and the
length of the path Iy e; I, e, I, e ... ey I, of m(R) is h.

2. [ycl; cl, c-- c I is a shortest maximal chain of ideals of R with the
initial ideal I, and terminal ideal I;, ifandonlyiflye; I; e, I, e5 ... ey I IS
a shortest path of m(R) with the initial vertex I, and terminal vertex I

where e; = (Ii—l' Il)

Remark 3.6. Let R be a commutative ring with identity. If |V (m(R))| > 2, then
the m(R) graph is not complete.

Proof. Suppose R has at least three ideals I =< 0 >,] and K. Without loss of
generality if I is a maximal in both J and K, then neither /] maximal in K nor K

maximal in J. So that two vertices J and K are not adjacent.

Theorem 3.7. If R is an Artinian ring, then the graph mG (R) is connected.
Proof. By (Ahmad and Hummadi 2023, Theorem, 2.12), the result is obtained.

Example 3.8. Consider the ring Z3¢, = {0, 1, 2,...,35}. The ring Z3¢, has
the following proper ideals: [, =< 0 >, [; =< 18 >={0,18}, [, =<

12 >=1{0,12,24}, 5 =< 9 >={0, 9, 18, 27}, I, =< 6 > ={0, 6, 12, 18,
24,30}, I; =< 4 >={0, 4, 8, 12, 16, 20, 24, 28, 32}, [, =< 3 >={0, 3, 6,
12, 15,18, 21, 24, 27, 30, 33}, I, =< 2 >={0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34}.



The following diagram illustrates the maximal chain of ideals of the ring
236.

( I3 Cly CZsg
Ilc{

Iy © ¢ I; C Z3q

I C Zsq
I, c {14 < {17 C Zsg
\ Is C I, C Zsg

The following figure illustrates the maximal ideal graph mG (Z5¢)

I3

Ig
I

Iy
Iy

Definition 3.9 (Sagan , Yeh and Zhang 1996). Let d(u, v) denote the distance

between vertices u and v in a graph G. The Wiener index of G is defined as

W(G) = ), d(u,v) where the sum is over all unordered pairs {u, v} of distinct

{uv}

vertices in G. If x is a parameter, then the Wiener polynomial of G isW (G; x) =

¥ x4@v) where the sum is taken over the same set of pairs.
{uv}

Theorem 3.10. Let G be a graph and W (G), W(G; x) be the Wiener index and

Wiener polynomial of G respectively. Then

1. deg(W (G; q)) equals the diameter of G.
2. w(6) = f'(1)

Proof.

1. By (Sagan, Yeh and Zhang 1996, 960 , Theorem 1.1), the result is obtained.
2. By (Sagan, Yeh and Zhang 1996, 960, theorem 1.1(5)), the result is obtained.



The following proposition is easy to prove
Proposition 3.11. If R is a field, then

1. W(m(R)) =1and W(m(R);x) = x.
2. rad(m(R)) = diam(m(R)) = 1.

Theorem 3.12. Let P, be a path with n vertices for some n € Z*. Then

n+ 1) _ (m+1)!
3 T (n-2)13!"’

2. WPsx)=(n—Dx+m—2)x>+(n—3)x3+ -+ 2x" 2 4+ x" L,
3. diam(m(B,)) =n—1

1. WP =

Proof.

1. By (Sagan, Yeh and Zhang 1996, Theorem 1.3(5)), the result is obtained.
2. By (Sagan, Yeh and Zhang 1996, Theorem 1.2(5)), the result is obtained.
3. By Theorem 3.10(1), the result is obtained.

Theorem 3.13. Consider the ring Z,» where p is a prime number and n € Z™.

Let; =< p' >for0 <i <n.Then

1. For any two ideals I., Iy of Zyn, d(I,,I5) = |r — s|.
_(n+ 2\ _ (n+2)!

2. w(m(zn) = ("37) =G5

3. W(m(Zyn);x) =nx+ (n—Dx? + (n— 2)x> + -+ x™

4. diam (m(an)) = n.

5. rad (m(Z,m)) = {?
ra (m( p )) nTH if nis an add number

if nis an even number

Proof. It is clear that the ideals of Z,» are of the form I; =< pt>=for0<i<
n. That is there are n + 1 ideals as follows:

10



0Zyn p™ Y Loyn, p" " Lyn, P2 L, ., Iy = DLyn, Iy = Lyn. This means that the

graph m(Z,n) is a path P,,,, that is it is a path with n + 1 vertices.

1. Letl. =<p" >and I =< p*® > be two ideals of Z,». Then exactly one of
the following istrue. a) r=s b) r>s ¢)r<s.

a) Ifr =s,then |r —s| =0and L. = I, consequently, d(I,,I;) = 0 = |r — s]|.

b) If r >s,thenthechainl. cI._, cl._, c...c I, C I is the shortest
maximal chain of ideals with the initial ideal I. and the terminal ideal ;. So
that d(l,, I5) = |r — s|.

c) Similarly, if r < s, then d(I,, 1) = |r —s]|.

The following figure illustrates the distance from < p® > to < p® > in the

maximal ideal graph mG (Z,n)

< p?” > < pr—l -~ < pr—z > < iDs+.‘l > < PS >

2. Since W (m(an)) = W(P,,,), then by Theorem 3.12(1), W (m(an)) =

("3 %) = i and

3. By Theorem 3.12(2), W(m(Zyn); x) = W(Ppyq; %) = nx + (n — 1)x? +
(n—2)x3+ -+ x™

4. By Theorem 3.10(1), diam (m(an)) = degW (P,.1;X) = n.

5. Itisclear that e(< 0>) = &(Zyn) =n, e(<p" 1 >)=e(<p>)=n-—1,
e(<pvi>)=e(<p?>)=n—2,.. . So that for 0<i<n, &<

p"~t >) = ¢(< p' >) = n — i. Now, there are two cases. Case one, if n is an

even number, then ¢ (< pz >) < e(<pt >)where 0 <t < n.Casetwo, ifn

11



n+1

IS an add number, then ¢ (< pz >) <e(<pt>) where 0<t<n.
n

Therefore, rad Zn)) =12 -
ra (m( P )) nTH f nis an add number

if nis an even number

Example 3.14. Consider the ring Z,¢ = Z,+ . Then ; =< 0 >= {0}, [, =<2 >
={0,2, 4,6,8,10,12,14}, I3 =< 4 >={0,4,8,12}and I, =< 8 >= {0, 8} are

proper ideals of Z,, and I, c I, c I; c I, is the maximal chain of ideals of Z,.
By Theorem 3.13(3), the Wiener index of m(Zig) = m(Z,s) is

W(m(Zue)) = (§) = o = 20

By Theorem 3.13(4), the wiener polynomial of m( Z¢) is W(m( Z¢); x) =
4x + 3x% + 2x3 + x*.

By Theorem 3.13(5), diam(m( Zy6)) = 4.

By Theorem 3.13(6), rad(m( Z;s)) = 2

Example 3.15. Consider the ring Z,,g5 = Z,7. Then

7+ 2) _(7+2)! _g4

L W(m( 2128)) - ( 3 /7 (7-13!
2. W(m(Zqpg);x) = 7x + 6x% + 5x3 + 4x* + 3x° + 2x° + x7.
3. diam(m( 2128)) =7.
4, rad(m( 2128)) =4,

Definition 3.16 (Sagan , Yeh and Zhang 1996, 960). The Cartesian product of
two graphs G, and G,, isagraph G, X G, suchthatV(G; X G,) = {(v,,v,): v, €
Gl and (%) € Gz} and E(Gl X Gz) == {(ul, uz)(vl, 172): U1 € E(Gl) and U, =

UZ or uZUZ € E(Gz) and U, = vl}.

12



Proposition 3.17. Let p and g be any two distinct prime numbers and n,m € Z™.
Then

1. Zym X Zgn = {(a,b):a € Z,m and b € Zyn} is aring.

2. |Zym| =p™ , |Zgn| = q™ and |Zym X Zyn| = |Zymgn| = p™q"

3. The ideals of Z,m X Z,n are of the form I; X I, where I; is an ideal of Z,m
and I is an ideal of Zn.

4, I; X I, ismaximal in J; x J, ifand only if I; is maximal in J; and I, = J, or [,
is maximal in J, and I; = J;.

5. m(me X an) = m(me) X m(an) = m(meqn).

6. V (m(Zym x Zqn)) =V (m(Zym)) x V(m(Zgn)) = V(n(Zymn))

7. I, X I, is maximal in J; X J, if and only if (I; X I,)(J; X J,) € E(m(me X
Zyn)).

Proof.

1, 2, 3 and 4 are obvious.

5, 6, 7 are direct consequences of Definition 3.16.

Note that if p = q, then V (m(me X an)) +V (m(me)) X V(m(an)). For
example V(m(Z, x Z,)) # V(m(Z,)) x V(m(Z,)), since V(m(Z, x Z,)) =
{(KO0>X<0> Z,xX<0> <0>XZ, Z,XZ, {(0,0),(1,1)} and
V(m(Zy)) X V(m(Z,))={< 0 >X< 0>, Zy X< 0>, <0 >XZ,, Zy X Z,}

Definition 3.18 (Sagan , Yeh and Zhang 1996, 961). The ordered Wiener

Polynomial defined by W (G; q) = ¥, x¢®¥) where the sum is over all ordered
(u,v)

pairs (u,v) of vertices, including those where u = v. Thus, W(G;q) =
% x4 = 2W(G; q) + |V(G)].

(wv)

13



Theorem 3.19 (Sagan , Yeh and Zhang 1996, 961, Proposition 1.4(2)). Suppose
that G, and G, are two connected graphs. Then W( G, x Gy;x) = W(G1; x) x
W(Gz;x).

Theorem 3.20. Let p and g be any two prime numbers and n,m € Z*. Then

W (m(Zyngn); x) = 2W (m(Zy); )W (m(Zg)s ) + (0 + DW (m(Zyn ) )
+ (m + D)W (m(Zyn); x).

Proof. By Theorem 3.19, W (Zmn; x) = W(Z,m; x) x W (Zyn; x). Then by
Definition 3.18, (2W (m(Zymqn); x) + [V (m(Zymgn) ) 1) =

(2w (m(Zym); x) + WV (m(Zym) ) 1) (2W (m(Zgn); x) + 1V (m(Zgn) ) 1) So
that 2W (m(Zymn); x)=4W (m(Zym ); )W (m(Zyn); x) +

2|V (m(Zgn) )| W (m(Zym); 2) + 2 |V (m(Zm) )| W (m(Zgn); x). Then

W (m(Zyn ) x)=2W (m(Zy); X)W (m(Z ) ) +

|V (m(z)| W (m(zym); x) + |V (m(Zym) )| W (m(2Zqn)s x) =

2W (m(Zym); x)W(m(Zgn); x) + (n + W (m(Zym); x) + (m +

DW(m(Zyn); 2).

Remark 3.21. Consider the ring Z,,where p and g are two prime numbers. Then

1. The wiener polynomial of the maximal ideal graph m(Z,,) Iis
W(m(Zy,q); x) = 4x + 2x2.

2. The wiener index of the maximal ideal graph m(Z,,) is W (m(Z,,)) = 8.

3. diam (m(qu)) = 2.

Proof.

14



1. By Proposition 3.10, W(m(Zp)) =W (m(Zq)) = x. By Theorem 3.20,
W(m(Zy,); x) = 2W(m(Z,); x)W(m(Zy); x) + (1 + DW(m(Z,); x) +
(1+ DW(m(Z,); x)=4x + 2x2.

2. Wm(Zyg)) = W'(m(Zyg); 1) = 4+ 4(1) = 8.

3. By Theorem 3.10(1), the result is obtained.

The following diagram illustrates the maximal chains of ideals of Z,,.

| B /A
Ilc{2 Pq
I3chq

The following figure illustrates the maximal ideal graph mG(Z,,)
I

paq

Example 3.22.

1. The wiener polynomial of each of Zg, Z;, Z14, Z15, Zp, is W (mM(Zypq); x) =
4x + 2x2,
2. The wiener index of each of Zg, Z1, Z14, Zy5, Zyq is W (m(Zyq)) = 8

3. diam (m(qu)) = 2.

Proposition 3.23. Consider the ring Z,,2,2 where p and g are two prime numbers.

Then

1. The wiener polynomial of Z,2 .2 is (W (m(Z,z2,2); x) = 12x + 14x* + 8x> +
2x*.
2. The wiener index of Z,z2,2 is W (m(szqz)) = 68.
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3. diam (m(szqz)) = 4,
Proof.

1. By Theorem 3.13(4), W(m(Z,z); x) = W(m(Z2); x) = 2x + x2.
By Theorem 3.20, W(m(Z,z42); x) = 2W(m(Z,z2); x)W (m(Z,z2); x) +
2+ DW(m(Z,2);x) + 2 + DW(m(Z,2); x)=2(2x + x*)* +
6(2x + x2) = 8x% + 8x3 + 2x* + 12x + 6x% = 12x + 14x2 + 8x3 + 2x*.
2. By Theorem 3.10(2), W (m(Z,242)) = W' (m(Zy2q2); 1) = 12 + 24 +

24 + 8 = 68
3. By Theorem 3.10(1), the result is obtained.

The following diagram illustrates the maximal chain of ideals of the ring
szqz.
( (I3 C lg C Zp2ge
I, CZ. 2.2
I, c {16 Zp a
\ 7 © Lp2q?
( I. CZ. 2.2
I, { 6 & Lp2q
]2 C < 17 C szqz
L kI5 cl Cszqz

I, €A

Iy C <

The following figure illustrates the maximal ideal graph mG(Z,z,2)

Iy

Iy

'ru I'.r

Theorem 3.24. Let p;, py, ps, ..., Py be r distinct prime numbers and r, a;, a5,

as, ..., A, € Z¥. Then
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) ZP1M1P2“2---praT = Zp1a1 X szaz X X Zprar = Zp1a1 @ szaz @ @
Lp,ar =@iz1 Lpsi-

. m(Zplalpzaz...praT) =m (Zplalpzaz---P(r—1)a(r_1)) X m(Zprar) = m(Zplal) X
m(sza’z) X ... X m(Zprar).

. V(m(zmalpzaz-nprar)) =V(m (Zplalpzaz---P(r—l)a(r_l))) X V(m(Zprar)) -
V(m(Zy,a:)) X V(n(Zy,a2)) X ... X V(M(Zy, ar))

' W(m(Zpla’1p2azmprar),'X) =

2w (m (Zm“lpz‘”---p(r-l)“(r‘l)) ’ x) W (m(Zp, )i x) + (ar +

1)W (m (Zplalpzazmp(r_l)a(r—l)) ’ x) + l_[g_l(ai + 1) W(m(Zprar); x)

Proof.
1. By (Dummit and Foote 2004, 357, Exercises 20(a)) and (Michel n.d., 8,

Theorem 2.25 ), we obtain the result.

2. By Definition 3.16, we obtain the result.

3. By Definition 3.16, we obtain the result.

4. By Theorem 3.19, W(m(Zy,a1p, 2., ar);x) =

W (m (2, 002y, 7t )3 %) X W(m(Zy,ar); x). Then by Definition
318, (2W(M(Zp,erp,2..p,r )i ) + |V (M(Zpyerp,2.pyr) ) [) =

(2w (m (2, 01p,00_p,,_ o0 )i %) +

V(72 (2, gy oyi-0) 1) (2W (0 )5 2) + 1V (m(Zp,00))1).
So that

W(m(Zp,a1p,02..p,ar ) X)=

W (m (2, arpyaz a0 ) %) W(m(Zp,er);x) +

o (i ) () )

2|V (1 (2 aspy00. i, _y00) )| W (2, 0); ). Then

17



W (o) )~
2w (m (Zplalpzazmp (T_l)a(r_l)) ; x) W(m(Z,, ar); x) +
Y e ) By g )
|V (m (Zplalpzaz ...p(r_l)“(r—l))>| W(m(Z, ar);x) =
2W (m (Zplalpzazmp(r_l)a(r—l)) ; X) W(m(Zy, e ); x) + (ar +
OW (M (Zya1p,00_p,_ v )5 %) + T + 1) W(m(Zy,a )i x)
Therefore,
W(m(Zy,a1p,22. p ar ); x)=
2W (m (Zp1a1p2a2___p(r_l)a(r-l)) ; X) W(m(Zy,er ); x) + (ar +

DOW (1 (2, arp,o2p,,_ 500 )3 %) + [ @ + D W(m(Zy,ar); %)

Proposition 3.25. Consider the ring Z,, where p,q and r are three prime

numbers. Then

1. The wiener polynomial of Z,,, is (W (m(Zpqy); x) = 12x + 16x* + 4x3.

2. The wiener index of Z,,,,. is W (m(qur)) = 48,

3. diam (m(qur)) = 3.

Proof.

1. Since (W (m(Z,q); x) = 4x + 2x* and (W (m(Z,); x) = x, then by
Theorem 3.24, W(m(Z,qr ); x) = 2W (m(Z,,); x)W (m(Z,); x) +
2W(m(Zyg); x) + AW (M(Z,); x) = 2x(4x + 2x2) + 2(4x + 2x%) + 4x
= 8x2% + 4x3 + 8x + 4x?% + 4x = 12x + 12x% + 4x3.

2. W (m(Zpgr)) = W' (m(Zpgr); 1) = 12 + 24 + 12 = 48,

3. By Theorem 3.10(1), the result is obtained.

18



The following example shows the classical method to find the wiener polynomial
of m(Zyq,).

Example 3.26. Consider the proper ideals I; =< 0 >, [, =< pq >, I35 =<

pr >, 1, =< qr >,Is =<p >l =<q > and I, =<r >and Ig = Z,,, of the
ring R = Zyq-Where p, q and r are three prime numbers. Then

d(11112) =d(l, 13) =d(l, 14) =d(lp, I5) = d(lzrls) = d(13115) = d(13117) =
d(ly, Ig) = d(I4, I;) = d(ls'ls) =d(le, Ig) = d(17'18) = L

d(lpls) = d(lp 16) = d(11;17) = d(lz»ls) = d(12;14) = d(Iz»Is) = d(13»14) =
d([3, 18) = d(14_, 18) == d([s, 16) = d([s, 17) = d(IG' 17) = 2

d(ly, Ig) = d(l, I;) = d(I3,1s) = d(ly, I5) = 3.

So that the wiener polynomial of Z,,q,- is W(m(Z,q,); x) = 12x + 12x? + 4x>

and the wiener index of Z, 4, is W(m(Z,,,)) = 48.

The following diagram illustrates the maximal chain of ideals of Z,,.

fIZ c {15 c qur

I © Ty

Lellc {55 i Z”‘”
7 = pqr

I, c {17 C Zpgr

L = U € Zpgr

The following figure illustrates the maximal ideal graph mG (Z,, ;)

Proposition 3.27. Consider the ring Z, s Where p, g, and s are four prime

numbers. Then
19



1. The wiener polynomial of Z, 4,5 is (W (m(Zpqrs); x) = 32x + 48x* +
32x3 + 8x*.

2. The wiener index of Z,,s is W (m(qurs)) = 256.

3. diam (m(szqz)) = 4,

Proof. W(m(Z, aip,az_p ar); x) =

2W (m (Zp1a1p2a2___p(r_l)a(r_l)) ; x) W(m(Zp, e ); x) + (ar +

DOW (1 (2, axp,oz_p,,_ 000 )3 %) + 7@ + D W(m(Zy,ar); %)

1. Since (W(m(Zyqr); x) = 12x + 12x2 + 4x and (W (m(Zs); x) = x, then
by theorem 3.24(4), W(m(qurs); x) = ZW(m(qur); x)W(m(Zs);x) +
2W (m(Zpgr ); x) + 8W (m(Z); x) = 2x(12x + 12x2 + 4x3) +
2(12x + 12x? + 4x3) + 8x = 32x + 48x2 + 32x3 + 8x*.

2. W (m(Zpgrs)) = W' (m(Zpgrs); 1) = 32 + 96 + 96 + 32 = 256.

3. By Theorem 3.10(1), the result is obtained.

The following example shows the classical method to find W (m(qurs)).

Example 3.28. Consider theideals I, =< 0>, I, =<pqr >, 13 =<pqs >,
I, =<prs >, [ =<qrs > ,lg =<pq >, =<pr >,Ig =<ps >,
19 =<q7‘>,]10 =<qs>,111 :<TS>,112 =<p>,113 :<q>,

Liy =<r>,L1j5 =<s>and I;4 = Zpgrs Of the ring R = Z,,,;where p,q,r
and s are four prime numbers.

Then we have the following maximal chains:

d(ly, 1) = d(y, I3) = d(y, 1) = d(Iy, Is) = d(Iy, 1) = d(Uy, 1;) = d(Iy, 1) =
d(I5,I¢) = d(3,Ig) = d(I3,110) = d(Uy, I;) = AUy, Ig) = d(Uy, 111) =

d(Is,Ig) = d(Is, I0) = d(Is, I11) = d(le, 112) = d(e, 113) = d(I7,112) =

d(17: 114) = d(ls»llz) = d(ls»lls) = d(19;113) = d(19;114) = d(110,113) =
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d(1101115) = d(111; 114) = d(111»115) = d(112'116) = d(113'116) =
d(114»116) = d(115»116) = 1.

d(Iy, 1) = d(y, I;) = d(y, Ig) = d(Iy, 1) = d(Iy, I10) = d(Iy, I;1) =
d(l,I3) = d(12;14) = d(lz»ls) = d(12»112) = d(12»113) = d(12»114) =
d(I5,1,) = d(3,Is) = d(I3, 1) = d(U3, I13) = d(U3,I5) = d(ly, Is) =

d(Iy, I1z) = Ay, Ii4) = d(y, Iis) = d(Is, I13) = d(s, 114) = d(Us, I15) =
d(le, I7) = d(16; Ig) = d(ls» Iy) = d(16»110) = d(ls» L) = d(17r18) =
d(I7,15) = d(I7,11) = d(7, I16) = d(Ig, I10) = d(Ig, 111) = d(g, 1) =
d(19»110) = d(19»111) = d(19'116) = d(11o»111) = d(110'116) = d(1111116) =
d(112»113) = d(112»114) = d(112»115) = d(113'114) = d(113'115) =

d(ls 15) = 2.

d(Iy, Iiz) = d(y, Liz) = dy, 1e) = d(y, Iis) = d(Ip, Ig) = d(Iy, 1) =
d(Iy, 11) = d(Uy, I1) = d(3,I;) = d(3, 1) = d(3,111) = d(I3,116) =
d(Iy,1e) = d(Iy,1y) = d(Us, I0) = dUy, L) = d(Us, Ig) = d(Is, I;) =
d(ISIIB) = d(15»116) = d(16;114) = d(16»115) = d(17»113) = d(I, 115) =
d(Ig, I13) = d(Ig, I;4) = d(ly, I2) = d(y, Is) = d(I10, I12) = d(I10,I14) =
d(I11,112) = d(I14,113) = 3.

d(117116) = d(12;115) = d(13;114) = d(ly, 113) = d(15»115) =

d(l7, o) = d(Ig, I;1) = d(Ig, I5) = 4.

So that the wiener polynomial of Z,,, is W(m(qurs); x) = 32x + 48x? +
32x3 + 8x* and the wiener index of Z, s is W(m(Z,qs)) = 256.

The following figure illustrates the maximal ideal graph mG (Z,q,-s)

The following diagram illustrates the maximal chain of ideals of the ring Z,,4,-s
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Examples 3.29.

1. The wiener polynomial of the graph m(Z,z2,) is W(m(Z,z,); x) = 7x +
6x2 + 2x3.

The following figure illustrates the maximal ideal graph mG(Z,z,)

2. The wiener polynomial of the graph m(Z,z,) is (m(Z,z,); x) = 10x +
10x2 4 6x° + 2x*.

The following figure illustrates the maximal ideal graph mG (Z,3,)
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3. The wiener polynomial of the graph m(Z,s,) is W(m(Z,s,); x) = 13x +
14x2 4+ 10x3 + 6x* + 2x°,

4. The wiener polynomial of the graph m(Z,s,) is W(m(Z,s,); x) = 16x +
18x2 + 14x3 + 10x* + 6x° + 2x°. The following figure illustrates the
maximal ideal graph mG(Z,s,)

5. The wiener polynomial of the graph m(Z,s,) is W(m(Z,s,); x) = 19x +
22x?% + 18x3 + 14x* + 10x> + 6x° + 2x7. The following figure illustrates
the maximal ideal graph mG (Z,s,)

6. The wiener polynomial of the graph m(Z,z2) is W(m(Z,z,2); x) = 12x +
14x? + 8x3 + 2x*. The following figure illustrates the maximal ideal graph
mG(szqz)
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7. The wiener polynomial of the graph m(Z,s,2) is W(m(Z,z,2); x) = 17x +
22x?% + 17x3 + 8x* + 2x°,

8. The wiener polynomial of the graph m(Z,s,2y is W(m(Z,s,2); x) = 22x +
30x2 + 26x3 + 17x* + 8x> + 2x°.
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