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Abstract 
 

   In this project, we introduce a new method to find the wiener polynomial and 

wiener index of maximal ideal graphs 𝑚(ℤ𝑛) of rings ℤ𝑛 where 𝑛 =

𝑝1
α1  𝑝2

α2  𝑝3
α3 …𝑝𝑘

α𝑘 , 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 1 ≤ 𝑖 ≤ 𝑘.  
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INTRODUCTION 
 

    Let 𝑅  be a ring.  An ideal 𝐼1 of 𝑅 is maximal in an ideal 𝐼2 of 𝑅 if there is no 

ideal 𝐼3 of 𝑅  such that 𝐼1 ⊂ 𝐼3 ⊂  𝐼2 (Ahmad and Hummadi 2023). A chain of 

proper ideals 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ of 𝑅 is called maximal chain of ideals of 𝑅 if 𝐼𝑡−1 

is maximal in 𝐼𝑡 for each 𝑡 ∈ ℤ+. The maximal ideal graph of 𝑅, denoted by 𝑚(𝑅), 

is the undirected graph with vertex set, the set of all ideals of 𝑅, where two vertices 

𝐼 and 𝐽 are adjacent if and only if  𝐼 maximal in 𝐽, or 𝐽 maximal in 

𝐼 (Ahmad and Hummadi 2023). Let 𝑑(𝑢, 𝑣) denote the distance between 

vertices 𝑢 and 𝑣 in a graph 𝐺. The Wiener index of 𝐺 is defined as 𝑊(𝐺)  =

 ∑𝑑(𝑢, 𝑣)
{𝑢,𝑣}                 

 where the sum is over all unordered pairs {𝑢, 𝑣} of distinct vertices in 

𝐺  and the Wiener polynomial (with a parameter 𝑥) of 𝐺 is 𝑊(𝐺; 𝑥)  =  ∑ 𝑥𝑑(𝑢,𝑣)
{𝑢,𝑣}                 

 

where the sum is taken over the same set of pairs (Sagan , Yeh and Zhang 1996).  

In the chapter three we introduce a new method to find diameter, Wiener index 

and the Wiener polynomial of maximal ideal graphs  𝑚(ℤ𝑛) where 𝑛 =
𝑝1
α1  𝑝2

α2  𝑝3
α3 …𝑝𝑘

α𝑘 , 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+ and 1 ≤ 𝑖 ≤ 𝑘. 
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 CHAPTER ONE  

Definitions and Backgrounds of ring theory 

Definition 1.1 (M and I 1969, 1). A ring R is a set with two binary operations 

(addition and multiplication) such that 

1) 𝑅 is an abelian group with respect to addition (so that 𝑅 has a zero element, 

denoted by 0, and every 𝑥 ∈ 𝑅 has an (additive) inverse, −𝑥). 

2) Multiplication is associative ((𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)) and distributive over addition 

(𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧, (𝑦 + 𝑧)𝑥 = 𝑦𝑥 + 𝑧𝑥). 

We shall consider only rings which are commutative: 

3) 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝑅, 

and have an identity element (denoted by 1): 

4) ∃1 ∈ 𝑅 such that 𝑥1 = 1𝑥 = 𝑥 for all 𝑥 ∈ 𝑅. 

 

Example 1.2 (Dummit and Foote 2004, 224).  

1. The ring of integers ℤ, under the usual operations of addition and 

multiplication is a commutative ring with identity (the integer 1). 

2. The quotient group ℤ/𝑛 ℤ is a commutative ring with identity (the element 1) 

under the operations of addition and multiplication of residue classes.  

 

Definition 1.3 (Dummit and Foote 2004, 228). A subring of the ring 𝑅 is a 

subgroup of 𝑅 that is closed under multiplication. 

 

Definition 1.4 (Dummit and Foote 2004, 242). Let 𝑅 be a ring, let 𝐼 be a subset 

of 𝑅 and let 𝑟 ∈ 𝑅. 

1) 𝑟𝐼 = {𝑟𝑎 | 𝑎 ∈ 𝐼} and 𝐼𝑟 = {𝑎𝑟 | 𝑎 ∈ 𝐼}. 

2) 𝐴 subset 𝐼 of 𝑅 is a left ideal of R if 

a. 𝐼 is a subring of 𝑅, and 
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b. 𝐼 is closed under left multiplication by elements from 𝑅, i.e., 𝑟𝐼 ⊆ 𝐼 for 

all 𝑟 ⊆ 𝑅. 

Similarly 𝐼 is a right ideal if (a) holds and in place of (b) one has 

c. 𝐼 is closed under right multiplication by elements from 𝑅, i.e., 𝐼𝑟 ⊆ 𝐼 

for all 𝑟 ∈ 𝑅 . 

3) A subset 𝐼 that is both a left ideal and a right ideal is called an ideal (or, for 

added emphasis, a two-sided ideal) of 𝑅.  

 

Example 1.5. Consider the ring of all rational numbers ℚ. Then ℤ is a subring of 

ℚ but it is not an ideal of ℚ. 

 

Definition 1.6 (Dummit and Foote 2004, 255). Assume 𝑅 is commutative. An 

ideal 𝑃 is called a prime ideal if 𝑃 ≠ 𝑅 and whenever the product 𝑎𝑏 of two 

elements 𝑎, 𝑏 ∈ 𝑅 is an element of 𝑃, then at least one of 𝑎 and 𝑏 is an element 

of 𝑃. 

 

Definition 1.7 (Dummit and Foote 2004, 253). An ideal 𝑀 in an arbitrary ring 𝑅 

is called a maximal ideal if 𝑀 ≠ 𝑅 and the only ideals containing 𝑀 are 𝑀 and 𝑅.  
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CHAPTER TWO 

Definitions and Backgrounds of Graph Theory 

Definition 2.1 (Gross, Yellen and Zhang 2014, 2). A graph 𝐺 = (𝑉, 𝐸) consists 

of two sets 𝑉and 𝐸. 

1) The elements of 𝑉 are called vertices (or nodes). 

2) The elements of 𝐸 are called edges. 

3) Each edge has a set of one or two vertices associated to it, which are called 

its endpoints. An edge is said to join its endpoints. 

 

Definition 2.2 (Naduvath 2017, 23). A walk in a graph 𝐺 is an alternating 

sequence of vertices and connecting edges in 𝐺. In other words, a walk is any 

route through a graph from vertex to vertex along edges. If the starting and end 

vertices of a walk are the same, then such a trail is called a closed walk. 

 

Definition 2.3 (Naduvath 2017, 23). A trail is a walk that does not pass over the 

same edge twice. A trail might visit the same vertex twice, but only if it comes 

and goes from a different edge each time. A tour is a trail that begins and ends on 

the same vertex. 

 

Definition 2.4 (Naduvath 2017, 23). A path is a walk that does not include any 

vertex twice, except that its first vertex might be the same as its last. A cycle or a 

circuit is a path that begins and ends on the same vertex. 

Definition 2.5 (Naduvath 2017, 23). The length of a walk or circuit or path or 

cycle is the number of edges in it. 
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Definition 2.6 (Naduvath 2017, 24). The distance between two vertices 𝑢 and 𝑣 

in a graph 𝐺, denoted by 𝑑𝐺(𝑢; 𝑣) or simply 𝑑(𝑢; 𝑣), is the length (number of 

edges) of a shortest path (also called a graph geodesic) connecting them. This 

distance is also known as the geodesic distance. 

 

Definition 2.7 (Naduvath 2017, 24). The eccentricity of a vertex 𝑣, denoted by 

𝜀(𝑣), is the greatest geodesic distance between 𝑣 and any other vertex. It can be 

thought of as how far a vertex is from the vertex most distant from it in the graph. 

 

Definition 2.8 (Naduvath, 2017, p. 24). The radius 𝑟 of a graph 𝐺, denoted 

by 𝑟𝑎𝑑(𝐺), is the minimum eccentricity of any vertex in the graph. That 

is, 𝑟𝑎𝑑(𝐺) = 𝑚𝑖𝑛
𝑣∈𝑉(𝐺)

𝜀(𝑣). 

Definition 2.9 (Naduvath 2017, 24).The diameter of a graph 𝐺, denoted by 

𝑑𝑖𝑎𝑚(𝐺) is the maximum eccentricity of any vertex in the graph. That is, 

𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥
𝑣∈𝑉(𝐺)

𝜀(𝑣). 

Example 2.10 The following figure illustrates a graph with eight vertices  

𝑉 = {1, 2, 3, 4, 5, 6, 7, 8} and nine edges 𝐸 = {(1,2), (1,3), (1,4), (1,5), (1,6), 

(1,7), (1,8), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5),  (3,6), (3,7), 

(3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), (6,7), (6,8), (7,8)}. 

 

 

 

 

1. The distance between elements are as follows: 
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𝑑(1,2) = 1, 𝑑(1,3) = 1, 𝑑(1,4) = 2,𝑑(1,5) = 3,𝑑(1,6) = 2,𝑑(1,7) = 3, 

𝑑(1, 8) = 3,𝑑(2,3) = 2, 𝑑(2,4) = 3,𝑑(2,5) = 2,𝑑(2,6) = 1, 𝑑(2,7) = 2, 

𝑑(2,8) = 2,𝑑(3,4) = 1,𝑑(3,5) = 2,𝑑(3,6) = 3, 𝑑(3,7) = 4,𝑑(3,8) = 4,                    

𝑑(4,5) = 1,𝑑(4,6) = 2,𝑑(4,7) = 3,𝑑(4,8) = 3,𝑑(5,6) = 1,𝑑(5,7) =

2, 𝑑(5,8) = 2, 𝑑(6,7) = 1, 𝑑(6,8) = 1, 𝑑(7,8) = 1. 

2. The eccentricity of vertices are as follows: 

𝜀(1) = 𝑀𝑎𝑥{𝑑(1,2), 𝑑(1,3), 𝑑(1,4), 𝑑(1,5), 𝑑(1,6), 𝑑(1,7), 𝑑(1,8)} 

        = 𝑀𝑎𝑥{ 1, 2, 3} = 3. 

 𝜀(2) =  𝑀𝑎𝑥{𝑑(2,1), 𝑑(2,3), 𝑑(2,4), 𝑑(2,5), 𝑑(2,6),  𝑑(2,7), 𝑑(2,8)} 

         = 𝑀𝑎𝑥{ 1, 2, 3} = 3.   

𝜀(3) = 𝑀𝑎𝑥{ 𝑑(3,1), 𝑑(3,2), 𝑑(3,4), 𝑑(3,5), 𝑑(3,6), 𝑑(3,7), 𝑑(3,8)}  

         = 𝑀𝑎𝑥{ 1, 2, 3,4} = 4.  

𝜀(4) = 𝑀𝑎𝑥{ 𝑑(4,1), 𝑑(4,2), 𝑑(4,3), 𝑑(4,5), 𝑑(4,6), 𝑑(4,7), 𝑑(4,8)} 

         = 𝑀𝑎𝑥{ 1, 2, 3} = 3.  

𝜀(5) = 𝑀𝑎𝑥{ 𝑑(5,1), 𝑑(5,2), 𝑑(5,3), 𝑑(5,4), 𝑑(5,6), 𝑑(5,7) , 𝑑(5,8) } 

         = 𝑀𝑎𝑥{ 1, 2, 3} = 3.  

𝜀(6) = 𝑀𝑎𝑥{ 𝑑(6,1), 𝑑(6,2), 𝑑(6,3), 𝑑(6,4), 𝑑(6,5), 𝑑(6,7), 𝑑(6,8)} 

        = 𝑀𝑎𝑥{ 1, 2, 3} = 3.  

𝜀(7) = 𝑀𝑎𝑥{ 𝑑(7,1), 𝑑(7,2), 𝑑(7,3), 𝑑(7,4), 𝑑(7,5), 𝑑(7,6), 𝑑(7,8)} 

         = 𝑀𝑎𝑥{ 1, 2, 3,4} = 4.  

𝜀(8) = 𝑀𝑎𝑥{𝑑(8,1), 𝑑(8,2), 𝑑(8,3), 𝑑(8,4), 𝑑(8,5), 𝑑(8,6), 𝑑(8,7) } 

         = 𝑀𝑎𝑥{ 1, 2, 3,4} = 4. 

3. The radius of a graph 𝐺 is 

 𝑟𝑎𝑑(𝐺) = 𝑚𝑖𝑛 { 𝜀(1), 𝜀(2), 𝜀(3),𝜀(4), 𝜀(5),𝜀(6),𝜀(7), 𝜀(8)} 

               =  𝑚𝑖𝑛{3, 3, 4 , 3, 3, 3, 4, 4}. So that  𝑟𝑒𝑑(𝐺) = 3. 

4. The diameter of a graph 𝐺 is  

𝐷𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥{ 𝜀(1),𝜀(2),𝜀(3),𝜀(4),𝜀(5),𝜀(6), 𝜀(7), 𝜀(8)} 

                 = 𝑚𝑎𝑥{3, 3, 4, 3, 3, 3, 4, 4}. So that  𝐷𝑖𝑎𝑚(𝐺) = 4. 
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CHAPTER THREE 

   In this chapter, we study maximal chain of ideals of rings ℤn where 𝑛 =

𝑝1
α1  𝑝2

α2  𝑝3
α3 …𝑝𝑘

α𝑘 , 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 1 ≤ 𝑖 ≤ 𝑘 ≠ 1. 

Then we find the maximal ideal graph 𝑚(ℤ𝑛) of the ring ℤ𝑛 for some 𝑛 ∈ ℤ+. 

Finally the Wiener index, Wiener polynomial, dimeter and radical of the maximal 

ideal graphs 𝑚(ℤ𝑛) are investigated. 

 

Definition 3.1 (Ahmad and Hummadi 2023). An ideal 𝐻1 of a ring 𝑅 is maximal 

in an ideal 𝐻2 of 𝑅 if there is no ideal 𝐻3 of 𝑅  such that 𝐻1 ⊂ 𝐻3 ⊂  𝐻2. 

 

Example 3.2 Consider the ring of integers ℤ. Then  

1. The ideals of ℤ are the form 𝑛ℤ where 𝑛 ∈ ℤ+ ∪ {0}.  

2. The nonzero prime (resp. maximal) ideals of ℤ are the form 𝑛ℤ where 𝑛 is a 

prime number. Furthermore, the zero ideal is prime but it is not maximal.  

3. For each prime number 𝑝, if 𝑛 = 𝑝𝑚, then 𝑛ℤ is maximal in 𝑚ℤ.  

4. In the ring of integers ℤ, the zero ideal is not maximal in any another ideal. 

 

Definition 3.3 (Ahmad and Hummadi 2023). A chain of proper ideals 

𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ of a ring 𝑅 is called maximal chain of ideals of 𝑅 if 𝐼𝑡−1 is 

maximal in 𝐼𝑡 for each 𝑡 ∈ ℤ+. If 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ ⊂ 𝐼ℎ is a finite chain, 

then  𝐼0 is said to be the initial ideal and 𝐼ℎ is the terminal ideal of the chain. 

An ideal  𝐾0 of 𝑀 is called a maximal ideal of length 𝑚 with respect to the 

maximal chain of ideals  𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑚−1 ⊂ 𝑀. The length of  

𝐾0 is said to be ∞, if there is no such finite maximal chain of ideals with 

initial ideal  𝐾0.  
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Definition 3.4. Let 𝑅 be a commutative ring with identity. The maximal ideal 

graph of 𝑅, denoted by 𝑚(𝑅), is the undirected graph with vertex set, the set of 

all ideals of 𝑅, where two vertices 𝐼 and 𝐽 are adjacent if and only if  𝐼 maximal 

in 𝐽, or 𝐽 maximal in 𝐼. 

 

Remark 3.5. Let 𝑅 be a ring and 𝑚(𝑅) is the maximal ideal graph of 𝑅. Then 

1. The length of the maximal chain 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ ⊂ 𝐼ℎ of 𝑅 is ℎ and the 

length of the path 𝐼0 𝑒1 𝐼1  𝑒2 𝐼2 𝑒3…  𝑒ℎ 𝐼ℎ of 𝑚(𝑅) is ℎ. 

2. 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ ⊂ 𝐼ℎ is a shortest maximal chain of ideals of 𝑅 with the 

initial ideal 𝐼0 and terminal ideal 𝐼ℎ  if and only if 𝐼0 𝑒1 𝐼1  𝑒2 𝐼2 𝑒3…  𝑒ℎ 𝐼ℎ is 

a shortest path of 𝑚(𝑅) with the initial vertex 𝐼0 and terminal vertex 𝐼ℎ 

where 𝑒𝑖 = (𝐼𝑖−1, 𝐼𝑖).  

Remark 3.6. Let 𝑅 be a commutative ring with identity. If |𝑉(𝑚(𝑅))| > 2, then 

the 𝑚(𝑅) graph is not complete. 

Proof. Suppose 𝑅 has at least three ideals 𝐼 =< 0 >, 𝐽 and 𝐾. Without loss of 

generality if 𝐼 is a maximal in both 𝐽 and 𝐾, then neither 𝐽 maximal in 𝐾 nor 𝐾 

maximal in 𝐽. So that two vertices 𝐽 and 𝐾 are not adjacent. 

 

Theorem 3.7. If 𝑅 is an Artinian ring, then the graph 𝑚𝐺(𝑅) is connected.  

Proof. By (Ahmad and Hummadi 2023, Theorem, 2.12), the result is obtained.  

 

Example 3.8. Consider the ring ℤ36 = {0, 1, 2, … , 35}. The ring ℤ36 has 

the following proper ideals: 𝐼0 =< 0 >, 𝐼1 =< 18 >= {0, 18}, 𝐼2 =<

12 > = {0, 12, 24}, 𝐼3 =< 9 >={0, 9, 18, 27}, 𝐼4 =< 6 > ={0, 6, 12, 18, 

24, 30}, 𝐼5 =< 4 >={0, 4, 8, 12, 16, 20, 24, 28, 32}, 𝐼6 =< 3 >={0, 3, 6, 

12, 15,18, 21, 24, 27, 30, 33}, 𝐼7 =< 2 >={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20, 22, 24, 26, 28, 30, 32, 34}. 
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The following diagram illustrates the maximal chain of ideals of the ring 

ℤ36. 

𝐼0 ⊂

{
 
 

 
 𝐼1 ⊂ {

𝐼3 ⊂ 𝐼6 ⊂ ℤ36

𝐼4 ⊂ {
𝐼6 ⊂ ℤ36
𝐼7 ⊂ ℤ36

𝐼2 ⊂ {
𝐼4 ⊂ {

𝐼6 ⊂ ℤ36
𝐼7 ⊂ ℤ36

𝐼5 ⊂ 𝐼7 ⊂ ℤ36

 

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ36) 

 

Definition 3.9 (Sagan , Yeh and Zhang 1996). Let 𝑑(𝑢, 𝑣) denote the distance 

between vertices 𝑢 and 𝑣 in a graph 𝐺. The Wiener index of 𝐺 is defined as 

 𝑊(𝐺)  = ∑𝑑(𝑢, 𝑣)
{𝑢,𝑣}                 

 where the sum is over all unordered pairs {𝑢, 𝑣} of distinct 

vertices in 𝐺. If 𝑥 is a parameter, then the Wiener polynomial of 𝐺 is 𝑊(𝐺; 𝑥)  =

 ∑ 𝑥𝑑(𝑢,𝑣)
{𝑢,𝑣}                 

 where the sum is taken over the same set of pairs. 

Theorem 3.10. Let  𝐺 be a graph and 𝑊(𝐺), 𝑊(𝐺; 𝑥) be the Wiener index and 

Wiener polynomial of 𝐺 respectively. Then  

1. 𝑑𝑒𝑔(𝑊(𝐺;  𝑞)) equals the diameter of 𝐺. 

2. 𝑊(𝐺) = 𝑓′(1) 

Proof.  

1. By (Sagan , Yeh and Zhang 1996, 960 , Theorem 1.1), the result is obtained. 

2. By (Sagan , Yeh and Zhang 1996, 960, theorem 1.1(5)), the result is obtained. 
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The following proposition is easy to prove 

Proposition 3.11. If 𝑹 is a field, then   

1. 𝑊(𝑚(𝑹)) = 1 and 𝑊(𝑚(𝑹); 𝑥) = 𝑥.   

2. 𝑟𝑎𝑑(𝑚(𝑹)) = 𝑑𝑖𝑎𝑚(𝑚(𝑹)) = 1. 

 

Theorem 3.12. Let 𝑃𝑛 be a path with 𝑛 vertices for some 𝑛 ∈ ℤ+. Then  

1. 𝑊(𝑃𝑛) = (
𝑛 + 1
3

) =
(𝑛+1)!

(𝑛−2)!3!
 ; 

2. 𝑊(𝑃𝑛; 𝑥) = (𝑛 − 1)𝑥 + (𝑛 − 2)𝑥
2 + (𝑛 − 3)𝑥3 +⋯+ 2𝑥𝑛−2 + 𝑥𝑛−1. 

3. 𝑑𝑖𝑎𝑚(𝑚(𝑃𝑛)) = 𝑛 − 1 

Proof. 

1.  By (Sagan , Yeh and Zhang 1996, Theorem 1.3(5)), the result is obtained. 

2. By (Sagan , Yeh and Zhang 1996, Theorem 1.2(5)), the result is obtained. 

3. By Theorem 3.10(1), the result is obtained. 

 

Theorem 3.13. Consider the ring ℤ𝑝𝑛 where 𝑝 is a prime number and 𝑛 ∈ ℤ+.  

Let 𝐼𝑖 =< 𝑝
𝑖 > for 0 ≤ 𝑖 ≤ 𝑛. Then 

1. For any two ideals 𝐼𝑟, 𝐼𝑠 of  ℤ𝑝𝑛,  𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

2. 𝑊(𝑚(ℤ𝑝𝑛)) = (
𝑛 + 2
3

) =
(𝑛+2)!

(𝑛−1)!
 

3. 𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥
2 + (𝑛 − 2)𝑥3 +⋯+ 𝑥𝑛 

4. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑛. 

5. 𝑟𝑎𝑑 (𝑚(ℤ𝑝𝑛)) = {

𝑛

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑛+1

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

  

Proof. It is clear that the ideals of ℤ𝑝𝑛 are of the form 𝐼𝑖 =< 𝑝𝑖 >= for 0 ≤ 𝑖 ≤

𝑛. That is there are 𝑛 + 1 ideals as follows: 
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0ℤ𝑝𝑛, 𝑝
𝑛−1ℤ𝑝𝑛 , 𝑝

𝑛−1ℤ𝑝𝑛 , 𝑝
𝑛−2ℤ𝑝𝑛 , … , 𝐼1 =  𝑝ℤ𝑝𝑛, 𝐼0 = ℤ𝑝𝑛. This means that the 

graph 𝑚(ℤ𝑝𝑛) is a path 𝑃𝑛+1, that is it is a path with 𝑛 + 1 vertices.  

1. Let 𝐼𝑟 =< 𝑝
𝑟 > and 𝐼𝑠 =< 𝑝

𝑠 > be two ideals of ℤ𝑝𝑛. Then exactly one of 

the following is true.  𝑎) 𝑟 = 𝑠     b)  𝑟 > 𝑠      c) 𝑟 < 𝑠 .  

a) If 𝑟 = 𝑠, then |𝑟 − 𝑠| = 0 and 𝐼𝑟 = 𝐼𝑠, consequently, 𝑑(𝐼𝑟 , 𝐼𝑠) = 0 = |𝑟 − 𝑠|.  

b) If  𝑟 > 𝑠 , then the chain 𝐼𝑟 ⊂ 𝐼𝑟−1 ⊂ 𝐼𝑟−2 ⊂ . . . ⊂  𝐼𝑠+1 ⊂ 𝐼𝑠 is the shortest 

maximal chain of ideals with the initial ideal 𝐼𝑟 and the terminal ideal 𝐼𝑠. So 

that 𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

c) Similarly, if 𝑟 < 𝑠, then   𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

 

The following figure illustrates the distance from < 𝑝𝑠 > to < 𝑝𝑠 > in the 

maximal ideal graph 𝑚𝐺(ℤ𝑝𝑛) 

 

 

2. Since 𝑊(𝑚(ℤ𝑝𝑛)) = 𝑊(𝑃𝑛+1), then by Theorem 3.12(1), 𝑊(𝑚(ℤ𝑝𝑛)) =

(
𝑛 + 2
3

) =
(𝑛+2)!

(𝑛−1)!3!
 and  

3. By Theorem 3.12(2), 𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑊(𝑃𝑛+1; 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥
2 +

(𝑛 − 2)𝑥3 +⋯+ 𝑥𝑛. 

4. By Theorem 3.10(1), 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑑𝑒𝑔𝑊(𝑃𝑛+1; 𝑥) = 𝑛. 

5. It is clear that 𝜀(< 0 >) = 𝜀(ℤ𝑝𝑛) = 𝑛, 𝜀(< 𝑝𝑛−1 >) = 𝜀(< 𝑝 >) = 𝑛 − 1, 

𝜀(< 𝑝𝑛−2 >) = 𝜀(< 𝑝2 >) = 𝑛 − 2,… . So that for 0 ≤ 𝑖 ≤ 𝑛, 𝜀(<

𝑝𝑛−𝑖 >) = 𝜀(< 𝑝𝑖 >) = 𝑛 − 𝑖. Now, there are two cases. Case one, if 𝑛 is an 

even number, then 𝜀 (< 𝑝
𝑛

2 >) ≤ 𝜀(< 𝑝𝑡 >) where 0 ≤ 𝑡 ≤ 𝑛. Case two, if 𝑛 
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is an add number, then 𝜀 (< 𝑝
𝑛+1

2 >) ≤ 𝜀(< 𝑝𝑡 >) where 0 ≤ 𝑡 ≤ 𝑛. 

Therefore, 𝑟𝑎𝑑 (𝑚(ℤ𝑝𝑛)) = {

𝑛

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑛+1

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

. 

 

Example 3.14. Consider the ring ℤ16 = ℤ24 . Then 𝐼1 =< 0 >= {0}, 𝐼2 =< 2 >

= {0, 2, 4, 6, 8, 10, 12, 14}, 𝐼3 =< 4 >= {0, 4, 8, 12} and 𝐼4 =< 8 >= {0, 8} are 

proper ideals of ℤ16 and 𝐼1 ⊂ 𝐼2 ⊂ 𝐼3 ⊂ 𝐼4 is the maximal chain of ideals of  ℤ16. 

1. By Theorem 3.13(3), the Wiener index of 𝑚( ℤ16) = 𝑚(ℤ24) is 

𝑊(𝑚( ℤ16)) = (
6
3
) =

6!

3!3!
= 20 

2. By Theorem 3.13(4), the wiener polynomial of 𝑚( ℤ16) is 𝑊(𝑚( ℤ16); 𝑥) =

4𝑥 + 3𝑥2 + 2𝑥3 + 𝑥4. 

3. By Theorem 3.13(5), 𝑑𝑖𝑎𝑚(𝑚( ℤ16)) = 4. 

4. By Theorem 3.13(6), 𝑟𝑎𝑑(𝑚( ℤ16)) = 2  

  

Example 3.15. Consider the ring  ℤ128 = ℤ27. Then 

1. 𝑊(𝑚( ℤ128)) = (
7 + 2
3

) =
(7+2)!

(7−1)!3!
=84. 

2. 𝑊(𝑚( ℤ128); 𝑥) = 7𝑥 + 6𝑥
2 + 5𝑥3 + 4𝑥4 + 3𝑥5 + 2𝑥6 + 𝑥7. 

3. 𝑑𝑖𝑎𝑚(𝑚( ℤ128)) = 7. 

4. 𝑟𝑎𝑑(𝑚( ℤ128)) = 4 . 

 

Definition 3.16 (Sagan , Yeh and Zhang 1996, 960). The Cartesian product of 

two graphs 𝐺1 and 𝐺2, is a graph  𝐺1 × 𝐺2 such that 𝑉(𝐺1 × 𝐺2) = {(𝑣1, 𝑣2): 𝑣1 ∈

𝐺1 and 𝑣2 ∈ 𝐺2} and 𝐸(𝐺1 × 𝐺2) = {(𝑢1, 𝑢2)(𝑣1, 𝑣2):  𝑢1𝑣1 ∈ 𝐸(𝐺1) and 𝑢2 =

𝑣2 or 𝑢2𝑣2 ∈ 𝐸(𝐺2) and 𝑢1 = 𝑣1}. 
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Proposition 3.17. Let 𝑝 and 𝑞 be any two distinct prime numbers and 𝑛,𝑚 ∈ ℤ+. 

Then    

1. ℤ𝑝𝑚 × ℤ𝑞𝑛 = {(𝑎, 𝑏): 𝑎 ∈ ℤ𝑝𝑚 and 𝑏 ∈ ℤ𝑞𝑛} is a ring. 

2. |ℤ𝑝𝑚| = 𝑝
𝑚 , |ℤ𝑞𝑛| = 𝑞

𝑛 and |ℤ𝑝𝑚 × ℤ𝑞𝑛| = |ℤ𝑝𝑚𝑞𝑛| = 𝑝𝑚𝑞𝑛 

3. The ideals of ℤ𝑝𝑚 × ℤ𝑞𝑛 are of the form 𝐼1 × 𝐼2 where 𝐼1 is an ideal of ℤ𝑝𝑚 

and 𝐼2 is an ideal of ℤ𝑞𝑛. 

4. 𝐼1 × 𝐼2 is maximal in 𝐽1 × 𝐽2 if and only if 𝐼1 is maximal in 𝐽1 and 𝐼2 = 𝐽2 or 𝐼2 

is maximal in 𝐽2 and 𝐼1 = 𝐽1. 

5. 𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛) = 𝑚(ℤ𝑝𝑚) × 𝑚(ℤ𝑞𝑛) = 𝑚(ℤ𝑝𝑚𝑞𝑛). 

6. 𝑉 (𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛)) = 𝑉 (𝑚(ℤ𝑝𝑚)) × 𝑉(𝑚(ℤ𝑞𝑛)) = 𝑉(𝑚(ℤ𝑝𝑚𝑞𝑛)) 

7. 𝐼1 × 𝐼2 is maximal in 𝐽1 × 𝐽2 if and only if (𝐼1 × 𝐼2)(𝐽1 × 𝐽2) ∈ 𝐸(𝑚(ℤ𝑝𝑚 ×

ℤ𝑞𝑛)). 

Proof.  

1, 2, 3 and 4 are obvious. 

5, 6, 7 are direct consequences of Definition 3.16. 

 

Note that if 𝑝 = 𝑞, then 𝑉 (𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛)) ≠ 𝑉 (𝑚(ℤ𝑝𝑚)) × 𝑉(𝑚(ℤ𝑞𝑛)). For 

example 𝑉(𝑚(ℤ2 × ℤ2)) ≠ 𝑉(𝑚(ℤ2)) × 𝑉(𝑚(ℤ2)), since 𝑉(𝑚(ℤ2 × ℤ2)) =

{< 0 >×< 0 >, ℤ2 ×< 0 >, < 0 >× ℤ2, ℤ2 × ℤ2,  {(0, 0), (1, 1)} and 

𝑉(𝑚(ℤ2)) × 𝑉(𝑚(ℤ2))={< 0 >×< 0 >,  ℤ2 ×< 0 >,  < 0 >× ℤ2,  ℤ2 × ℤ2}  

 

Definition 3.18 (Sagan , Yeh and Zhang 1996, 961). The ordered Wiener 

Polynomial defined by 𝑊̅(𝐺; 𝑞) = ∑𝑥𝑑(𝑢,𝑣)
(𝑢,𝑣)               

, where the sum is over all ordered 

pairs (𝑢, 𝑣) of vertices, including those where 𝑢 =  𝑣. Thus, 𝑊̅(𝐺; 𝑞) =

∑𝑥𝑑(𝑢,𝑣)
(𝑢,𝑣)               

= 2𝑊(𝐺; 𝑞) + |𝑉(𝐺)|.  
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Theorem 3.19 (Sagan , Yeh and Zhang 1996, 961, Proposition 1.4(2)). Suppose 

that 𝐺1 and 𝐺2 are two connected graphs. Then 𝑊̅( 𝐺1 ×𝐺2; 𝑥) = 𝑊̅(𝐺1; 𝑥) ×

𝑊̅(𝐺2; 𝑥). 

 

Theorem 3.20. Let 𝑝 and 𝑞 be any two prime numbers and 𝑛,𝑚 ∈ ℤ+. Then 

𝑊(𝑚(ℤ𝑝𝑚𝑞𝑛); 𝑥) = 2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 + 1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) 

+ (𝑚 + 1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥). 

Proof. By Theorem 3.19, 𝑊̅(ℤ𝑝𝑚𝑞𝑛; 𝑥) = 𝑊̅(ℤ𝑝𝑚; 𝑥) × 𝑊̅(ℤ𝑞𝑛; 𝑥). Then by  

Definition 3.18, (2𝑊(𝑚(ℤ𝑝𝑚𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚𝑞𝑛)) |) =

(2𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚)) |) (2𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑞𝑛)) |). So 

that 2𝑊(𝑚(ℤ𝑝𝑚𝑞𝑛); 𝑥)=4𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

2 |𝑉 (𝑚(ℤ𝑞𝑛))|𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + 2 |𝑉 (𝑚(ℤ𝑝𝑚))|𝑊(𝑚(ℤ𝑞𝑛); 𝑥). Then 

𝑊(𝑚(ℤ𝑝𝑚𝑞𝑛); 𝑥)=2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

|𝑉 (𝑚(ℤ𝑞𝑛))|𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚))|𝑊(𝑚(ℤ𝑞𝑛); 𝑥) = 

2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 + 1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + (𝑚 +

1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥). 

 

Remark 3.21. Consider the ring ℤ𝑝𝑞where 𝑝 and 𝑞 are two prime numbers. Then  

1. The wiener polynomial of the maximal ideal graph 𝑚(ℤ𝑝𝑞) is 

𝑊(𝑚(ℤ𝑝𝑞); 𝑥) = 4𝑥 + 2𝑥
2.  

2. The wiener index of the maximal ideal graph 𝑚(ℤ𝑝𝑞) is 𝑊(𝑚(ℤ𝑝𝑞)) = 8. 

3. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑞)) = 2. 

Proof.  
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1. By Proposition 3.10, 𝑊(𝑚(ℤ𝑝)) = 𝑊 (𝑚(ℤ𝑞)) = 𝑥. By Theorem 3.20,  

𝑊(𝑚(ℤ𝑝𝑞); 𝑥) = 2𝑊(𝑚(ℤ𝑝); 𝑥)𝑊(𝑚(ℤ𝑞); 𝑥) + (1 + 1)𝑊(𝑚(ℤ𝑝); 𝑥) +

(1 + 1)𝑊(𝑚(ℤ𝑞); 𝑥)=4𝑥 + 2𝑥
2. 

2. 𝑊(𝑚(ℤ𝑝𝑞)) = 𝑊′(𝑚(ℤ𝑝𝑞); 1) = 4 + 4(1) = 8. 

3. By Theorem 3.10(1), the result is obtained. 

The following diagram illustrates the maximal chains of ideals of ℤ𝑝𝑞. 

𝐼1 ⊂ {
𝐼2 ⊂ ℤ𝑝𝑞
𝐼3 ⊂ ℤ𝑝𝑞

 

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ𝑝𝑞) 

 

Example 3.22.  

1. The wiener polynomial of each of ℤ6, ℤ10, ℤ14, ℤ15, ℤ21 is 𝑊(𝑚(ℤ𝑝𝑞); 𝑥) =

4𝑥 + 2𝑥2.  

2. The wiener index of each of ℤ6, ℤ10, ℤ14, ℤ15, ℤ21 is 𝑊(𝑚(ℤ𝑝𝑞)) = 8 

3. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑞)) = 2. 

 

Proposition 3.23. Consider the ring ℤ𝑝2𝑞2 where 𝑝 and 𝑞 are two prime numbers. 

Then 

1. The wiener polynomial of ℤ𝑝2𝑞2 is (𝑊(𝑚(ℤ𝑝2𝑞2); 𝑥) = 12𝑥 + 14𝑥
2 + 8𝑥3 +

2𝑥4.  

2. The wiener index of ℤ𝑝2𝑞2 is 𝑊(𝑚(ℤ𝑝2𝑞2)) = 68. 
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3. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝2𝑞2)) = 4. 

Proof.  

1. By Theorem 3.13(4), 𝑊(𝑚(ℤ𝑝2); 𝑥) = 𝑊(𝑚(ℤ𝑞2); 𝑥) = 2𝑥 + 𝑥2.  

By Theorem 3.20, 𝑊(𝑚(ℤ𝑝2𝑞2); 𝑥) = 2𝑊(𝑚(ℤ𝑝2); 𝑥)𝑊(𝑚(ℤ𝑞2); 𝑥) +

(2 + 1)𝑊(𝑚(ℤ𝑝2); 𝑥) + (2 + 1)𝑊(𝑚(ℤ𝑞2); 𝑥)=2(2𝑥 + 𝑥
2)2 +

6(2𝑥 + 𝑥2) = 8𝑥2 + 8𝑥3 + 2𝑥4 + 12𝑥 + 6𝑥2 = 12𝑥 + 14𝑥2 + 8𝑥3 + 2𝑥4. 

2. By Theorem 3.10(2), 𝑊(𝑚(ℤ𝑝2𝑞2)) = 𝑊
′(𝑚(ℤ𝑝2𝑞2); 1) = 12 + 24 +

24 + 8 = 68 

3. By Theorem 3.10(1), the result is obtained. 

The following diagram illustrates the maximal chain of ideals of the ring 

ℤ𝑝2𝑞2. 

𝐼0 ⊂

{
  
 

  
 
𝐼1 ⊂ {

𝐼3 ⊂ 𝐼6 ⊂ ℤ𝑝2𝑞2

𝐼4 ⊂ {
𝐼6 ⊂ ℤ𝑝2𝑞2

𝐼7 ⊂ ℤ𝑝2𝑞2

𝐼2 ⊂ {
𝐼4 ⊂ {

𝐼6 ⊂ ℤ𝑝2𝑞2

𝐼7 ⊂ ℤ𝑝2𝑞2

𝐼5 ⊂ 𝐼7 ⊂ ℤ𝑝2𝑞2

 

The following figure illustrates the maximal ideal graph  𝑚𝐺(ℤ𝑝2𝑞2) 

 

Theorem 3.24. Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑟 be 𝑟 distinct prime numbers and 𝑟, 𝛼1, 𝛼2,

𝛼3, … , 𝛼𝑟 ∈ ℤ
+. Then  
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1. ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟 = ℤ𝑝1𝛼1 × ℤ𝑝2𝛼2 ×…× ℤ𝑝𝑟𝛼𝑟 = ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝𝑟𝛼𝑟 =⊕𝑖=1
𝑟 ℤ𝑝𝑖𝛼𝑖 . 

2. 𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟) = 𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) × 𝑚(ℤ𝑝𝑟𝛼𝑟) = 𝑚(ℤ𝑝1𝛼1) ×

𝑚(ℤ𝑝2𝛼2) × …×𝑚(ℤ𝑝𝑟𝛼𝑟). 

3. 𝑉(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟)) = 𝑉(𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1))) × 𝑉(𝑚(ℤ𝑝𝑟𝛼𝑟)) =

𝑉(𝑚(ℤ𝑝1𝛼1)) × 𝑉(𝑚(ℤ𝑝2𝛼2)) × …× 𝑉(𝑚(ℤ𝑝𝑟𝛼𝑟)) 

4. 𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥) =

2𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). 

Proof.  

1. By (Dummit and Foote 2004, 357, Exercises 20(a)) and (Michel n.d., 8, 

Theorem 2.25 ), we obtain the result.  

2. By Definition 3.16, we obtain the result.  

3. By Definition 3.16, we obtain the result. 

4. By Theorem 3.19,  𝑊̅(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥) =

𝑊̅ (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) × 𝑊̅(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). Then by Definition 

3.18,  (2𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥) + |𝑉 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟)) |) =

(2𝑊 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) +

|𝑉 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1))) |) (2𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟)) |). 

So that 

𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥)=

4𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) +

2 |𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟))|𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) +

2 |𝑉 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)))|𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). Then 
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𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥)=

2𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) +

|𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟))|𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) +

|𝑉 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)))|𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) = 

2𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) .  

Therefore,  

𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥)=

2𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) 

 

Proposition 3.25. Consider the ring ℤ𝑝𝑞𝑟 where 𝑝, 𝑞 and 𝑟 are three prime 

numbers. Then 

1. The wiener polynomial of ℤ𝑝𝑞𝑟 is (𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥) = 12𝑥 + 16𝑥
2 + 4𝑥3.  

2. The wiener index of ℤ𝑝𝑞𝑟 is 𝑊(𝑚(ℤ𝑝𝑞𝑟)) = 48. 

3. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑞𝑟)) = 3. 

Proof.  

1. Since (𝑊(𝑚(ℤ𝑝𝑞); 𝑥) = 4𝑥 + 2𝑥
2 and (𝑊(𝑚(ℤ𝑟); 𝑥) = 𝑥, then by 

Theorem 3.24, 𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥) = 2𝑊(𝑚(ℤ𝑝𝑞); 𝑥)𝑊(𝑚(ℤ𝑟); 𝑥) +

2𝑊(𝑚(ℤ𝑝𝑞); 𝑥) + 4𝑊(𝑚(ℤ𝑟); 𝑥) = 2𝑥(4𝑥 + 2𝑥
2) + 2(4𝑥 + 2𝑥2) + 4𝑥 

= 8𝑥2 + 4𝑥3 + 8𝑥 + 4𝑥2 + 4𝑥 = 12𝑥 + 12𝑥2 + 4𝑥3. 

2. 𝑊(𝑚(ℤ𝑝𝑞𝑟)) = 𝑊
′(𝑚(ℤ𝑝𝑞𝑟); 1) = 12 + 24 + 12 = 48. 

3. By Theorem 3.10(1), the result is obtained. 
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The following example shows the classical method to find the wiener polynomial 

of 𝑚(ℤ𝑝𝑞𝑟). 

Example 3.26. Consider the proper ideals 𝐼1 =< 0 >, 𝐼2 =< 𝑝𝑞 >, 𝐼3 =<

𝑝𝑟 >, 𝐼4 =< 𝑞𝑟 >, 𝐼5 =< 𝑝 >, 𝐼6 =< 𝑞 >  and 𝐼7 =< 𝑟 > and 𝐼8 = ℤ𝑝𝑞𝑟 of the 

ring 𝑅 = ℤ𝑝𝑞𝑟where 𝑝, 𝑞 and 𝑟 are three prime numbers. Then  

𝑑(𝐼1, 𝐼2) = 𝑑(𝐼1, 𝐼3) = 𝑑(𝐼1, 𝐼4) = 𝑑(𝐼2, 𝐼5) = 𝑑(𝐼2, 𝐼6) = 𝑑(𝐼3, 𝐼5) = 𝑑(𝐼3, 𝐼7) =

𝑑(𝐼4, 𝐼6) = 𝑑(𝐼4, 𝐼7) = 𝑑(𝐼5, 𝐼8) = 𝑑(𝐼6, 𝐼8) = 𝑑(𝐼7, 𝐼8) =  1.  

𝑑(𝐼1, 𝐼5) = 𝑑(𝐼1, 𝐼6) = 𝑑(𝐼1, 𝐼7) = 𝑑(𝐼2, 𝐼3) = 𝑑(𝐼2, 𝐼4) = 𝑑(𝐼2, 𝐼8) = 𝑑(𝐼3, 𝐼4) =

𝑑(𝐼3, 𝐼8) = 𝑑(𝐼4, 𝐼8) = 𝑑(𝐼5, 𝐼6) = 𝑑(𝐼5, 𝐼7) = 𝑑(𝐼6, 𝐼7) = 2.  

𝑑(𝐼1, 𝐼8) = 𝑑(𝐼2, 𝐼7) = 𝑑(𝐼3, 𝐼6) = 𝑑(𝐼4, 𝐼5) = 3.  

So that the wiener polynomial of ℤ𝑝𝑞𝑟 is 𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥) = 12𝑥 + 12𝑥
2 + 4𝑥3 

and the wiener index of ℤ𝑝𝑞𝑟 is 𝑊(𝑚(ℤ𝑝𝑞𝑟)) = 48. 

The following diagram illustrates the maximal chain of ideals of ℤ𝑝𝑞𝑟. 

𝐼1 ⊆

{
  
 

  
 𝐼2 ⊆ {

𝐼5 ⊆ ℤ𝑝𝑞𝑟
𝐼6 ⊆ ℤ𝑝𝑞𝑟

𝐼3 ⊆ {
𝐼5 ⊆ ℤ𝑝𝑞𝑟
𝐼7 ⊆ ℤ𝑝𝑞𝑟

 𝐼4 ⊆ {
𝐼7 ⊆ ℤ𝑝𝑞𝑟
𝐼6 ⊆ ℤ𝑝𝑞𝑟

 

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ𝑝𝑞𝑟) 

 

 Proposition 3.27. Consider the ring ℤ𝑝𝑞𝑟𝑠 where 𝑝, 𝑞, 𝑟 and 𝑠 are four prime 

numbers. Then 
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1. The wiener polynomial of ℤ𝑝𝑞𝑟𝑠 is (𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠); 𝑥) = 32𝑥 + 48𝑥
2 +

32𝑥3 + 8𝑥4.   

2. The wiener index of ℤ𝑝𝑞𝑟𝑠 is 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠)) = 256. 

3. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝2𝑞2)) = 4. 

Proof. 𝑊(𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟); 𝑥) =

2𝑊 (𝑚 (ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚(ℤ𝑝1𝛼1𝑝2𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) 

1. Since (𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥) = 12𝑥 + 12𝑥
2 + 4𝑥3 and (𝑊(𝑚(ℤ𝑠); 𝑥) = 𝑥, then 

by theorem 3.24(4), 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠); 𝑥) = 2𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥)𝑊(𝑚(ℤ𝑠); 𝑥) +

2𝑊(𝑚(ℤ𝑝𝑞𝑟); 𝑥) + 8𝑊(𝑚(ℤ𝑠); 𝑥) = 2𝑥(12𝑥 + 12𝑥
2 + 4𝑥3) +

2(12𝑥 + 12𝑥2 + 4𝑥3) + 8𝑥 = 32𝑥 + 48𝑥2 + 32𝑥3 + 8𝑥4. 

2. 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠)) = 𝑊
′(𝑚(ℤ𝑝𝑞𝑟𝑠); 1) = 32 + 96 + 96 + 32 = 256. 

3. By Theorem 3.10(1), the result is obtained. 

 

The following example shows the classical method to find 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠)). 

Example 3.28. Consider the ideals 𝐼1 =< 0 > , 𝐼2 =< 𝑝𝑞𝑟 > , 𝐼3 =< 𝑝𝑞𝑠 > , 

 𝐼4 =< 𝑝𝑟𝑠 > , 𝐼5 =< 𝑞𝑟𝑠 > , 𝐼6 =< 𝑝𝑞 > , 𝐼7 =< 𝑝𝑟 > , 𝐼8 =< 𝑝𝑠 > ,  

 𝐼9 =< 𝑞𝑟 > , 𝐼10 =< 𝑞𝑠 > , 𝐼11 =< 𝑟𝑠 > , 𝐼12 =< 𝑝 >, 𝐼13 =< 𝑞 >,  

𝐼14 =< 𝑟 > , 𝐼15 =< 𝑠 > and 𝐼16 = ℤ𝑝𝑞𝑟𝑠 of the ring 𝑅 = ℤ𝑝𝑞𝑟𝑠where 𝑝, 𝑞, 𝑟 

and 𝑠 are four prime numbers.  

Then we have the following maximal chains: 

𝑑(𝐼1, 𝐼2) = 𝑑(𝐼1, 𝐼3) = 𝑑(𝐼1, 𝐼4) = 𝑑(𝐼1, 𝐼5) = 𝑑(𝐼2, 𝐼6) = 𝑑(𝐼2, 𝐼7) = 𝑑(𝐼2, 𝐼9) =

𝑑(𝐼3, 𝐼6) = 𝑑(𝐼3, 𝐼8) = 𝑑(𝐼3, 𝐼10) = 𝑑(𝐼4, 𝐼7) = 𝑑(𝐼4, 𝐼8) = 𝑑(𝐼4, 𝐼11) =

𝑑(𝐼5, 𝐼9) = 𝑑(𝐼5, 𝐼10) = 𝑑(𝐼5, 𝐼11) = 𝑑(𝐼6, 𝐼12) = 𝑑(𝐼6, 𝐼13) = 𝑑(𝐼7, 𝐼12) =

𝑑(𝐼7, 𝐼14) = 𝑑(𝐼8, 𝐼12) = 𝑑(𝐼8, 𝐼15) = 𝑑(𝐼9, 𝐼13) = 𝑑(𝐼9, 𝐼14) = 𝑑(𝐼10, 𝐼13) =
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𝑑(𝐼10, 𝐼15) = 𝑑(𝐼11, 𝐼14) = 𝑑(𝐼11, 𝐼15) = 𝑑(𝐼12, 𝐼16) = 𝑑(𝐼13, 𝐼16) =

𝑑(𝐼14, 𝐼16) = 𝑑(𝐼15, 𝐼16) = 1.  

𝑑(𝐼1, 𝐼6) = 𝑑(𝐼1, 𝐼7) = 𝑑(𝐼1, 𝐼8) = 𝑑(𝐼1, 𝐼9) = 𝑑(𝐼1, 𝐼10) = 𝑑(𝐼1, 𝐼11) =

𝑑(𝐼2, 𝐼3) = 𝑑(𝐼2, 𝐼4) = 𝑑(𝐼2, 𝐼5) = 𝑑(𝐼2, 𝐼12) = 𝑑(𝐼2, 𝐼13) = 𝑑(𝐼2, 𝐼14) =

𝑑(𝐼3, 𝐼4) = 𝑑(𝐼3, 𝐼5) = 𝑑(𝐼3, 𝐼12) = 𝑑(𝐼3, 𝐼13) = 𝑑(𝐼3, 𝐼5) = 𝑑(𝐼4, 𝐼5) =

𝑑(𝐼4, 𝐼12) = 𝑑(𝐼4, 𝐼14) = 𝑑(𝐼4, 𝐼15) = 𝑑(𝐼5, 𝐼13) = 𝑑(𝐼5, 𝐼14) = 𝑑(𝐼5, 𝐼15) =

𝑑(𝐼6, 𝐼7) = 𝑑(𝐼6, 𝐼8) = 𝑑(𝐼6, 𝐼9) = 𝑑(𝐼6, 𝐼10) = 𝑑(𝐼6, 𝐼16) = 𝑑(𝐼7, 𝐼8) =

𝑑(𝐼7, 𝐼9) = 𝑑(𝐼7, 𝐼11) = 𝑑(𝐼7, 𝐼16) = 𝑑(𝐼8, 𝐼10) = 𝑑(𝐼8, 𝐼11) = 𝑑(𝐼8, 𝐼16) =

𝑑(𝐼9, 𝐼10) = 𝑑(𝐼9, 𝐼11) = 𝑑(𝐼9, 𝐼16) = 𝑑(𝐼10, 𝐼11) = 𝑑(𝐼10, 𝐼16) = 𝑑(𝐼11, 𝐼16) =

𝑑(𝐼12, 𝐼13) = 𝑑(𝐼12, 𝐼14) = 𝑑(𝐼12, 𝐼15) = 𝑑(𝐼13, 𝐼14) = 𝑑(𝐼13, 𝐼15) =

𝑑(𝐼14, 𝐼15) = 2 .  

𝑑(𝐼1, 𝐼12) = 𝑑(𝐼1, 𝐼13) = 𝑑(𝐼1, 𝐼14) = 𝑑(𝐼1, 𝐼15) = 𝑑(𝐼2, 𝐼8) = 𝑑(𝐼2, 𝐼10) =

𝑑(𝐼2, 𝐼11) = 𝑑(𝐼2, 𝐼16) = 𝑑(𝐼3, 𝐼7) = 𝑑(𝐼3, 𝐼9) = 𝑑(𝐼3, 𝐼11) = 𝑑(𝐼3, 𝐼16) =

𝑑(𝐼4, 𝐼6) = 𝑑(𝐼4, 𝐼9) = 𝑑(𝐼4, 𝐼10) = 𝑑(𝐼4, 𝐼16) = 𝑑(𝐼5, 𝐼6) = 𝑑(𝐼5, 𝐼7) =

𝑑(𝐼5, 𝐼8) = 𝑑(𝐼5, 𝐼16) = 𝑑(𝐼6, 𝐼14) = 𝑑(𝐼6, 𝐼15) = 𝑑(𝐼7, 𝐼13) = 𝑑(𝐼7, 𝐼15) =

𝑑(𝐼8, 𝐼13) = 𝑑(𝐼8, 𝐼14) = 𝑑(𝐼9, 𝐼12) = 𝑑(𝐼9, 𝐼15) = 𝑑(𝐼10, 𝐼12) = 𝑑(𝐼10, 𝐼14) =

𝑑(𝐼11, 𝐼12) = 𝑑(𝐼11, 𝐼13) = 3.   

𝑑(𝐼1, 𝐼16) = 𝑑(𝐼2, 𝐼15) = 𝑑(𝐼3, 𝐼14) = 𝑑(𝐼4, 𝐼13) = 𝑑(𝐼5, 𝐼15) =

𝑑(𝐼7, 𝐼10) = 𝑑(𝐼6, 𝐼11) = 𝑑(𝐼8, 𝐼9) = 4.  

So that the wiener polynomial of ℤ𝑝𝑞𝑟 is 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠); 𝑥) = 32𝑥 + 48𝑥2 +

32𝑥3 + 8𝑥4 and the wiener index of ℤ𝑝𝑞𝑟𝑠 is 𝑊(𝑚(ℤ𝑝𝑞𝑟𝑠)) = 256. 

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ𝑝𝑞𝑟𝑠) 

 

The following diagram illustrates the maximal chain of ideals of the ring ℤ𝑝𝑞𝑟𝑠 
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𝐼1 ⊆

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝐼2 ⊆

{
 
 
 

 
 
 𝐼6 ⊆ {

𝐼12 ⊆ ℤ𝑝𝑞𝑟𝑠
𝐼13 ⊆ ℤ𝑝𝑞𝑟𝑠

𝐼7 ⊆ {
𝐼12 ⊆ ℤ𝑝𝑞𝑟𝑠
𝐼14 ⊆ ℤ𝑝𝑞𝑟𝑠

𝐼9 ⊆ {
𝐼13
𝐼14

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼3 ⊆

{
 
 

 
 𝐼6 ⊆ {

𝐼12
𝐼13

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼8 ⊆ {
𝐼12
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼10 ⊆ {
𝐼13
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼4 ⊆

{
 
 

 
 𝐼7 ⊆ {

𝐼12
𝐼14

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼8 ⊆ {
𝐼12
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼11 ⊆ {
𝐼14
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼5 ⊆

{
 
 

 
 𝐼9 ⊆ {

𝐼13
𝐼14

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼10 ⊆ {
𝐼13
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

𝐼11 ⊆ {
𝐼14
𝐼15

⊆ ℤ𝑝𝑞𝑟𝑠

 

Examples 3.29.  

1. The wiener polynomial of the graph  𝑚(ℤ𝑝2𝑞) is 𝑊(𝑚(ℤ𝑝2𝑞); 𝑥) = 7𝑥 +

6𝑥2 + 2𝑥3.  

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ𝑝2𝑞) 

 

2. The wiener polynomial of the graph 𝑚(ℤ𝑝3𝑞) is (𝑚(ℤ𝑝3𝑞); 𝑥) = 10𝑥 +

10𝑥2 + 6𝑥3 + 2𝑥4.  

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ𝑝3𝑞) 
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3. The wiener polynomial of the graph 𝑚(ℤ𝑝4𝑞) is 𝑊(𝑚(ℤ𝑝4𝑞); 𝑥) = 13𝑥 +

14𝑥2 + 10𝑥3 + 6𝑥4 + 2𝑥5. 

4. The wiener polynomial of the graph 𝑚(ℤ𝑝5𝑞) is 𝑊(𝑚(ℤ𝑝5𝑞); 𝑥) = 16𝑥 +

18𝑥2 + 14𝑥3 + 10𝑥4 + 6𝑥5 + 2𝑥6. The following figure illustrates the 

maximal ideal graph  𝑚𝐺(ℤ𝑝5𝑞) 

 

5. The wiener polynomial of the graph 𝑚(ℤ𝑝6𝑞) is 𝑊(𝑚(ℤ𝑝6𝑞); 𝑥) = 19𝑥 +

22𝑥2 + 18𝑥3 + 14𝑥4 + 10𝑥5 + 6𝑥6 + 2𝑥7. The following figure illustrates 

the maximal ideal graph  𝑚𝐺(ℤ𝑝6𝑞) 

 

6. The wiener polynomial of the graph 𝑚(ℤ𝑝2𝑞2) is 𝑊(𝑚(ℤ𝑝2𝑞2); 𝑥) = 12𝑥 +

14𝑥2 + 8𝑥3 + 2𝑥4. The following figure illustrates the maximal ideal graph 

 𝑚𝐺(ℤ𝑝2𝑞2) 
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7. The wiener polynomial of the graph 𝑚(ℤ𝑝3𝑞2) is 𝑊(𝑚(ℤ𝑝3𝑞2); 𝑥) = 17𝑥 +

22𝑥2 + 17𝑥3 + 8𝑥4 + 2𝑥5. 

8. The wiener polynomial of the graph 𝑚(ℤ𝑝4𝑞2) is 𝑊(𝑚(ℤ𝑝4𝑞2); 𝑥) = 22𝑥 +

30𝑥2 + 26𝑥3 + 17𝑥4 + 8𝑥5 + 2𝑥6. 
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 ثوختة
 

 wienerو wiener polynomial دوَزينةوةى ثيَشكةش دةكةين بوَئيَمة ريَِطايةكي نويَ  ،يةداةوَذثرِلةم 

indexي maximal ideal graphs 𝑚(ℤ𝑛) لة رينطي ℤ𝑛 كاتيَك 𝑛 يةكسانة بة 
𝑝1
𝛼1  𝑝2

𝛼2  𝑝3
𝛼3 …𝑝𝑘

𝛼𝑘،  𝑝𝑖  يةكتر،كانيش ذمارةي خوبَةشن جياوازن لةطةلαi دانةية لةℤ+، و        
1 ≤ 𝑖 ≤ 𝑘. 

 

 

 الخلاصة
 

 𝑚(ℤ𝑛)   حدود وينر و مؤشر وينر للرسوم البيانية القصوي  متعددةالمشروع ،نقدم طريقة جديدة لإيجاد في هذا 
𝑝1تساوي  𝑛حيث  ℤ𝑛للحلقات 

𝛼1  𝑝2
𝛼2  𝑝3

𝛼3 …𝑝𝑘
𝛼𝑘 ،𝑝𝑖   ، هي اعداد اولية متميزة 

α𝑖 ∈ ℤ
+ 1 ≤ 𝑖 ≤ 𝑘 ،. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


