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Abstract
In this project, we study maximal chain of submodules of the Z-modules

M =Z, a1 @ Zy,«2 D ... D Z,, « Where p;’s are distinct primes, o; € Z*, and
1<i<k=#1. Then we define the maximal submodule graph m(M) of the
module M. Finally we introduce a method to find the wiener polynomial and
wiener index of maximal submodule graphs m(M) of modules M = Z,, «.

L,z D ... Zy, « Where p;’s are distinct primes, o; € Z*,and 1 < i < k.
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Introduction

Let R be a commutative ring and M be an R-module. A submodule N; of M is
maximal in a submodule N, of M if there is no submodule N; of M such that
N; € N3 © N,. A chain of submodules K, € K; € K, c --- of an R-module M is
called maximal chain of submodules of M if K,_, is a maximal submodule in K;
foreacht € Z*. If K, c K; c K, c --- € K}, is a finite chain, then K, is said to
be the initial submodule and K; is the terminal submodule of the chain. A
submodule K, of M is called a maximal submodule of length m with respect to
the maximal chain of submodules K,c K, cK,c--cK,,_; € M. The
maximal submodule graph of M, denoted by m(M), is the undirected graph with
vertex set, the set of all submodules of M, where two vertices N; and N, are
adjacent if and only if N; maximal N,, or N, maximal N;. In the chapter three

we study maximal chain of submodules of Z-modules M = Z,, «1 @D Zj,«. ©
... © Zy, i Where p;’s are distinct primes, a; € Z*, and 1 < i < k. Then we find
the maximal submodule graph m(M) of the module M. Finally the Wiener index,
Wiener polynomial and dimeter of the maximal submodule graphs m(M) are

investigated.



Chapter One

Definitions and Back grounds of module theory

Definition 1.1 ( Dummit & Foote , 2004, p. 16).

(1) A binary operation x onaset G isafunction*:G XG — G.Foranya,b €
G we shall write a * b for * (a,b).

(2) A binary operation = onaset G isassociative if forall a,b,c € G we have
ax*x(bx*xc)=(a=*b)*c.

(3) If = is a binary operation on a set G we say elements a and b of G commute
ifaxb = b * a Wesay * (or G) is commutative if for all a, b € G, a *
b =b>b * a.

Definition 1.2 ( Dummit & Foote , 2004, p. 46). Let G be a group. The subset H
of G is a subgroup of G if H is nonempty and H is closed under products and
inverses (i.e.,x,y € H implies x™! € H and xy € H). If H is a subgroup of G

we shall write H <G.

Definition 1.3 ( Dummit & Foote , 2004, p. 62) If A is any subset of the group G

define

=01
H=<G

This is called the subgroup of G generated by A.

Definition 1.4 ( Dummit & Foote , 2004, p. 223)



(1) Aring R is a set together with two binary operations + and x (called addition

and multiplication) satisfying the following axioms:
(D) (R, +) is an abelian group,
(if) x is associative: (a X b) X ¢ = a X (b x c)foralla,b,c€R;

(iii) the distributive laws hold in R : for all a,b,ce€eR (a+b) xc = (axc) +
(bxc)yandax(b+c)= (axb)+ (a%xc)

(2) The ring R is commutative if multiplication is commutative.

(3) The ring R is said to have an identity (or contain a 1) if there is an element

1 € R with 1Xa=ax1=aforalaceR.

Definition 1.5 ( Dummit & Foote , 2004, p. 228) A subring of the ring R is a

subgroup of R that is closed under multiplication

Definition 1.6 ( Dummit & Foote , 2004, p. 337) Let R be a ring (not necessarily
commutative nor with 1 ). A left R-module or a left module over R is a set M
together with

(1) a binary operation 4+ on M under which M is an abelian group, and

(2) an action of R on M (thatis,amap R X M — M) denoted by rm, forall r €

R and for all m € M which satisfies

@@ +sm=rm+ sm,forallr,seR, m € M,
(b)(rs)ym = r(sm),forallr,s € R,m € M,and

C©r(m+n) = rm + rn,forallr € R,m,n € M.Ifthering R hasa 1 we
impose the additional axiom:

(d)1m = m,forallm € M.



Examples 1.7 ( Dummit & Foote , 2004)
1. If R is a field then an R-module is the same as an R-vector space.
2. 1f M = R and scalar multiplication is given by multiplication in R then

3. M =7 itself becomes an R-module.

Definition 1.8 ( Dummit & Foote , 2004, p. 337) Let R be aring and let M be an
R-module. An R-submodule of M is a subgroup N of M which is closed under the

action of ring elementi.e.,rm € N,forallr € R,n € N.

Definition 1.9 (Ahmad & Hummadi, 2023). A submodule N of an R-module M
is said to be a maximal submodule of M if M #+= N and there is no proper

submodule of M strictly containing N.

Definition 1.10 ( Dummit & Foote , 2004, p. 751) . An R- module M is said to be
Artinian or to satisfy the descending chain condition on submodule (or D. C. C.
on module) if there is no infinite decreasing chain of submodules in M, i.e.,
whenever I, 2 I, 2 I; 2 --- is a decreasing chain of submodules of M, then there

IS a positive integer m such that I, = I,,, for all kK > m.

Proposition 1.11. The following are equivalent:
(1) M is an Artinian submodule.
(2) Every nonempty set of submodule of R contains a minimal element under

inclusion.



Definition 1.12. ( Dummit & Foote , 2004, p. 458) An R- module M is said to be
Noetherian or to satisfy the ascending chain condition on submodule (or A. C. C.
on module) if there is no infinite decreasing chain of submodules in M, i.e.,

whenever M; € M, € M5 € --- isan increasing chain of submodules of M, then

there is a positive integer m such that M;, = M,,, forall k = m.



Chapter Two

Definitions and back grounds of graph theory

Definition 2.1 (Naduvath, 2017, p. 3)A graph G can be considered as an ordered
triple (V, E,y), where .

(1) V = {v;, v,,vs ..} Is called the vertex set of G and the elements of V
are called the vertices (or points or nodes);

(i) E = {eq, e, e3,...} IS the called the edge set of G and the elements of E
are called edges (or lines or arcs); and

(i) ¥ is called the adjacency relation, defined by ¢ : E — V XV, which

defines the association between each edge with the vertex pairs of G.

Definition 2.2 (Naduvath, 2017, p. 3) The order of a graph G, denoted by v(G),
is the number of its vertices and the size of G, denoted by £(G), is the number of

its edge

Definition 2.3 (Naduvath, 2017, p. 4)A graph with a finite number of vertices as
well as a finite number of edges is called a finite graph. Otherwise, it is an infinite

graph

Definition 2.4 (Naduvath, 2017, p. 4)An edge of a graph that joins a node to itself

is called loop or a self-loop. That is, a loop is an edge uv, where u = v.



Definition 2.5 (Naduvath, 2017, p. 5) The edges connecting the same pair of

vertices are called multiple edges or parallel edges.

Definition 2.6 (Naduvath, 2017, p. 5) A graph G which does not have loops or
parallel edges is called a simple graph. A graph which is not simple is generally

called a multigraph

Definition 2.7 (Naduvath, 2017, p. 5) number of edges incident on a vertex v,
with self-loops counted twice, is called the degree of the vertex v and is denoted

by deg(v) or deg(v) or simply d(v).

Definition 2.8 (Naduvath, 2017, p. 5) A vertex having no incident edge is called

an isolated vertex. In other words, isolated vertices are those with zero degree.

Definition 2.9 (Naduvath, 2017, p. 5) A vertex, which is neither a pendent vertex

nor an isolated vertex, is called an internal vertex or an intermediate vertex.

Definition 2.10 (Naduvath, 2017, p. 5) The maximum degree of a graph G,
denoted by A(G), is defined to be A(G) = max{d(v) : v € V(G)}. Similarly,
the minimum degree of a graph G, denoted by §(G), is defined to be §(G)
min{d(v) : v € V(G)}. Note that for any vertex v in G, we have §(G) <
d(v) < A(G).



Definition 2.11 (Naduvath, 2017, p. 7) The neighborhood (or open
neighbourhood) of a vertex v, denoted by N (v), is the set of vertices adjacent to
v. Thatis,N(v) = {x € V: vx € E}. The closed neighbourhood of a vertex
v, denoted by N[v], is simply the set N(v) U {v}.

Definition 2.12 (Naduvath, 2017, p. 8) A graph H (V,, E;) is said to be a subgraph
ofagraph G(V,E)ifV; € Vand E; € E.

Definition 2.13 (Naduvath, 2017, p. 8) A graph H(V;,E;) is said to be a spanning
subgraph of agraph G(V,E) if V; = Vand E; € E.

Definition 2.14 (Naduvath, 2017, p. 8). Suppose that V' be a subset of the vertex
set V of agraph G. Then, the subgraph of G whose vertex set is IV'and whose edge
set is the set of edges of G that have both end vertices in V' is denoted by G[V] or
(V) called an induced subgraph of G



Definition 2.15 (Naduvath, 2017, p. 8). Suppose that E’ be a subset of the edge
set VV of agraph G. Then, the subgraph of G whose edge set is E’ and whose vertex
set is the set of end vertices of the edges in E’ is denoted by G[E] or (E’) called an

edge-induced subgraph of G.

Definition 2.16 (Naduvath, 2017, p. 8). A complete graph is a simple undirected
graph in which every pair of distinct vertices is connected by a unique edge. A

complete graph...

Definition 2.17 (Naduvath, 2017, p. 11). An isomorphism of two graphs G and
H is a bijective function f : V(G) — V(H) such that any two vertices u and v of
G are adjacent in G if and only if f(u) and f(v) are adjacent in H. This bijection
is commonly described as edge-preserving bijection. If an isomorphism exists
between two graphs, then the graphs are called isomorphic graphs and denoted
asG =~ Hor G = H.

(Naduvath, 2017)

Remark 2.18. Every two graphs G and H are said to be isomorphic if

(i) V(&) = [V(H)|
(i) |[E(G)| = [E(H)|,
(i) vv; € E(G) = f(v;) f(v;) € E(H).

Definition 2.19 (Naduvath, Sudev, 2017, p. 23). A walk in a graph G is an

alternating sequence of vertices and connecting edges in G. In other words, a walk

9



IS any route through a graph from vertex to vertex along edges. If the starting and

end vertices of a walk are the same, then such a trail is called a closed walk.

Definition 2.20 (Naduvath, 2017, p. 23). A trail is a walk that does not pass over
the same edge twice. A trail might visit the same vertex twice, but only if it comes
and goes from a different edge each time. A tour is a trail that begins and ends on

the same vertex.

Definition 2.21 (Naduvath, 2017, p. 23). A path is a walk that does not include
any vertex twice, except that its first vertex might be the same as its last. A cycle

or a circuit is a path that begins and ends on the same vertex.

Definition 2.22 (Naduvath, 2017). The length of a walk or circuit or path or cycle

is the number of edges in it.

Definition 2.23 (Naduvath, 2017, p. 24). The distance between two vertices u and
v in a graph G, denoted by d. (u, v) or simply d(u, v), is the length (number of
edges) of a shortest path (also called a graph geodesic) connecting them. This

distance is also known as the geodesic distance.

Definition 2.24 (Naduvath, 2017, p. 24). The eccentricity of a vertex v, denoted

by e(v), is the greatest geodesic distance between v and any other vertex. It can

10



be thought of as how far a vertex is from the vertex most distant from it in the

graph.

Definition 2.25 (Naduvath, 2017, p. 24). The radius r of a graph G, denoted by
rad(G), is the minimum eccentricity of any vertex in the graph. That is,
rad(G) = min e(v).

VEV ()

Definition 2.26 (Naduvath, 2017, p. 24). The diameter of a graph G, denoted by
diam(G) is the maximum eccentricity of any vertex in the graph. That is,

diam(G) = ye’tgéc) e(v).

Definition 2.27 (Naduvath, 2017, p. 24). A center of a graph G is a vertex of G

whose eccentricity equal to the radius of G.

Definition 2.28 (Naduvath, 2017, p. 25). Two vertices u and v are said to be
connected if there exists a path between them. If there is a path between two
vertices u and v, then u is said to be reachable from v and vice versa. A graph G

Is said to be connected if there exist paths between any two vertices in G.

Definition 2.29 (Naduvath, 2017, p. 26). A connected component or simply, a

component of a graph G is a maximal connected subgraph of G.

11



Definition 2.30 (Sagan , Yeh, & Zhang, 1996). Let d(u, v) denote the distance
between vertices u and v in a graph G. The Wiener index of G is defined as

W(G) = ), d(u,v) where the sum is over all unordered pairs {u, v} of distinct

{uv}

vertices in G. If x is a parameter, then the Wiener polynomial of G is W (G; x) =

¥ x2@v) where the sum is taken over the same set of pairs.
{uv}

Definition 2.31 (Sagan , Yeh, & Zhang, 1996, p. 961). The ordered Wiener

Polynomial defined by W (G; q) = Y. x¢®¥) where the sum is over all ordered
(uv)

pairs (u,v) of vertices, including those where u = v. Thus, W(G;q) =

Y xt¥) =2W(G; q) + |V(G)|.

(wv)

Theorem 2.32 (Sagan , Yeh, & Zhang, 1996, pp. 961, Proposition 1.4(2)).
Suppose that G, and G, are two connected graphs. Then W( Gy xGyx) =
W(Gl;x) X W(Gz;x).

12



Chapter Three

In this chapter, we study maximal chain of submodules of Z-modules
M =1Z, o« @ Ly @D ... D Zy « Where p;’s are distinct primes, a; € Z*, and
1<i<k=+1. Then we find the maximal submodules graph m(M) of the
module M. Finally the Wiener index, Wiener polynomial, dimeter and radical of

the maximal submodule graphs m(M) are investigated.

Definition 3.1. A submodule N; of an R-module M is maximal in a submodule

N, of M if there is no submodule N; of M such that N; € N; € N,.

Example 3.2. Consider the Z-module Zs4. Then
1. The submodules of Z5 are the form nZ;, wheren € {0, 1, 2, 3,4, 6,12, 18}

2. For each prime number p, if n = pm, then nZs¢ is maximal in mZs,.

Definition 3.3 (Ahmad & Hummadi, 2023). A chain of submodules K, € K; ©
K, c --- of an R-module M is called maximal chain of submodules of M if K,_;
is a maximal submodule in K, foreacht € Z*. If Kyc K; c K, c .- c K isa
finite chain, then K, is said to be the initial submodule and K;, is the terminal
submodule of the chain. A submodule K, of M is called a maximal submodule of
length m with respect to the maximal chain of submodules K, c K; € K, C
-+ C K,,_4 € M. The length of K, is said to be oo, if there is no such finite

maximal chain of submodules with initial submodule K.

Definition 3.4. Let M be an R-module. The maximal submodule graph of M,

denoted by m(M), is the undirected graph with vertex set, the set of all

13



submodules of M, where two vertices N, and N, are adjacent if and only if N;

maximal N,, or N, maximal N;.

Remark 3.5. Let M be an R-module. If |V (m(M))| > 2, then the m(M) graph is
not complete.

Proof. Let M be an R-module with at least three submodules I =< 0 >,/ and K.
Without loss of generality if I is a maximal in both J and K, then neither ] maximal

in K nor K maximal in J. So that two vertices J and K are not adjacent.

Theorem 3.6. Let M be an R-module. If M is an Artinian and Noetherian module,
then the graph m(M) is connected. But the converse is not true.

The following proposition is easy to prove
Proposition 3.7. Consider an R-module M. Then

1. If M =< 0 >, then the wiener polynomial of M is 1, thatis W (m(M);x) =1,
rad(G) = diam(G) = 0.
2. If M is asimple module, then W(m(M); x) = x, rad(G) = diam(G) = 1.

Theorem 3.8. Consider the Z-module Z,» where p is a prime number and n €

Z*. Let]; =< p' >for0 < i < n.Then

1. For any two submodules ., I of Z,n, d(I, 1) = |r — s|.
_(n+2\ _ (n+2)!

2. w(m(mn)=("37) =5

3. W(m(Zyn);x) =nx+ (n— Dx? + (n—2)x> + -+ x"

14



4. diam (m(an)) =n.
5. rad (m(an)) = %

Proof. It is clear that the submodules of Z,,» are of the form I; =< pt >=for0 <
i < n. That is there are n + 1 submodules as follows:

0Zyn p™ Y Lyn, p" " Ly, P2 L, ., Iy = PLyn, Iy = ZLyn. This means that the
graph m(Z,n) is a path P, that is it is a path with n + 1 vertices.

1. Letl. =<p" >andI; =< p® > be two submodules of Z,». Then exactly
one of the following istrue. a)r=s Db) r>s ¢C)r<s.

a) Ifr =sthen|r —s| =0and I. = I, consequently, d(I,,I;) = 0 = |r —
s| .

b) If r > s,thenthechainl. cI,_, cI,._, c...c I,.; C I isthe shortest

maximal chain of submodules with the initial submodule I, and the terminal
submodule ;. So that d(I,., I,) = |r — s].
C) Similarly, if r < s, then d(I,.,1;,) = |r —s]|.

The following figure illustrates the maximal submodule graph mG (Z,n)

< p?” > < pr—l -~ < pr—z > < iDs+.‘l > < PS >

2. Since W (m(Z,n) ) = W(P,,,), then by (Sagan , Yeh, & Zhang, 1996,
p

pp. 960, theorem 1.3(5)), W (m(an)) = (n ; 2) = _(S:;);' and

3. By (Sagan , Yeh, & Zhang, 1996, pp. 960, theorem 1.2(5)),
W(m(Zyn);x) = W(Ppyp;x) =nx + (n— Dx? + (n— 2)x3 + -+ x™ =
((n+1)-[n])x

1-x

4. By (Sagan , Yeh, & Zhang, 1996, pp. 960, theorem 1.1(1)),
diam (m(an)) = degW (Pp4+1;x) = n.
5. It is clear.

15



Example 3.9. Consider the ring Z,¢ = Z,+ . Then

1.The proper submodules of Z, 4 are as follows:
I, =<0>={0}, I, =<2 >={0,2,4,6,8,10,12,14} ,
I; =<4>={0,48,12}and I, =< 8 >= {0,8}.
2.The following diagram illustrates the maximal chains of submodules of Z,.

LclLclcly

3.The following figure illustrates the maximal submodules of graph m( Z,¢)

<0>—<23>—<22>—<2>—< 7y >

4.The Wiener index of m( Zy¢) is W(m( Zye)) = (g) = ;—; =20

5.The wiener polynomial for Z;¢ = Z,s+ is w(x) = 4x + 3x% + 2x3 + x*.
6.diam(m(Zy)) = 4.

7.rad(m( Z16)) =2

Definition 3.10 (Sagan , Yeh, & Zhang, 1996, p. 960). The Cartesian product of
two graphs G, and G,, isagraph G, X G, suchthat V(G; X G,) = {(v4,v,): v, €
Gl and (%) € Gz} and E(Gl X Gz) = {(ul,uZ)(vl, 172): u,vq € E(Gl) and U, =

vz or uzvz € E(Gz) and u1 = Ul}.

Theorem 3.11. Consider the Z-module Z, @ Z, where p and g are two prime

numbers. Then

1. rad(m(Zp D Z, )) = 2 and diam(m(Zp Dz, )) = 2.
2. W(m(Z, ®Z,)) =8and W(m(Z, ® Zg ); x) = 4x + 2x2.

16



Proof. It is well known that I, =< 0 >={0}, [, =<p >={0,p,2p, ..., (q —
1p} and I; =< q >={0,q,2q, ..., (p — 1)q} are proper submodules of. Since
L, DZLge d(ly, 1) =d(y,13) =dU;)Z, DLy =ds,) =1, d(lp,13) =
d(I,,Z, ® Z, ) = 2,thenrad(m()) = diam(m(Z, ® Z,)) = 2, W(m()) =
8 and W(m(Z, @ Z, ); x) = 4x + 2x>.

The following diagram illustrates the maximal chains of submodules of. Z,, @ Z,.

C{IZCZPEBZCI
1" cZ, ®Z,

The following figure illustrates the maximal submodule graph m(Z, & Z, )

L, DL,

Theorem 3.12. Let p and g be any two prime numbers and n,m € Z*. Then
W(m(Zym @ Zyn);x) = 2W(m(Zym); x)W (m(Zyn); x) + (n+
1)W(m(me); x) +(m+ 1)W(m(an); x)

Proof. By Theorem 2.32, W(Zym @ Zgn;x) = W(Z,m;x) @ W(Zyn; x).
Then by Definition 2.31, (2W(m(Zym @ Zgn)ix)+ |V (m(Zym @ Zgn))|) =

(ZW(m(me); x)+ |V (m(me)) |) (ZW(m(an); x)+ |V (m(an)) |). So that

17



2W(m(Zym @ Zyn); x)=4W (m(Zym); x)W (m(Zyn); x) +

2|V (m(Zgn))| W (m(Zym); ) + 2|V (m(Zym) )| W (m(Zgn); x). Then
W(m(Zym @ Zyn);x)=2W(m(Zym); x)W (m(Zyn); x) +

|V (m(zg)| W (m(zpm); ) + |V (m(Zm) )| W (m(2gn); x) =

2W(m(Zym); x)W(m(Zgn); x) + (n + DW(m(Z,m); x) + (m + D)W (m(Zyn); x).

Example 3.13. Consider the Z-module Z, @ Z;. I, =< 0>={0}, , =<2 >=
{0,2,4} and I; =<3 >={0,3}are the proper submodules ofZ, @ Z;. Then
diam(m(Z, ©® Z3)) =diamZ, © Z; =2, Wim(Z, @ Z;)) =8 and
Wm(Z, @ Zj3);x) = 4x + 2x>.

1. The following diagram illustrates the maximal chains of submodules of M.

] C{IZC Z, D Zs
1= c Z, ® 7,

2. The following figure illustrates the maximal submodule graph mG(Z, @ Z5)

Iy

L, DIy

Theorem 3.14. Let p;, py, p3, ..., P, be r distinct prime numbers and r, a;, a5,

as, ..., &y € Z¥. Then

1. Zp1alpza2---prar = Zp1a1 X szaz X .. X ZPT“T = Zplal . szaz b ..o Zprar =
‘lr=1 Zpiai'

2. m(Zp1a1 @ szaz @ e @ Zprar) =m (Zplal @ szaz @ s @ Zp(r—l)a(r_l)) X

M(Zy ar) = M(Zp,ar) X M(Zyp,a2) X ... X M(Ly ar).

18



3. VI(Zpys © Tz @ o ® Ty )) = V(i (L2 D L,z D ... D
Zp(r-l)“”‘”)) X V(m(Zp,ar)) = V(m(Zp,a)) X V(m(Zp,az)) X ... X
V(m(Zpr“T))

4. W(m(Zp,oer @ Lp,as @ .. D L ar); x) = 2W (m (Zp,er D Zp,e0 D ... D
Ly, -0 )i X)W (m(Zp,er )i x) + (o + DW (m (Zp,er @ Zpyeo @ .. D
Zp(r_l)““‘l)) ; x) + 15 a + Y W(m(Z, o ); x).

Proof.

1. By (Dummit and Foote 2004, 357, Exercises 20(a)) and (Michel n.d., 8, Theorem
2.25), we obtain the result.

2. By Definition 3.10, we obtain the result.
3. By Definition 3.10, we obtain the result.

4. By Theorem 2.32, W (m(Zp,e2 @ Zy,a2 ® .. ® Lp,ar); x) = W (1 (Zpyer B L0 D
w®L,, oy );¥) X W(m(Zy,a);x). Then by Definition 3.10, (2w (m (Zp,« @
Ly @ . ® T, en)ix) 1V (m (Zp,os @ Zpyer ® ... ® Zp(r_l)a(r_l)» )=
(2w (m (Zpys @ Zpyo: @ . BT, armry)ix) + IV (m (Zp,e ® T,z @ .. D
Zp(r_l)a(r_l))) 1) (2w (m(Zp,er); x) + 1V (m(Z,er) ) 1)- S0 that W (m(Zy,e @D Ty, D
@ Ty ); X) =AW (m (Zpos © Ty @ - DLy ey )i %) W (m(Tp, ) ) +
2|V (m(2Zy, ) )| W (m(Zp,01 D Zp,eo @ .. D Zp(r_l)a(r_l)) x)+2|v (m (Zp,en @
Tps @ DT, cor) )| W(n(Zy,er);x). Then W(m(Zy,e: @ Zp,e: @ .. 0
Lp,ar); X)=2W (0 (Zp,0s @ Ty @ . @ T,y armsy )5 %) W (m(Zp, a0 )i x) +
[V (m(2p,a) )| W (1 (2,01 @ Ty @ . B L,y ey )3%) + |V (m (Zp,2 @ T, D
Ly ary) )| W (Zp,a)ix) = 2W (1 (Zpyes @ Ty & . D
Ly, o )i %) W(m(Zp,er); 2) + (a + DW (m (Zp,e1 @ Tp,e: @ .. D

Zp(r_l)“(r—m) ’ X) + H’lﬂ_l((li +1) W(m(Zprar); x) .
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Therefore, W(m(Zp,e1 @ Zp, a2 @ ... D Ly, ar ); x)=2W (m (Zplal D Zy,a2 @ ... D
Zp(r_l)“(’"‘l)) ; x) W(m(Zy, a);x) + (ar + DW (m (Zplal D Zp,» © ... Zp(r_l)“(r—l)) ; x) +
5oy + D)W (m(Zp,ar); x)

Examples. 3.15. Consider M =7Z, @ Z; @ Zs as an Z-module. The proper
submodules of M are N; =< 0>B<0><0>, N, =7Z, < 0>P< 0 >,
N; =< 0>PZ; P< 0> N, =< 0>D<0>DZs , Ns =7, DZ; D<0 >,
N, =7, < 0> Zs and N, =<0>DZ;PZs. By Example 3.13,
Wm(Z, @ Z3);x)=4x+2x?> and W(m(Zs);x) =x. So that by above
theorem, the wiener polynomial of the graph m(M) is W(m(M);x) =
2x(4x + 2x2) + 2(4x + 2x?) + 4x = 12x + 12x? + 4x3 and the wiener index of
m(M) is W(m(M)) = 48. The following diagram illustrates the maximal chains of
submodules of Z module M =7, @ Z; D Zs.

Mo {y, e

Ny c M

N, cM

Ne C M
kN4C{N7cM

N1c<N3c{

The following figure illustrates the maximal ideal graph mG(Z, @ Z; @ Zs)
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