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Abstract 

     In this project, we study maximal chain of submodules of the ℤ-modules 

M = ℤ𝑝1α1 ⊕ℤ𝑝2α2 ⊕…⊕ℤ𝑝𝑘α𝑘  where 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 

1 ≤ 𝑖 ≤ 𝑘 ≠ 1. Then we define the maximal submodule graph 𝑚(𝑀) of the 

module 𝑀. Finally we introduce a method to find the wiener polynomial and 

wiener index of maximal submodule graphs 𝑚(M) of modules M = ℤ𝑝1α1 ⊕

ℤ𝑝2α2 ⊕…⊕ℤ𝑝𝑘α𝑘   where 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 1 ≤ 𝑖 ≤ 𝑘.  
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Introduction 

 

Let 𝑅 be a commutative ring and 𝑀 be an 𝑅-module. A submodule 𝑁1 of 𝑀 is 

maximal in a submodule 𝑁2 of 𝑀 if there is no submodule 𝑁3 of 𝑀  such that 

𝑁1 ⊂ 𝑁3 ⊂  𝑁2. A chain of submodules 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ of an 𝑅-module M is 

called maximal chain of submodules of 𝑀 if 𝐾𝑡−1 is a maximal submodule in 𝐾𝑡 

for each 𝑡 ∈ ℤ+. If 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾ℎ is a finite chain, then  𝐾0 is said to 

be the initial submodule and 𝐾ℎ is the terminal submodule of the chain. A 

submodule  𝐾0 of 𝑀 is called a maximal submodule of length 𝑚 with respect to 

the maximal chain of submodules  𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑚−1 ⊂ 𝑀. The 

maximal submodule graph of 𝑀, denoted by 𝑚(𝑀), is the undirected graph with 

vertex set, the set of all submodules of 𝑀, where two vertices 𝑁1 and 𝑁2 are 

adjacent if and only if  𝑁1 maximal 𝑁2, or 𝑁2 maximal 𝑁1. In the chapter three  

we study maximal chain of submodules of ℤ-modules M = ℤ𝑝1α1 ⊕ℤ𝑝2α2 ⊕

…⊕ℤ𝑝𝑘α𝑘  where 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 1 ≤ 𝑖 ≤ 𝑘. Then we find 

the maximal submodule graph 𝑚(𝑀) of the module 𝑀. Finally the Wiener index, 

Wiener polynomial and dimeter of the maximal submodule graphs 𝑚(𝑀) are 

investigated. 
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Chapter One 

Definitions and Back grounds of module theory 

Definition 1.1 ( Dummit & Foote , 2004, p. 16).  

(1) A binary operation ∗ on a set 𝐺 is a function ∗ : 𝐺 × 𝐺 →  𝐺. For any 𝑎, 𝑏 ∈

𝐺 we shall write 𝑎 ∗  𝑏 𝑓𝑜𝑟 ∗ (𝑎, 𝑏). 

 (2) A binary operation  ∗  on a set  𝐺  is associative if for all 𝑎, 𝑏, 𝑐 ∈  𝐺 we have  

𝑎 ∗  (𝑏 ∗ 𝑐)  =  (𝑎 ∗  𝑏)  ∗ 𝑐. 

 (3) If ∗ is a binary operation on a set  𝐺  we say elements a and b of G commute 

if 𝑎 ∗  𝑏 =  𝑏 ∗  𝑎.  We say  ∗ (or  G ) is commutative if for all a, 𝑏 ∈ 𝐺, 𝑎 ∗

 𝑏 =  𝑏 ∗  𝑎. 

Definition 1.2 ( Dummit & Foote , 2004, p. 46). Let 𝐺 be a group. The subset 𝐻 

of 𝐺 is a subgroup of 𝐺 if 𝐻 is nonempty and 𝐻 is closed under products and 

inverses (𝑖. 𝑒. , 𝑥, 𝑦 ∈  𝐻 implies 𝑥−1 ∈ 𝐻 and 𝑥𝑦 ∈ 𝐻). If 𝐻 is a subgroup of 𝐺 

we shall write 𝐻 ≤ 𝐺. 

 

Definition 1.3 ( Dummit & Foote , 2004, p. 62) If A is any subset of the group G 

define  

〈𝐴〉 = ⋂
𝐴⊂𝐻
𝐻≤𝐺

𝐻 

This is called the subgroup of G generated by A. 

 

Definition 1.4 ( Dummit & Foote , 2004, p. 223) 
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(1) A ring 𝑅 is a set together with two binary operations + and × (called addition 

and multiplication) satisfying the following axioms:  

(I) (𝑅,+) is an abelian group, 

 (ii) 𝑥 is associative : (𝑎 ×  𝑏) ×  𝑐 =  𝑎 × (𝑏  ×  𝑐) for all 𝑎, 𝑏, 𝑐 є 𝑅; 

(iii) the distributive laws hold in 𝑅 : for all 𝑎, 𝑏, 𝑐 є 𝑅  (𝑎 + 𝑏) × 𝑐 =  (𝑎 × 𝑐) +

(𝑏 × 𝑐)𝑎𝑛𝑑 𝑎 × (𝑏 + 𝑐) =  (𝑎 × 𝑏) + (𝑎 × 𝑐) 

 (2) The ring 𝑅 is commutative if multiplication is commutative. 

(3) The ring 𝑅 is said to have an identity (or contain a 1)   if there is an element  

1 є 𝑅 with                             1 ×  𝑎 =  𝑎 ×  1 =  𝑎 for all 𝑎 є 𝑅. 

 

Definition 1.5 ( Dummit & Foote , 2004, p. 228)  A subring of the ring 𝑅 is a 

subgroup of  𝑅  that is closed under multiplication 

Definition 1.6 ( Dummit & Foote , 2004, p. 337) Let 𝑅 be a ring (not necessarily 

commutative nor with 1 ). A left 𝑅-module or a left module over 𝑅 is a set 𝑀 

together with  

(1) a binary operation + on 𝑀 under which 𝑀 is an abelian group, and  

(2) an action of 𝑅 on 𝑀 (that is, a map 𝑅 ⨉ 𝑀 →  𝑀) denoted by rm, for all 𝑟 ∈

 𝑅 and for all 𝑚 ∈   𝑀 which satisfies 

 (a) (𝑟 +  𝑠)𝑚 =  𝑟𝑚 +  𝑠𝑚, for all 𝑟, 𝑠 ∈ 𝑅, 𝑚  ∈   𝑀, 

 (b)(𝑟𝑠)𝑚 =  𝑟(𝑠𝑚), for all 𝑟, 𝑠 ∈   𝑅,𝑚 ∈   𝑀, and 

(c) 𝑟(𝑚 +  𝑛)  =  𝑟𝑚 +  𝑟𝑛, for all 𝑟 ∈   𝑅,𝑚, 𝑛 ∈  𝑀. If the ring 𝑅 has a 1 we 

impose the additional axiom:  

(d) 1𝑚 =  𝑚, for all 𝑚 ∈  𝑀. 
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Examples 1.7 ( Dummit & Foote , 2004)   

1. If 𝑅 is a field then an 𝑅-module is the same as an 𝑅-vector space. 

2. If 𝑀 =  𝑅 and scalar multiplication is given by multiplication in 𝑅 then  

3. 𝑀 = ℤ  itself becomes an 𝑅-module. 

 

Definition 1.8 ( Dummit & Foote , 2004, p. 337) Let 𝑅 be a ring and let 𝑀 be an 

𝑅-module. An 𝑅-submodule of 𝑀 is a subgroup 𝑁 of 𝑀 which is closed under the 

action of ring element 𝑖. 𝑒. , 𝑟𝑛 ∈  𝑁, for all 𝑟 ∈  𝑅, 𝑛 ∈  𝑁.  

 

Definition 1.9 (Ahmad & Hummadi, 2023). A submodule 𝑁 of an 𝑅-module 𝑀 

is said to be a maximal submodule of 𝑀 if 𝑀 ≠ 𝑁  and there is no proper 

submodule of 𝑀 strictly containing 𝑁.  

 

Definition 1.10 ( Dummit & Foote , 2004, p. 751) . An 𝑅- module 𝑴 is said to be 

Artinian or to satisfy the descending chain condition on submodule (or D. C. C. 

on module) if there is no infinite decreasing chain of submodules in 𝑴, i.e., 

whenever 𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯ is a decreasing chain of submodules of 𝑴, then there 

is a positive integer 𝑚 such that 𝐼𝑘 = 𝐼𝑚 for all 𝑘 ≥ 𝑚.  

 

Proposition 1.11. The following are equivalent:  

(1) 𝑴 is an Artinian submodule. 

  (2) Every nonempty set of submodule of 𝑅 contains a minimal element under 

inclusion. 
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Definition 1.12. ( Dummit & Foote , 2004, p. 458) An 𝑅- module 𝑴 is said to be 

Noetherian or to satisfy the ascending chain condition on submodule (or A. C. C. 

on module) if there is no infinite decreasing chain of submodules in 𝑴, i.e., 

whenever    𝑀1 ⊆ 𝑀2 ⊆ 𝑀3 ⊆ ⋯  is an increasing chain of submodules of 𝑴, then 

there is a positive integer 𝑚 such that 𝑀𝑘 = 𝑀𝑚 for all 𝑘 ≥ 𝑚.  
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Chapter Two 

Definitions and back grounds of graph theory 

Definition 2.1 (Naduvath, 2017, p. 3)A graph 𝐺 can be considered as an ordered 

triple (𝑉, 𝐸, 𝜓), where .                       

(i) 𝑉 =  { 𝑣1,  𝑣2, 𝑣3 ,…} is called the vertex set of 𝐺 and the elements of V 

are called the vertices (or points or nodes); 

(ii) 𝐸 =  {𝑒1, 𝑒2, 𝑒3,...} is the called the edge set of 𝐺 and the elements of 𝐸 

are called edges (or lines or arcs); and  

(iii) 𝜓 is called the adjacency relation, defined by 𝜓 ∶  𝐸 →  𝑉 × 𝑉, which 

defines the association between each edge with the vertex pairs of 𝐺.   

 

Definition 2.2 (Naduvath, 2017, p. 3) The order of a graph 𝐺, denoted by 𝜈(𝐺), 

is the number of its vertices and the size of 𝐺, denoted by 휀(𝐺), is the number of 

its edge 

 

Definition 2.3 (Naduvath, 2017, p. 4)A graph with a finite number of vertices as 

well as a finite number of edges is called a finite graph. Otherwise, it is an infinite 

graph 

 

Definition 2.4 (Naduvath, 2017, p. 4)An edge of a graph that joins a node to itself 

is called loop or a self-loop. That is, a loop is an edge 𝑢𝑣, where 𝑢 =  𝑣. 
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Definition 2.5 (Naduvath, 2017, p. 5) The edges connecting the same pair of 

vertices are called multiple edges or parallel edges. 

 

Definition 2.6 (Naduvath, 2017, p. 5) A graph G which does not have loops or 

parallel edges is called a simple graph. A graph which is not simple is generally 

called a multigraph 

 

Definition 2.7 (Naduvath, 2017, p. 5) number of edges incident on a vertex 𝑣, 

with self-loops counted twice, is called the degree of the vertex 𝑣 and is denoted 

by deg(𝑣) or deg(𝑣) or simply 𝑑(𝑣).  

 

Definition 2.8 (Naduvath, 2017, p. 5) A vertex having no incident edge is called 

an isolated vertex. In other words, isolated vertices are those with zero degree.  

 

Definition 2.9 (Naduvath, 2017, p. 5) A vertex, which is neither a pendent vertex 

nor an isolated vertex, is called an internal vertex or an intermediate vertex. 

 

Definition 2.10 (Naduvath, 2017, p. 5) The maximum degree of a graph 𝐺, 

denoted by ∆(𝐺), is defined to be ∆(𝐺)  =  𝑚𝑎𝑥{𝑑(𝑣) ∶  𝑣 ∈ 𝑉(𝐺)}. Similarly, 

the minimum degree of a graph G, denoted by 𝛿(𝐺), is defined to be 𝛿(𝐺)  =

 𝑚𝑖𝑛{𝑑(𝑣) ∶  𝑣 ∈  𝑉(𝐺)}. Note that for any vertex 𝑣 in 𝐺, we have 𝛿(𝐺)  ≤

 𝑑(𝑣)  ≤  ∆(𝐺). 
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Definition 2.11 (Naduvath, 2017, p. 7) The neighborhood (or open 

neighbourhood) of a vertex 𝑣, denoted by 𝑁(𝑣), is the set of vertices adjacent to 

𝑣. That is, 𝑁(𝑣)  =  {𝑥 ∈  𝑉 ∶  𝑣𝑥 ∈  𝐸}. The closed neighbourhood of a vertex 

𝑣, denoted by 𝑁[𝑣], is simply the set 𝑁(𝑣) ∪ {𝑣}. 

 

Definition 2.12 (Naduvath, 2017, p. 8) A graph 𝐻(𝑉1, 𝐸1) is said to be a subgraph 

of a graph 𝐺(𝑉, 𝐸) if 𝑉1 ⊆  𝑉 𝑎𝑛𝑑 𝐸1 ⊆  𝐸. 

 

 Definition 2.13 (Naduvath, 2017, p. 8) A graph 𝐻(𝑉1,𝐸1) is said to be a spanning 

subgraph of a graph 𝐺(𝑉, 𝐸) 𝑖𝑓 𝑉1 =  𝑉 𝑎𝑛𝑑 𝐸1 ⊆  𝐸. 

 

 

 

 

 

Definition 2.14 (Naduvath, 2017, p. 8). Suppose that 𝑉′ be a subset of the vertex 

set 𝑉 of a graph 𝐺. Then, the subgraph of 𝐺 whose vertex set is 𝑉′and whose edge 

set is the set of edges of 𝐺 that have both end vertices in 𝑉′ is denoted by 𝐺[𝑉] or 

〈𝑉〉 called an induced subgraph of 𝐺 
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 Definition 2.15 (Naduvath, 2017, p. 8). Suppose that 𝐸′ be a subset of the edge 

set 𝑉 of a graph 𝐺. Then, the subgraph of 𝐺 whose edge set is 𝐸′ and whose vertex 

set is the set of end vertices of the edges in 𝐸′ is denoted by 𝐺[𝐸] or 〈𝐸〉 called an 

edge-induced subgraph of 𝐺. 

 

Definition 2.16 (Naduvath, 2017, p. 8). A complete graph is a simple undirected 

graph in which every pair of distinct vertices is connected by a unique edge. A 

complete graph… 

 

Definition 2.17 (Naduvath, 2017, p. 11).  An isomorphism of two graphs G and 

𝐻 is a bijective function 𝑓 ∶  𝑉(𝐺)  →  𝑉(𝐻) such that any two vertices u and v of 

𝐺 are adjacent in 𝐺 if and only if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐻. This bijection 

is commonly described as edge-preserving bijection. If an isomorphism exists 

between two graphs, then the graphs are called isomorphic graphs and denoted 

𝑎𝑠 𝐺 ≃  𝐻 𝑜𝑟 𝐺 ≅  𝐻. 

(Naduvath, 2017) 

Remark 2.18. Every two graphs G and H are said to be isomorphic if 

(i) |𝑉(𝐺)|  =  |𝑉(𝐻)|, 

(ii)  |𝐸(𝐺)|  =  |𝐸(𝐻)|, 

(iii)  𝑣𝑖𝑣𝑗  ∈  𝐸(𝐺)  ⟹  𝑓(𝑣𝑖) 𝑓(𝑣𝑖)  ∈  𝐸(𝐻). 

 

Definition 2.19 (Naduvath, Sudev, 2017, p. 23). A walk in a graph G is an 

alternating sequence of vertices and connecting edges in 𝐺. In other words, a walk 
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is any route through a graph from vertex to vertex along edges. If the starting and 

end vertices of a walk are the same, then such a trail is called a closed walk. 

 

Definition 2.20 (Naduvath, 2017, p. 23). A trail is a walk that does not pass over 

the same edge twice. A trail might visit the same vertex twice, but only if it comes 

and goes from a different edge each time. A tour is a trail that begins and ends on 

the same vertex. 

 

Definition 2.21 (Naduvath, 2017, p. 23). A path is a walk that does not include 

any vertex twice, except that its first vertex might be the same as its last. A cycle 

or a circuit is a path that begins and ends on the same vertex. 

 

Definition 2.22 (Naduvath, 2017). The length of a walk or circuit or path or cycle 

is the number of edges in it. 

 

Definition 2.23 (Naduvath, 2017, p. 24). The distance between two vertices 𝑢 and 

𝑣 in a graph 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣) or simply 𝑑(𝑢, 𝑣), is the length (number of 

edges) of a shortest path (also called a graph geodesic) connecting them. This 

distance is also known as the geodesic distance. 

 

Definition 2.24 (Naduvath, 2017, p. 24). The eccentricity of a vertex 𝑣, denoted 

by 휀(𝑣), is the greatest geodesic distance between 𝑣 and any other vertex. It can 
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be thought of as how far a vertex is from the vertex most distant from it in the 

graph. 

 

Definition 2.25 (Naduvath, 2017, p. 24). The radius r of a graph 𝐺, denoted by 

𝑟𝑎𝑑(𝐺), is the minimum eccentricity of any vertex in the graph. That is, 

𝑟𝑎𝑑(𝐺) =  𝑚𝑖𝑛
𝑣∈𝑣(𝐺)

 휀(𝑣). 

Definition 2.26 (Naduvath, 2017, p. 24). The diameter of a graph 𝐺, denoted by 

𝑑𝑖𝑎𝑚(𝐺) is the maximum eccentricity of any vertex in the graph. That is, 

𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥
𝑣∈𝑣(𝐺)

 휀(𝑣).  

 

Definition 2.27 (Naduvath, 2017, p. 24). A center of a graph 𝐺 is a vertex of 𝐺 

whose eccentricity equal to the radius of 𝐺. 

 

Definition 2.28 (Naduvath, 2017, p. 25). Two vertices 𝑢 and 𝑣 are said to be 

connected if there exists a path between them. If there is a path between two 

vertices 𝑢 and 𝑣, then 𝑢 is said to be reachable from 𝑣 and vice versa. A graph 𝐺 

is said to be connected if there exist paths between any two vertices in 𝐺.  

 

Definition 2.29 (Naduvath, 2017, p. 26). A connected component or simply, a 

component of a graph 𝐺 is a maximal connected subgraph of 𝐺. 
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Definition 2.30 (Sagan , Yeh, & Zhang, 1996). Let 𝑑(𝑢, 𝑣) denote the distance 

between vertices 𝑢 and 𝑣 in a graph 𝐺. The Wiener index of G is defined as 

 𝑊(𝐺)  = ∑𝑑(𝑢, 𝑣)
{𝑢,𝑣}                 

 where the sum is over all unordered pairs {𝑢, 𝑣} of distinct 

vertices in 𝐺. If 𝑥 is a parameter, then the Wiener polynomial of 𝐺 is 𝑊(𝐺; 𝑥)  =

 ∑ 𝑥𝑑(𝑢,𝑣)
{𝑢,𝑣}                 

 where the sum is taken over the same set of pairs. 

 

Definition 2.31 (Sagan , Yeh, & Zhang, 1996, p. 961). The ordered Wiener 

Polynomial defined by �̅�(𝐺; 𝑞) = ∑𝑥𝑑(𝑢,𝑣)
(𝑢,𝑣)               

, where the sum is over all ordered 

pairs (𝑢, 𝑣) of vertices, including those where 𝑢 =  𝑣. Thus, �̅�(𝐺; 𝑞) =

∑𝑥𝑑(𝑢,𝑣)
(𝑢,𝑣)               

= 2𝑊(𝐺; 𝑞) + |𝑉(𝐺)|.  

 

Theorem 2.32 (Sagan , Yeh, & Zhang, 1996, pp. 961, Proposition 1.4(2)). 

Suppose that 𝐺1 and 𝐺2 are two connected graphs. Then �̅�( 𝐺1 ×𝐺2; 𝑥) =

�̅�(𝐺1; 𝑥) × �̅�(𝐺2; 𝑥). 
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Chapter Three 
 

In this chapter, we study maximal chain of submodules of ℤ-modules 

M = ℤ𝑝1α1 ⊕ℤ𝑝2α2 ⊕…⊕ℤ𝑝𝑘α𝑘  where 𝑝𝑖’s are distinct primes, α𝑖 ∈ ℤ
+, and 

1 ≤ 𝑖 ≤ 𝑘 ≠ 1. Then we find the maximal submodules graph 𝑚(𝑀) of the 

module 𝑀. Finally the Wiener index, Wiener polynomial, dimeter and radical of 

the maximal submodule graphs 𝑚(𝑀) are investigated. 

 

Definition 3.1.  A submodule 𝑁1 of an 𝑅-module 𝑀 is maximal in a submodule 

𝑁2 of 𝑀 if there is no submodule 𝑁3 of 𝑀  such that 𝑁1 ⊂ 𝑁3 ⊂  𝑁2. 

 

Example 3.2. Consider the ℤ-module ℤ36. Then  

1. The submodules of ℤ36 are the form 𝑛ℤ36 where 𝑛 ∈ {0, 1, 2, 3, 4, 6, 12, 18}  

2. For each prime number 𝑝, if 𝑛 = 𝑝𝑚, then 𝑛ℤ36 is maximal in 𝑚ℤ36.  

 

Definition 3.3 (Ahmad & Hummadi, 2023). A chain of submodules 𝐾0 ⊂ 𝐾1 ⊂

𝐾2 ⊂ ⋯ of an 𝑅-module M is called maximal chain of submodules of 𝑀 if 𝐾𝑡−1 

is a maximal submodule in 𝐾𝑡 for each 𝑡 ∈ ℤ+. If 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾ℎ is a 

finite chain, then  𝐾0 is said to be the initial submodule and 𝐾ℎ is the terminal 

submodule of the chain. A submodule  𝐾0 of 𝑀 is called a maximal submodule of 

length 𝑚 with respect to the maximal chain of submodules  𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂

⋯ ⊂ 𝐾𝑚−1 ⊂ 𝑀. The length of  𝐾0 is said to be ∞, if there is no such finite 

maximal chain of submodules with initial submodule  𝐾0.  

 

Definition 3.4. Let 𝑀 be an 𝑅-module. The maximal submodule graph of 𝑀, 

denoted by 𝑚(𝑀), is the undirected graph with vertex set, the set of all 
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submodules of 𝑀, where two vertices 𝑁1 and 𝑁2 are adjacent if and only if  𝑁1 

maximal 𝑁2, or 𝑁2 maximal 𝑁1. 

 

 

Remark 3.5. Let 𝑀 be an 𝑅-module. If |𝑉(𝑚(𝑀))| > 2, then the 𝑚(𝑀) graph is 

not complete. 

Proof. Let 𝑀 be an 𝑅-module with at least three submodules 𝐼 =< 0 >, 𝐽 and 𝐾. 

Without loss of generality if 𝐼 is a maximal in both 𝐽 and 𝐾, then neither 𝐽 maximal 

in 𝐾 nor 𝐾 maximal in 𝐽. So that two vertices 𝐽 and 𝐾 are not adjacent. 

 

Theorem 3.6. Let 𝑀 be an 𝑅-module. If 𝑀 is an Artinian and Noetherian module, 

then the graph 𝑚(𝑀) is connected. But the converse is not true. 

 

The following proposition is easy to prove 

Proposition 3.7. Consider an 𝑅-module 𝑴. Then 

1. If 𝑴 =< 0 >, then the wiener polynomial of 𝑴 is 1, that is  𝑊(𝑚(𝑴); 𝑥)  = 1, 

𝑟𝑎𝑑(𝐺)  =  𝑑𝑖𝑎𝑚(𝐺)  = 0. 

2. If 𝑴 is a simple module, then  𝑊(𝑚(𝑴); 𝑥)  = 𝑥, 𝑟𝑎𝑑(𝐺)  = 𝑑𝑖𝑎𝑚(𝐺)  =  1. 

 

Theorem 3.8. Consider the ℤ-module ℤ𝑝𝑛 where 𝑝 is a prime number and 𝑛 ∈

ℤ+. Let 𝐼𝑖 =< 𝑝
𝑖 > for 0 ≤ 𝑖 ≤ 𝑛. Then 

1. For any two submodules 𝐼𝑟, 𝐼𝑠 of  ℤ𝑝𝑛,  𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

2. 𝑊(𝑚(ℤ𝑝𝑛)) = (
𝑛 + 2
3

) =
(𝑛+2)!

(𝑛−1)!
 

3. 𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥
2 + (𝑛 − 2)𝑥3 +⋯+ 𝑥𝑛 
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4. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑛. 

5. 𝑟𝑎𝑑 (𝑚(ℤ𝑝𝑛)) =
𝑛

2
  

Proof. It is clear that the submodules of ℤ𝑝𝑛 are of the form 𝐼𝑖 =< 𝑝
𝑖 >= for 0 ≤

𝑖 ≤ 𝑛. That is there are 𝑛 + 1 submodules as follows: 

0ℤ𝑝𝑛, 𝑝
𝑛−1ℤ𝑝𝑛 , 𝑝

𝑛−1ℤ𝑝𝑛 , 𝑝
𝑛−2ℤ𝑝𝑛 , … , 𝐼1 =  𝑝ℤ𝑝𝑛, 𝐼0 = ℤ𝑝𝑛. This means that the 

graph 𝑚(ℤ𝑝𝑛) is a path 𝑃𝑛+1that is it is a path with 𝑛 + 1 vertices.  

1. Let 𝐼𝑟 =< 𝑝
𝑟 > and 𝐼𝑠 =< 𝑝

𝑠 > be two submodules of ℤ𝑝𝑛. Then exactly 

one of the following is true.  𝑎) 𝑟 = 𝑠     b)  𝑟 > 𝑠      c) 𝑟 < 𝑠 .  

a) If 𝑟 = 𝑠 then |𝑟 − 𝑠| = 0 and  𝐼𝑟 = 𝐼𝑠, consequently, 𝑑(𝐼𝑟 , 𝐼𝑠) = 0 = |𝑟 −

𝑠| . 

b) If  𝑟 > 𝑠 , then the chain 𝐼𝑟 ⊂ 𝐼𝑟−1 ⊂ 𝐼𝑟−2 ⊂ . . . ⊂  𝐼𝑠+1 ⊂ 𝐼𝑠 is the shortest 

maximal chain of submodules with the initial submodule 𝐼𝑟 and the terminal 

submodule 𝐼𝑠. So that 𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

c) Similarly, if 𝑟 < 𝑠, then   𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 
 

The following figure illustrates the maximal submodule graph 𝑚𝐺(ℤ𝑝𝑛) 

 

 

2. Since 𝑊(𝑚(ℤ𝑝𝑛)) = 𝑊(𝑃𝑛+1), then by (Sagan , Yeh, & Zhang, 1996, 

pp. 960, theorem 1.3(5)), 𝑊(𝑚(ℤ𝑝𝑛)) = (
𝑛 + 2
3

) =
(𝑛+2)!

(𝑛−1)!3!
 and  

3. By (Sagan , Yeh, & Zhang, 1996, pp. 960, theorem 1.2(5)), 

𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑊(𝑃𝑛+1; 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥
2 + (𝑛 − 2)𝑥3 +⋯+ 𝑥𝑛 =

((𝑛+1)−[𝑛])𝑥

1−𝑥
. 

4. By (Sagan , Yeh, & Zhang, 1996, pp. 960, theorem 1.1(1)), 

𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑑𝑒𝑔𝑊(𝑃𝑛+1; 𝑥) = 𝑛. 

5. It is clear. 
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Example 3.9. Consider the ring ℤ16 = ℤ24 . Then 

1.The proper submodules of ℤ16 are as follows: 

𝐼1 =< 0 >= {0}, 𝐼2 =< 2 >= {0,2, 4,6,8,10,12,14} , 

𝐼3 =< 4 >= {0, 4,8,12} and 𝐼4 =< 8 >= {0,8}. 
2.The following diagram illustrates the maximal chains of submodules of  ℤ16. 

𝐼1 ⊂ 𝐼2 ⊂ 𝐼3 ⊂ 𝐼4 

3.The following figure illustrates the maximal submodules of graph 𝑚( ℤ16) 
 

< 0 > —< 23 >—< 22 >—< 2 >—< ℤ24 > 

 

4.The Wiener index of 𝑚( ℤ16) is 𝑊(𝑚( ℤ16)) = (
6
3
) =

6!

3!3!
= 20 

5.The wiener polynomial for  ℤ16 = ℤ24 is 𝑤(𝑥) = 4𝑥 + 3𝑥2 + 2𝑥3 + 𝑥4. 

6.𝑑𝑖𝑎𝑚(𝑚( ℤ16)) = 4. 

7.𝑟𝑎𝑑(𝑚( ℤ16)) = 2  

 

Definition 3.10 (Sagan , Yeh, & Zhang, 1996, p. 960). The Cartesian product of 

two graphs 𝐺1 and 𝐺2, is a graph  𝐺1 × 𝐺2 such that 𝑉(𝐺1 × 𝐺2) = {(𝑣1, 𝑣2): 𝑣1 ∈

𝐺1 and 𝑣2 ∈ 𝐺2} and 𝐸(𝐺1 × 𝐺2) = {(𝑢1, 𝑢2)(𝑣1, 𝑣2):  𝑢1𝑣1 ∈ 𝐸(𝐺1) and 𝑢2 =

𝑣2 or 𝑢2𝑣2 ∈ 𝐸(𝐺2) and 𝑢1 = 𝑣1}. 

 

Theorem 3.11. Consider the ℤ-module ℤ𝑝⊕ℤ𝑞  where 𝑝 and 𝑞 are two prime 

numbers. Then 

1. 𝑟𝑎𝑑(𝑚(ℤ𝑝⊕ℤ𝑞  )) = 2 and   𝑑𝑖𝑎𝑚(𝑚(ℤ𝑝⊕ℤ𝑞 )) = 2. 

2. 𝑊(𝑚(ℤ𝑝⊕ℤ𝑞 )) = 8 and 𝑊(𝑚(ℤ𝑝⊕ℤ𝑞  ); 𝑥) = 4𝑥 + 2𝑥
2.   
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Proof. It is well known that 𝐼1 =< 0 >= {0}, 𝐼2 =< 𝑝 >= {0, 𝑝, 2𝑝,… , (𝑞 −

1)𝑝} and 𝐼3 =< 𝑞 >= {0, 𝑞, 2𝑞,… , (𝑝 − 1)𝑞} are proper submodules of. Since 

ℤ𝑝⊕ℤ𝑞 e 𝑑(𝐼1, 𝐼2) = 𝑑(𝐼1, 𝐼3) = 𝑑(𝐼2, )ℤ𝑝⊕ℤ𝑞  = 𝑑(𝐼3, ) = 1, 𝑑(𝐼2, 𝐼3) =

𝑑(𝐼1, ℤ𝑝⊕ℤ𝑞  ) = 2, then 𝑟𝑎𝑑(𝑚()) =  𝑑𝑖𝑎𝑚(𝑚(ℤ𝑝⊕ℤ𝑞 )) = 2,  𝑊(𝑚()) =

8 and 𝑊(𝑚(ℤ𝑝⊕ℤ𝑞  ); 𝑥) = 4𝑥 + 2𝑥
2.  

The following diagram illustrates the maximal chains of submodules of. ℤ𝑝⊕ℤ𝑞. 

𝐼1 ⊂ {
𝐼2 ⊂ ℤ𝑝⊕ℤ𝑞 

𝐼3 ⊂ ℤ𝑝⊕ℤ𝑞 
 

The following figure illustrates  the maximal submodule graph 𝑚(ℤ𝑝⊕ℤ𝑞 ) 

 

 

Theorem 3.12. Let 𝑝 and 𝑞 be any two prime numbers and 𝑛,𝑚 ∈ ℤ+. Then 

𝑊(𝑚(ℤ𝑝𝑚  ⊕ ℤ𝑞𝑛); 𝑥) = 2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 +

1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + (𝑚 + 1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥). 

Proof. By Theorem 2.32, �̅�( ℤ𝑝𝑚   ⊕   ℤ𝑞𝑛 ; 𝑥) = �̅�(ℤ𝑝𝑚; 𝑥) ⊕ �̅�(ℤ𝑞𝑛; 𝑥). 

Then by Definition 2.31, (2𝑊(𝑚(ℤ𝑝𝑚   ⊕ℤ𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚   ⊕ ℤ𝑞𝑛)) |) =

(2𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚)) |) (2𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑞𝑛)) |). So that 
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2𝑊(𝑚(ℤ𝑝𝑚   ⊕  ℤ𝑞𝑛); 𝑥)=4𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

2 |𝑉 (𝑚(ℤ𝑞𝑛))|𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + 2 |𝑉 (𝑚(ℤ𝑝𝑚))|𝑊(𝑚(ℤ𝑞𝑛); 𝑥). Then 

 𝑊(𝑚(ℤ𝑝𝑚   ⊕ℤ𝑞𝑛); 𝑥)=2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

|𝑉 (𝑚(ℤ𝑞𝑛))|𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚))|𝑊(𝑚(ℤ𝑞𝑛); 𝑥) = 

2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 + 1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + (𝑚 + 1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥). 

 

Example 3.13. Consider the ℤ-module ℤ2   ⊕ ℤ3. 𝐼1 =< 0 >= {0}, 𝐼2 =< 2 >=

{0,2, 4} and 𝐼3 =< 3 >= {0, 3} are the proper submodules of ℤ2⊕ℤ3. Then 

𝑑𝑖𝑎𝑚(𝑚(ℤ2   ⊕ ℤ3)) = 𝑑𝑖𝑎𝑚 ℤ𝑝   ⊕ ℤ𝑞 = 2, 𝑊(𝑚(ℤ2   ⊕ ℤ3)) = 8 and 

 𝑊(𝑚(ℤ2   ⊕ ℤ3); 𝑥) = 4𝑥 + 2𝑥
2. 

1. The following diagram illustrates the maximal chains of submodules of 𝑴. 

𝐼1 ⊂ {
𝐼2 ⊂ ℤ2⊕ℤ3
𝐼3 ⊂ ℤ2⊕ℤ3

 

2. The following figure illustrates  the maximal submodule graph 𝑚𝐺(ℤ2⊕ℤ3) 

 

Theorem 3.14. Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑟 be 𝑟 distinct prime numbers and 𝑟, 𝛼1, 𝛼2,

𝛼3, … , 𝛼𝑟 ∈ ℤ
+. Then  

1. ℤ𝑝1𝛼1𝑝2𝛼2…𝑝𝑟𝛼𝑟 = ℤ𝑝1𝛼1 × ℤ𝑝2𝛼2 ×…× ℤ𝑝𝑟𝛼𝑟 = ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟 =

⊕𝑖=1
𝑟 ℤ𝑝𝑖𝛼𝑖 . 

2. 𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟) = 𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ×

𝑚(ℤ𝑝𝑟𝛼𝑟) = 𝑚(ℤ𝑝1𝛼1) × 𝑚(ℤ𝑝2𝛼2) × …×𝑚(ℤ𝑝𝑟𝛼𝑟). 
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3. 𝑉(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟)) = 𝑉(𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1))) × 𝑉(𝑚(ℤ𝑝𝑟𝛼𝑟)) = 𝑉(𝑚(ℤ𝑝1𝛼1)) × 𝑉(𝑚(ℤ𝑝2𝛼2)) × …×

𝑉(𝑚(ℤ𝑝𝑟𝛼𝑟)) 

4. 𝑊(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟); 𝑥) = 2𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 + 1)𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). 

Proof.  

1. By (Dummit and Foote 2004, 357, Exercises 20(a)) and (Michel n.d., 8, Theorem 

2.25 ), we obtain the result.  

2. By Definition 3.10, we obtain the result.  

3. By Definition 3.10, we obtain the result. 

4. By Theorem 2.32,  �̅�(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟); 𝑥) = �̅� (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕

…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) × �̅�(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). Then by Definition 3.10,  (2𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕

ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + |𝑉 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)

𝛼(𝑟−1))) |) =

(2𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + |𝑉 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1))) |) (2𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟)) |). So that 𝑊(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕

…⊕ℤ𝑝𝑟𝛼𝑟); 𝑥)=4𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + 

2 |𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟))|𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + 2 |𝑉 (𝑚 (ℤ𝑝1𝛼1 ⊕

ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)))|𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥). Then 𝑊(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝𝑟𝛼𝑟); 𝑥)=2𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) +

|𝑉 (𝑚(ℤ𝑝𝑟𝛼𝑟))|𝑊 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + |𝑉 (𝑚 (ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕

…⊕ℤ𝑝(𝑟−1)
𝛼(𝑟−1)))|𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) = 2𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 + 1)𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥) + ∏ (𝛼𝑖 + 1)

𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) .  
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Therefore,  𝑊(𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟); 𝑥)=2𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕

ℤ𝑝(𝑟−1)
𝛼(𝑟−1)) ; 𝑥)𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) + (𝛼𝑟 + 1)𝑊 (𝑚(ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝(𝑟−1)

𝛼(𝑟−1)) ; 𝑥) +

∏ (𝛼𝑖 + 1)
𝑟−1
1 𝑊(𝑚(ℤ𝑝𝑟𝛼𝑟); 𝑥) 

 

Examples. 3.15. Consider 𝑀 = ℤ2⊕ℤ3⊕ℤ5  as an ℤ-module. The proper 

submodules of 𝑀 are 𝑁1 =< 0 >⊕< 0 >⊕< 0 >, 𝑁2 = ℤ2⊕< 0 >⊕< 0 >,  

𝑁3 =< 0 >⊕ ℤ3⊕< 0 >, 𝑁4 =< 0 >⊕< 0 >⊕ℤ5 , 𝑁5 = ℤ2⊕ℤ3⊕< 0 >,    

𝑁6 = ℤ2⊕< 0 >⊕ℤ5 and  𝑁7 =< 0 >⊕ ℤ3⊕ℤ5. By Example 3.13, 

𝑊(𝑚(ℤ2   ⊕ ℤ3); 𝑥) = 4𝑥 + 2𝑥
2 and 𝑊(𝑚(ℤ5); 𝑥) = 𝑥.  So that by above 

theorem,   the wiener polynomial of the graph  𝑚(𝑀) is 𝑊(𝑚(𝑀); 𝑥) =

2𝑥(4𝑥 + 2𝑥2) + 2(4𝑥 + 2𝑥2) + 4𝑥 = 12𝑥 + 12𝑥2 + 4𝑥3 and the wiener index of 

𝑚(𝑀) is 𝑊(𝑚(𝑀)) = 48. The following diagram illustrates the maximal chains of 

submodules of ℤ module 𝑀 = ℤ2⊕ℤ3⊕ℤ5.          

𝑁1 ⊂

{
 
 

 
 𝑁2 ⊂ {

𝑁5  ⊂ 𝑀 
 𝑁6 ⊂ 𝑀

𝑁3 ⊂ {
𝑁5 ⊂ 𝑀
𝑁7 ⊂ 𝑀 

𝑁4 ⊂ {
𝑁6 ⊂ 𝑀
𝑁7 ⊂ 𝑀

 

The following figure illustrates the maximal ideal graph 𝑚𝐺(ℤ2⊕ℤ3⊕ℤ5) 
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 ثوختة

 

 يwiener indexو wiener polynomialئيَمة ريَِطايةكي نويَ ثيَشكةش دةكةين بوَ دوَزينةوةى  ثرِوَذةيةدا،لةم 
maximal ideal graphs 𝑚(M)   وَديولى م بو 𝑀 = ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟  كاتيَك ، لة  

𝑝𝑖 جياوازن لةطةل يةكتر، ىكانيش ذمارةي خوَبةشαi دانةية لةℤ+، 1        و ≤ 𝑖 ≤ 𝑘. 

 

 

 الخلاصة
 

 𝑚(ℤ𝑛)  المشروع ،نقدم طريقة جديدة لإيجاد متعددة حدود وينر و مؤشر وينر للرسوم البيانية القصوي  في هذا 
𝑀مقاسات لل = ℤ𝑝1𝛼1 ⊕ℤ𝑝2𝛼2 ⊕…⊕ℤ𝑝𝑟𝛼𝑟  حيث𝑝𝑖   ، هي اعداد اولية متميزة 

α𝑖 ∈ ℤ
+ 1 ≤ 𝑖 ≤ 𝑘، . 

 


