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Abstract 
 

    In this work we study maximal chain of subgroups of abelian groups 𝐺 of order 

less than 26. Then we find the maximal graph 𝑚(𝐺) of those groups. Finally we 

investigated the Wiener index, the Wiener polynomial, the dimeter and the radical 

of some of the maximal subgroup graphs 𝑚(𝐺) where |𝐺| < 26.  
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Introduction 
 

    Let be a group. A subgroup 𝑁1 of 𝑀 is maximal in a subgroup 𝑁2 of 𝑀 if there 

is no subgroup 𝑁3 of 𝑀  such that 𝑁1 ⊂ 𝑁3 ⊂  𝑁2. A chain of subgroups 

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ of a group 𝐺 is called maximal chain of subgroups of 𝐺 if 

𝐾𝑡−1 is a maximal subgroup in 𝐾𝑡 for each 𝑡 ∈ ℤ+. If 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾ℎ 

is a finite chain, then  𝐾0 is said to be the initial subgroup and 𝐾ℎ is the terminal 

subgroup of the chain. A subgroup  𝐾0 of 𝐺 is called a maximal subgroup of 

length 𝑚 with respect to the maximal chain of subgroups  𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂

⋯ ⊂ 𝐾𝑚−1 ⊂ 𝑀. The maximal subgroup graph of 𝐺, denoted by 𝑚(𝑀), is the 

undirected graph with vertex set, the set of all subgroups of 𝑀, where two vertices 

𝑁1 and 𝑁2 are adjacent if and only if  𝑁1 maximal 𝑁2, or 𝑁2 maximal 𝑁1. In the 

chapter three we study maximal chain of subgroups of groups less than 26. Then 

we find the maximal subgroup graph 𝑚(𝐺) of  groups 𝐺. Finally we find each of 

the Wiener index, Wiener polynomial and dimeter of the maximal subgroup 

graphs 𝑚(𝐺). 
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Chapter One 

Definitions and Back grounds of group theory 

 

Definition 1.1 (Dummit & Foote, 2004, p. 15).A group is an ordered pair  

(𝐺,∗) where G is a set and ∗ is a binary operation on 𝐺 satisfying the following 

axioms: 

(i) (𝑎 ∗  𝑏)  ∗  𝑐 =  𝑎 ∗  (𝑏 ∗  𝑐), for all 𝑎, 𝑏, 𝑐 𝜖 𝐺, i.e., * is associative, 

(ii) there exists an element e in G, called an identity of G, such that for all 

𝑎 𝜖 𝐺 we have 𝑎 ∗  𝑒 =  𝑒 ∗  𝑎 =  𝑎, 

(iii) for each 𝑎 ∈ 𝐺 there is an element 𝑎−1𝑜𝑓 𝐺, called an inverse of a, 

such that 𝑎 ∗  𝑎−1 =  𝑎−1 ∗  𝑎 =  𝑒.  

 

Definition 1.2 (Dummit & Foote, 2004, p. 46). Let 𝐺 be a group. The subset 𝐻 of 

𝐺 is a subgroup of 𝐺 if 𝐻 is nonempty and 𝐻 is closed under products and inverses 

(𝑖. 𝑒. , 𝑥   , 𝑦 𝜖 𝐻 implies 𝑥−1 𝜖 𝐻 𝑎𝑛𝑑 𝑥 𝑦 𝜖 𝐻). If 𝐻 is a subgroup of 𝐺 we shall 

write  𝐻 ≤  𝐺 . 

 

Example.1.3  

1. Consider the group ℤ36 = {0, 1, 2, … , 35}. The proper subgroups of ℤ36 are 

𝐻0 =< 0 >= {0}, 𝐻1 =< 18 >= {0, 18}, 𝐻2 =< 12 >= {0, 12, 24}, 𝐻3 =<

9 >= {0, 9, 18, 27}, 𝐻4 =< 6 >= {0, 6, 12, 18, 24, 30}, 𝐻5 =< 4 >=

{0, 4, 8, 12, 16, 20, 24, 28, 32} and 𝐻1 =< 2 >= {0, 2, 4, … , 34} 

2. Consider the symmetric group 𝑆3 = {(),(1 2), (2 3), (1 3), (1 2 3), (1 3 2)}.  

The proper subgroups of 𝑆3 are  𝐿0 = {𝑒}, 𝐿1 = {𝑒, (1 2)}, 𝐿2 = {𝑒, (1 3)}, 

𝐿3 = {𝑒, (2 3)}, 𝐿4 = {𝑒, (12 3), (132)}}.  
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The following table illustrates the multiplication table of the symmetry group 𝑆3. 

 

 

Definition 1.4 (Dummit & Foote, 2004). For 𝐺 a group and 𝑥 ∈  𝐺 define the 

order of 𝑥 to be the smallest positive integer n such that 𝑥𝑛 =  1 , and denote this 

integer by |𝑥| order 𝑛. If no positive power of 𝑥 is the identity. The order of 

a finite group is the number of its elements. If a group is not finite, one says that 

its order is infinite.  

 

Definition 1.5 (Dummit & Foote, 2004, p. 37). The map 𝜑: G → H is called an 

isomorphism and 𝐺 and 𝐻 are said to be isomorphic or of the same isomorphism 

type, written 𝐺 ≅ 𝐻, if 

(1) 𝜑 is a homomorphism (𝑖. 𝑒. , 𝜑 (𝑥𝑦)  =  𝜑 (𝑥) 𝜑 (𝑦)), and 

(2) 𝜑 is a bijection.   

 

Definition 1.6 (Dummit & Foote, p. 65). A subgroup 𝑀 of a group 𝐺 is called a 

maximal subgroup if 𝑀 ≠  𝐺 and the only subgroups of 𝐺 which contain 𝑀 are 

𝑀 and 𝐺. 

 

 

 

 

https://en.wikipedia.org/wiki/Finite_group
https://en.wikipedia.org/wiki/Group_(mathematics)
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Chapter Two 

Definitions and Back grounds of Graph Theory 

 

Definition 2.1 (Naduvath, 2017, p. 3). A graph 𝐺 can be considered as an ordered 

triple (𝑉, 𝐸, 𝜓), where                        

(i) 𝑉 =  { 𝑣1,  𝑣2, 𝑣3 , …} is called the vertex set of G and the elements of V 

are called the vertices (or points or nodes); 

(ii) 𝐸 =  {𝑒1, 𝑒2, 𝑒3,...} is the called the edge set of 𝐺 and the elements of 𝐸 

are called edges (or lines or arcs); and  

(iii) 𝜓 is called the adjacency relation, defined by 𝜓 ∶  𝐸 →  𝑉 × 𝑉, which 

defines the association between each edge with the vertex pairs of 𝐺.   

 

Definition 2.2 (Naduvath, 2017, p. 4). The order of a graph 𝐺, denoted by 𝜈(𝐺), 

is the number of its vertices and the size of 𝐺, denoted by 𝜀(𝐺), is the number 

of its edge 

 

Definition 2.3 (Naduvath, 2017, p. 4). A graph with a finite number of vertices 

as well as a finite number of edges is called a finite graph. Otherwise, it is an 

infinite graph 

 

Definition 2.4 (Naduvath, 2017, p. 4). An edge of a graph that joins a node to 

itself is called loop or a self-loop. That is, a loop is an edge 𝑢𝑣, where 𝑢 =  𝑣. 
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Definition 2.5 (Naduvath, 2017, p. 5). The edges connecting the same pair of 

vertices are called multiple edges or parallel edges. 

 

Definition 2.6 (Naduvath, 2017, p. 5). A graph G which does not have loops or 

parallel edges is called a simple graph. A graph which is not simple is generally 

called a multigraph 

 

Definition 2.7 (Naduvath, 2017, p. 5). number of edges incident on a vertex 𝑣, 

with self-loops counted twice, is called the degree of the vertex 𝑣 and is denoted 

by deg(𝑣) or deg(𝑣) or simply 𝑑(𝑣).  

 

Definition 2.8 (Naduvath, 2017, p. 5). A vertex having no incident edge is called 

an isolated vertex. In other words, isolated vertices are those with zero degree.  

 

Definition 2.9 (Naduvath, 2017, p. 5). A vertex, which is neither a pendent 

vertex nor an isolated vertex, is called an internal vertex or an intermediate 

vertex. 

 

Definition 2.10 (Naduvath, 2017, p. 5). The maximum degree of a graph 𝐺, 

denoted by ∆(𝐺), is defined to be ∆(𝐺)  =  𝑚𝑎𝑥{𝑑(𝑣) ∶  𝑣 ∈ 𝑉(𝐺)}. Similarly, 

the minimum degree of a graph G, denoted by 𝛿(𝐺), is defined to be 𝛿(𝐺)  =

 𝑚𝑖𝑛{𝑑(𝑣) ∶  𝑣 ∈  𝑉(𝐺)}. Note that for any vertex 𝑣 in 𝐺, we have 𝛿(𝐺)  ≤

 𝑑(𝑣)  ≤  ∆(𝐺). 
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Definition 2.11 (Naduvath, 2017, p. 7). The neighborhood (or open 

neighbourhood) of a vertex 𝑣, denoted by 𝑁(𝑣), is the set of vertices adjacent to 

𝑣. That is, 𝑁(𝑣)  =  {𝑥 ∈  𝑉 ∶  𝑣𝑥 ∈  𝐸}. The closed neighbourhood of a vertex 

𝑣, denoted by 𝑁[𝑣], is simply the set 𝑁(𝑣) ∪  {𝑣}. 

 

Definition 2.12 (Naduvath, 2017, p. 8). A graph 𝐻(𝑉1, 𝐸1) is said to be a 

subgraph of a graph 𝐺(𝑉, 𝐸) if 𝑉1 ⊆  𝑉 𝑎𝑛𝑑 𝐸1 ⊆  𝐸. 

 

 Definition 2.13 (Naduvath, 2017, p. 8).A graph H(𝑉1,𝐸1) is said to be a 

spanning subgraph of a graph 𝐺(𝑉, 𝐸) 𝑖𝑓 𝑉1 =  𝑉 𝑎𝑛𝑑 𝐸1 ⊆  𝐸. 

 

 

 

 

 

Definition 2.14 (Naduvath, 2017, p. 8). Suppose that 𝑉′ be a subset of the vertex 

set 𝑉 of a graph 𝐺. Then, the subgraph of 𝐺 whose vertex set is 𝑉′and whose 

edge set is the set of edges of 𝐺 that have both end vertices in 𝑉′ is denoted by 

𝐺[𝑉] or 〈𝑉〉 called an induced subgraph of 𝐺 

 

 Definition 2.15 (Naduvath, 2017, p. 8). Suppose that 𝐸′ be a subset of the edge 

set 𝑉 of a graph 𝐺. Then, the subgraph of 𝐺 whose edge set is 𝐸′ and whose 



7 
 

vertex set is the set of end vertices of the edges in 𝐸′ is denoted by 𝐺[𝐸] or 

〈𝐸〉 called an edge-induced subgraph of 𝐺. 

 

Definition 2.16 (Naduvath, 2017, p. 8). A complete graph is a simple undirected 

graph in which every pair of distinct vertices is connected by a unique edge. A 

complete graph 

 

Definition 2.17 (Naduvath, 2017, p. 11).  An isomorphism of two graphs G and 

𝐻 is a bijective function 𝑓 ∶  𝑉(𝐺)  →  𝑉(𝐻) such that any two vertices u and v of 

𝐺 are adjacent in 𝐺 if and only if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐻. This bijection 

is commonly described as edge-preserving bijection. If an isomorphism exists 

between two graphs, then the graphs are called isomorphic graphs and denoted 

𝑎𝑠 𝐺 ≃  𝐻 𝑜𝑟 𝐺 ≅  𝐻. 

 

Definition 2.18 (Naduvath, 2017, p. 23).A walk in a graph G is an alternating 

sequence of vertices and connecting edges in 𝐺. In other words, a walk is any 

route through a graph from vertex to vertex along edges. If the starting and end 

vertices of a walk are the same, then such a trail is called a closed walk. 

 

Definition 2.19 (Naduvath, 2017, p. 23). A trail is a walk that does not pass over 

the same edge twice. A trail might visit the same vertex twice, but only if it 

comes and goes from a different edge each time. A tour is a trail that begins and 

ends on the same vertex. 
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Definition 2.20 (Naduvath, 2017, p. 23). A path is a walk that does not include 

any vertex twice, except that its first vertex might be the same as its last. A cycle 

or a circuit is a path that begins and ends on the same vertex. 

 

Definition 2.21 (Naduvath, 2017, p. 23). The length of a walk or circuit or path 

or cycle is the number of edges in it. 

 

Definition 2.22 (Naduvath, 2017, p. 24). The distance between two vertices 𝑢 

and 𝑣 in a graph 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣) or simply 𝑑(𝑢, 𝑣), is the length (number 

of edges) of a shortest path (also called a graph geodesic) connecting them. This 

distance is also known as the geodesic distance. 

 

Definition 2.23 (Naduvath, 2017, p. 24).The eccentricity of a vertex 𝑣, denoted 

by ε(v), is the greatest geodesic distance between 𝑣 and any other vertex. It can 

be thought of as how far a vertex is from the vertex most distant from it in the 

graph. 

 

Definition 2.24 (Naduvath, 2017, p. 24).The radius r of a graph G, denoted by 

𝑟𝑎𝑑(𝐺), is the minimum eccentricity of any vertex in the graph. That is, 

𝑟𝑎𝑑(𝐺)  =   𝜀(𝑣)𝑣∈𝑉(𝐺)
𝑚𝑖𝑛  . 
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Definition 2.25 (Naduvath, 2017, p. 24). The diameter of a graph 𝐺, denoted by 

𝑑𝑖𝑎𝑚(𝐺) is the maximum eccentricity of any vertex in the graph. That is, 

𝑑𝑖𝑎𝑚(𝐺)  =   𝜀(𝑣)𝑣∈𝑉(𝐺)
𝑚𝑎𝑥  .  

 

Definition 2.26 (Naduvath, 2017, p. 24).A center of a graph 𝐺 is a vertex of 𝐺 

whose eccentricity equal to the radius of 𝐺. 

 

Definition 2.27 (Naduvath, 2017, p. 25). Two vertices 𝑢 and 𝑣 are said to be 

connected if there exists a path between them. If there is a path between two 

vertices 𝑢 and 𝑣, then 𝑢 is said to be reachable from 𝑣 and vice versa. A graph 

𝐺 is said to be connected if there exist paths between any two vertices in 𝐺.  

 

Definition 2.28 (Naduvath, 2017, p. 26). A connected component or simply, a 

component of a graph 𝐺 is a maximal connected subgraph of 𝐺. 

 

Definition 2.29 (Sagan , et al., 1996, p. 27). Let 𝑑(𝑢, 𝑣) denote the distance 

between vertices 𝑢 and 𝑣 in a graph 𝐺. The Wiener index of G is defined as 

 𝑊(𝐺)  = ∑ 𝑑(𝑢, 𝑣)
{𝑢,𝑣}                 

 where the sum is over all unordered pairs {𝑢, 𝑣} of distinct 

vertices in 𝐺. If 𝑥 is a parameter, then the Wiener polynomial of 𝐺 is 𝑊(𝐺; 𝑥)  =

 ∑ 𝑥𝑑(𝑢,𝑣)

{𝑢,𝑣}                 
 where the sum is taken over the same set of pairs. 
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Chapter three 

   In this chapter, we study maximal chain of subgroups of abelian groups 𝐺 of 

order less than 26. Then we find the maximal  graph 𝑚(𝐺) of those groups. Finally 

we investigated the Wiener index, the Wiener polynomial, the  dimeter and the 

radical of some of the maximal subgroup graphs 𝑚(𝐺) where |𝐺| < 26.  

 

Definition 3.1 (Ahmad & Hummadi, 2023, p. 2). A subgroup 𝐻1 of a group 𝐺 is 

maximal in a subgroup 𝐻2 of 𝐺 if there is no subgroup 𝐻3 of 𝐺  such that 𝐻1 ⊂

𝐻3 ⊂  𝐻2. 

 

Example 3.2 Consider the group of integers ℤ. Then  

1. The subgroups of ℤ are the form 𝑛ℤ where 𝑛 ∈ ℤ+ ∪ {𝟎}.  

2. The nonzero maximal subgroups of ℤ are the form 𝑛ℤ where 𝑛 is a prime 

number.  

3. For each prime number 𝑝, if 𝑛 = 𝑝𝑚, then 𝑛ℤ is maximal in 𝑚ℤ.  

4. In the group of integers ℤ, the zero subgroup is not maximal in any another 

subgroup. 

 

Definition 3.3 (Ahmad & Hummadi, 2023, p. 2). A chain of proper subgroups 

𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯ of a group 𝐺 is called maximal chain of subgroups of 𝑅 if 𝐼𝑡−1 

is maximal in 𝐼𝑡 for each 𝑡 ∈ ℤ+. If 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯  ⊂ 𝐼ℎ is a finite chain, then  

𝐼0 is said to be the initial subgroup and 𝐼ℎ is the terminal subgroup of the chain. A 

subgroup  𝐾0 of 𝑀 is called a maximal subgroup of length 𝑚 with respect to the 

maximal chain of subgroups  𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑚−1 ⊂ 𝑀. The length of  

𝐾0 is said to be ∞, if there is no such finite maximal chain of subgroups with 

initial subgroup  𝐾0.  

 

Definition 3.4. Let 𝐺 be a group. The maximal subgroup graph of 𝐺, denoted by 

𝑚(𝐺), is the undirected graph with vertex set, the set of all subgroups of 𝐺, where 

two vertices 𝐼 and 𝐽 are adjacent if and only if  𝐼 maximal in 𝐽, or 𝐽 maximal in 𝐼. 
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Remark 3.5. Let 𝐺 be a group and 𝑚(𝐺) is the maximal subgroup graph of 𝐺. 

Then 

1. The length of the maximal chain 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯  ⊂ 𝐼ℎ of 𝐺 is ℎ and the 

length of the path 𝐼0 𝑒1 𝐼1  𝑒2 𝐼2 𝑒3 …  𝑒ℎ 𝐼ℎ of 𝑚(𝐺) is ℎ. 

2. 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯  ⊂ 𝐼ℎ is a shortest maximal chain of subgroups of 𝐺 with the 

initial subgroup 𝐼0 and terminal subgroup 𝐼ℎ  if and only if 

𝐼0 𝑒1 𝐼1  𝑒2 𝐼2 𝑒3 …  𝑒ℎ 𝐼ℎ is a shortest path of 𝑚(𝐺) with the initial vertex 𝐼0 

and terminal vertex 𝐼ℎ where  𝑒𝑖 = (𝐼𝑖−1, 𝐼𝑖).  

 

Remark 3.6. Let 𝐺 be a group. If |𝑉(𝑚(𝐺))| > 2, then the 𝑚(𝐺) graph is not 

complete. 

Proof. Suppose 𝐺 has at least three Let 𝐺 be a groups 𝐼 =< 0 >, 𝐽 and 𝐾. Without 

loss of generality if 𝐼 is a maximal in both 𝐽 and 𝐾, then neither 𝐽 maximal in 𝐾 

nor 𝐾 maximal in 𝐽. So that two vertices 𝐽 and 𝐾 are not adjacent. 

 

Definition 3.7 (Dummit & Foote, 2004, p. 751 ). A Group 𝑮 is said to be Artinian 

or to satisfy the descending chain condition on subgroups (or D. C. C. on 

subgroups) if there is no infinite decreasing chain of subgroups in 𝑮, i.e., 

whenever 𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯  is a decreasing chain of subgroups of 𝑮, then there 

is a positive integer 𝑚 such that 𝐼𝑚 =  𝐼𝑘 for all 𝑘 >  𝑚.  

 

Definition 3.8 (Dummit & Foote, 2004, p. 458 )A Group 𝑮 is said to be 

Noetherian or to satisfy the ascending chain condition on subgroups (or A.C.C. 

on subgroups) if there are no infinite increasing chains of subgroups, i.e., 

whenever 𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆ ⋯ is an increasing chain of subgroups of 𝑮, then there 

is a positive integer 𝑚 such that for all 𝑘 ≥  𝑚, 𝐼𝑚 = 𝐼𝑘. 

 

Theorem 3.9 (Ahmad & Hummadi, 2023, p. 8). If a group 𝐺 is Artinian and 

Noetherian, then the maximal graph 𝑚𝐺(𝐺) is connected.  

 

 

Example 3.10. Consider the group = ℤ2 × ℤ2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. 𝐺 

has the following proper subgroups: 𝐼0 =< (0, 0) >=< 0 >×< 0 >= {(0, 0)} , 
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𝐼1 =< (1, 0) >= ℤ2 ×< 0 >= {(0, 0),  (1, 0)}, 𝐼2 =< (0, 1) >=< 0 >× ℤ2 = 

{(0, 0), (0, 1)} and 𝐼3 =< (1, 1) >= {(0, 0), (1, 1)}. 

The following diagram illustrates the maximal chain of subgroups of the group 

ℤ2 × ℤ2. 

𝐼0 ⊂ {
𝐼1 ⊂ 𝐼4

𝐼2 ⊂ 𝐼4

𝐼3 ⊂ 𝐼4

 

The following figure illustrates  the maximal subgroup graph 𝑚𝐺(ℤ2 × ℤ2) where 

𝐼𝑖 denoted by 𝑖 for each 0 ≤ 𝑖 < 4. 

 

 

Definition 3.11 (Sagan , et al., 1996, p. 1). Let 𝑑(𝑢, 𝑣) denote the distance 

between vertices 𝑢 and 𝑣 in a graph 𝐺. The Wiener index of 𝐺 is defined as 

 𝑊(𝐺)  = ∑ 𝑑(𝑢, 𝑣)
{𝑢,𝑣}                 

 where the sum is over all unordered pairs {𝑢, 𝑣} of distinct 

vertices in 𝐺. If 𝑥 is a parameter, then the Wiener polynomial of 𝐺 is 𝑊(𝐺; 𝑥)  =

 ∑ 𝑥𝑑(𝑢,𝑣)

{𝑢,𝑣}                 
 where the sum is taken over the same set of pairs. 

Theorem 3.12. Let  𝐺 be a graph and 𝑊(𝐺), 𝑊(𝐺; 𝑥) be the Wiener index and 

Wiener polynomial of 𝐺 respectively. Then  
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1. 𝑑𝑒𝑔(𝑊(𝐺;  𝑞)) equals the diameter of 𝐺. 

2. 𝑊(𝐺) = 𝑓′(1) 

Proof.  

1. By (Sagan , et al., 1996, pp. 960 , Theorem 1.1), the result is obtained. 

2. By (Sagan , et al., 1996, pp. 960, theorem 1.1(5)), the result is obtained. 

 

The following proposition is easy to prove 

Proposition 3.13. If 𝑮 is a group and 𝐺 ≃ 𝑚(ℤ𝑝) where 𝑝 is a prime number, 

then   

1. 𝑊(𝑚(𝑮)) = 1 and 𝑊(𝑚(𝑮); 𝑥) = 𝑥.   

2. 𝑟𝑎𝑑(𝑚(𝑮)) = 𝑑𝑖𝑎𝑚(𝑚(𝑮)) = 1. 

Proof. It is clear that 𝑉(𝑚(ℤ𝑝)) = {< 0 >,  ℤ𝑝}. Then 𝑑(< 0 >,  ℤ𝑝) = 1. 

Therefore,  that 𝑊(𝑚(𝑮)) = 1, 𝑊(𝑚(𝑮); 𝑥) = 𝑥 and 𝑟𝑎𝑑(𝑚(𝑮)) =

𝑑𝑖𝑎𝑚(𝑚(𝑮)) = 1. 

 

Corollary 3.14.  

1. 𝑊(𝑚(ℤ2)) = 𝑊(𝑚(ℤ3)) = 𝑊(𝑚(ℤ5)) = 𝑊(𝑚(ℤ7)) = 𝑊(𝑚(ℤ11)) =

𝑊(𝑚(ℤ13)) = 𝑊(𝑚(ℤ17)) = 𝑊(𝑚(ℤ19)) = 𝑊(𝑚(ℤ23)) = 1. 

2. 𝑊(𝑚(ℤ2); 𝑥) = 𝑊(𝑚(ℤ3); 𝑥) = 𝑊(𝑚(ℤ5); 𝑥) = 𝑊(𝑚(ℤ7); 𝑥) =

𝑊(𝑚(ℤ11); 𝑥) = 𝑊(𝑚(ℤ13); 𝑥) = 𝑊(𝑚(ℤ17); 𝑥) = 𝑊(𝑚(ℤ19); 𝑥) =

𝑊(𝑚(ℤ23); 𝑥) = 𝑥. 

 

Theorem 3.15. Let 𝑃𝑛 be a path with 𝑛 vertices for some 𝑛 ∈ ℤ+. Then  
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1. 𝑊(𝑃𝑛) = (
𝑛 + 1

3
) =

(𝑛+1)!

(𝑛−2)!3!
; 

2. 𝑊(𝑃𝑛; 𝑥) = (𝑛 − 1)𝑥 + (𝑛 − 2)𝑥2 + (𝑛 − 3)𝑥3 + ⋯ + 2𝑥𝑛−2 + 𝑥𝑛−1. 

Proof. 

1.  By (Sagan , et al., 1996, p. Theorem 1.3(5)), the result is obtained. 

2. By (Sagan , et al., 1996, p. Theorem 1.2(5)), the result is obtained. 

 

Theorem 3.16. Consider the group ℤ𝑝𝑛 where 𝑝 is a prime number and 𝑛 ∈ ℤ+.  

Let 𝐼𝑖 =< 𝑝𝑖 > for 0 ≤ 𝑖 ≤ 𝑛. Then 

1. For any two subgroups 𝐼𝑟, 𝐼𝑠 of  ℤ𝑝𝑛,  𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

2. 𝑊 (𝑚(ℤ𝑝𝑛)) = (
𝑛 + 2

3
) =

(𝑛+2)!

(𝑛−1)!
 

3. 𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥2 + (𝑛 − 2)𝑥3 + ⋯ + 𝑥𝑛 

4. 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑛. 

5. 𝑟𝑎𝑑 (𝑚(ℤ𝑝𝑛)) = {

𝑛

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑛+1

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

  

Proof. It is clear that the subgroups of ℤ𝑝𝑛 are of the form 𝐼𝑖 =< 𝑝𝑖 >= for 0 ≤

𝑖 ≤ 𝑛. That is there are 𝑛 + 1 subgroups as follows: 

0ℤ𝑝𝑛, 𝑝
𝑛−1ℤ𝑝𝑛 , 𝑝𝑛−1ℤ𝑝𝑛 , 𝑝𝑛−2ℤ𝑝𝑛 , … , 𝐼1 =  𝑝ℤ𝑝𝑛, 𝐼0 = ℤ𝑝𝑛. This means that the 

graph 𝑚(ℤ𝑝𝑛) is a path 𝑃𝑛+1, that is it is a path with 𝑛 + 1 vertices.  

1. Let 𝐼𝑟 =< 𝑝𝑟 > and 𝐼𝑠 =< 𝑝𝑠 > be two subgroups of ℤ𝑝𝑛. Then exactly one 

of the following is true.  𝑎) 𝑟 = 𝑠     b)  𝑟 > 𝑠      c) 𝑟 < 𝑠 .  

a) If 𝑟 = 𝑠, then |𝑟 − 𝑠| = 0 and  𝐼𝑟 = 𝐼𝑠, consequently, 𝑑(𝐼𝑟 , 𝐼𝑠) = 0 = |𝑟 − 𝑠| 
. 

b) If  𝑟 > 𝑠 , then the chain 𝐼𝑟 ⊂ 𝐼𝑟−1 ⊂ 𝐼𝑟−2 ⊂ . . . ⊂  𝐼𝑠+1 ⊂ 𝐼𝑠 is the shortest 

maximal chain of subgroups with the initial subgroup 𝐼𝑟 and the terminal 

subgroup 𝐼𝑠. So that 𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 

c) Similarly, if 𝑟 < 𝑠, then   𝑑(𝐼𝑟 , 𝐼𝑠) = |𝑟 − 𝑠|. 
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The following figure illustrates the distance from < 𝑝𝑠 >  to < 𝑝𝑠 > in the 

maximal subgroup graph 𝑚𝐺(ℤ𝑝𝑛) 

 

 

2. Since 𝑊 (𝑚(ℤ𝑝𝑛)) = 𝑊(𝑃𝑛+1), then by Theorem 3.15(1), 𝑊 (𝑚(ℤ𝑝𝑛)) =

(
𝑛 + 2

3
) =

(𝑛+2)!

(𝑛−1)!3!
 and  

3. By Theorem 3.15(2), 𝑊(𝑚(ℤ𝑝𝑛); 𝑥) = 𝑊(𝑃𝑛+1; 𝑥) = 𝑛𝑥 + (𝑛 − 1)𝑥2 +

(𝑛 − 2)𝑥3 + ⋯ + 𝑥𝑛. 

4. By Theorem 3.12(1), 𝑑𝑖𝑎𝑚 (𝑚(ℤ𝑝𝑛)) = 𝑑𝑒𝑔𝑊(𝑃𝑛+1; 𝑥) = 𝑛. 

5. It is clear that 𝜀(< 0 >) = 𝜀(ℤ𝑝𝑛) = 𝑛, 𝜀(< 𝑝𝑛−1 >) = 𝜀(< 𝑝 >) = 𝑛 − 1, 

𝜀(< 𝑝𝑛−2 >) = 𝜀(< 𝑝2 >) = 𝑛 − 2,… . So that for 0 ≤ 𝑖 ≤ 𝑛, 𝜀(<

𝑝𝑛−𝑖 >) = 𝜀(< 𝑝𝑖 >) = 𝑛 − 𝑖. Now, there are two cases. Case one, if 𝑛 is an 

even number, then 𝜀 (< 𝑝
𝑛

2 >) ≤ 𝜀(< 𝑝𝑡 >) where 0 ≤ 𝑡 ≤ 𝑛. Case two, if 𝑛 

is an add number, then 𝜀 (< 𝑝
𝑛+1

2 >) ≤ 𝜀(< 𝑝𝑡 >) where 0 ≤ 𝑡 ≤ 𝑛. 

Therefore, 𝑟𝑎𝑑 (𝑚(ℤ𝑝𝑛)) = {

𝑛

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑛+1

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

. 

 

Corollary 3.17.  

1. Consider the maximal graphs 𝑚( ℤ4), 𝑚( ℤ8), 𝑚( ℤ9), 𝑚( ℤ16) and 𝑚( ℤ25) . 

Then  

a) 𝑊(𝑚( ℤ4)) = 𝑊(𝑚( ℤ9)) = 𝑊(𝑚( ℤ25)) = (
2 + 2

3
) =

4!

1!3!
= 4. 

b) 𝑊(𝑚( ℤ4); 𝑥) = 𝑊(𝑚( ℤ9); 𝑥) = 𝑊(𝑚( ℤ25); 𝑥) = 2𝑥 + 𝑥2. 

c) 𝑑𝑖𝑎𝑚(𝑚( ℤ4)) = 𝑑𝑖𝑎𝑚(𝑚( ℤ9)) = 𝑑𝑖𝑎𝑚(𝑚( ℤ25)) = 2. 

d) 𝑟𝑎𝑑(𝑚( ℤ4)) = 𝑑𝑖𝑎𝑚(𝑚( ℤ9)) = 𝑑𝑖𝑎𝑚(𝑚( ℤ25)) = 1. 
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2. Consider the maximal graph 𝑚( ℤ8). Then  

a) 𝑊(𝑚( ℤ8)) = (
2 + 3

3
) =

5!

2!3!
= 10. 

b) 𝑊(𝑚( ℤ8); 𝑥) = 3𝑥 + 2𝑥2 + 𝑥3. 

c) 𝑑𝑖𝑎𝑚(𝑚( ℤ8)) = 3. 

d) 𝑟𝑎𝑑(𝑚( ℤ8)) = 2. 

3. Consider the maximal graph 𝑚( ℤ16). Then  

a) 𝑊(𝑚( ℤ16)) = (
2 + 4

3
) =

6!

3!3!
= 20. 

b) 𝑊(𝑚( ℤ16); 𝑥) = 4𝑥 + 3𝑥2 + 2𝑥3 + 𝑥4. 

c) 𝑑𝑖𝑎𝑚(𝑚( ℤ16)) = 4. 

d) 𝑟𝑎𝑑(𝑚( ℤ16)) = 2. 

 

Definition 3.18 (Sagan , et al., 1996, p. 960). The Cartesian product of two graphs 

𝐺1 and 𝐺2, is a graph  𝐺1 × 𝐺2 such that 𝑉(𝐺1 × 𝐺2) = {(𝑣1, 𝑣2): 𝑣1 ∈ 𝐺1 and 

𝑣2 ∈ 𝐺2}  and 𝐸(𝐺1 × 𝐺2) = {(𝑢1, 𝑢2)(𝑣1, 𝑣2):  𝑢1𝑣1 ∈ 𝐸(𝐺1) and 𝑢2 = 𝑣2 or 

𝑢2𝑣2 ∈ 𝐸(𝐺2) and 𝑢1 = 𝑣1}. 

 

Proposition 3.19. Let 𝑝 and 𝑞 be any two distinct prime numbers and 𝑛, 𝑚 ∈ ℤ+. 

Then    

1. ℤ𝑝𝑚 × ℤ𝑞𝑛 = {(𝑎, 𝑏): 𝑎 ∈ ℤ𝑝𝑚 and 𝑏 ∈ ℤ𝑞𝑛} is a group. 

2. |ℤ𝑝𝑚| = 𝑝𝑚 , |ℤ𝑞𝑛| = 𝑞𝑛 and |ℤ𝑝𝑚 × ℤ𝑞𝑛| = |ℤ𝑝𝑚𝑞𝑛| = 𝑝𝑚𝑞𝑛 

3. The subgroups of ℤ𝑝𝑚 × ℤ𝑞𝑛 are of the form 𝐼1 × 𝐼2 where 𝐼1 is a subgroup of  

ℤ𝑝𝑚 and 𝐼2 is a subgroup of ℤ𝑞𝑛. 

4. 𝐼1 × 𝐼2 is maximal in 𝐽1 × 𝐽2 if and only if 𝐼1 is maximal in 𝐽1 and 𝐼2 = 𝐽2 or 𝐼2 

is maximal in 𝐽2 and 𝐼1 = 𝐽1. 

5. 𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛) = 𝑚(ℤ𝑝𝑚) × 𝑚(ℤ𝑞𝑛) = 𝑚(ℤ𝑝𝑚𝑞𝑛). 

6. 𝑉 (𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛)) = 𝑉 (𝑚(ℤ𝑝𝑚)) × 𝑉(𝑚(ℤ𝑞𝑛)) = 𝑉(𝑚(ℤ𝑝𝑚𝑞𝑛)) 

7. 𝐼1 × 𝐼2 is maximal in 𝐽1 × 𝐽2 if and only if (𝐼1 × 𝐼2)(𝐽1 × 𝐽2) ∈ 𝐸(𝑚(ℤ𝑝𝑚 ×

ℤ𝑞𝑛)). 
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Proof.  

1, 2, 3 and 4 are obvious. 

5, 6, 7 are direct consequences of Definition 3.18. 

 

Note that if 𝑝 = 𝑞, then 𝑉 (𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛)) ≠ 𝑉 (𝑚(ℤ𝑝𝑚)) × 𝑉(𝑚(ℤ𝑞𝑛)). For 

example, 𝑉(𝑚(ℤ2 × ℤ2)) ≠ 𝑉(𝑚(ℤ2)) × 𝑉(𝑚(ℤ2)), since 𝑉(𝑚(ℤ2 × ℤ2)) =

{< 0 >×< 0 >, ℤ2 ×< 0 >, < 0 >× ℤ2, ℤ2 × ℤ2,  {(0, 0), (1, 1)} and 

𝑉(𝑚(ℤ2)) × 𝑉(𝑚(ℤ2))={< 0 >×< 0 >,  ℤ2 ×< 0 >,  < 0 >× ℤ2, ℤ2 × ℤ2}  

 

Definition 3.20 (Sagan , et al., 1996, p. 961). The ordered Wiener Polynomial 

defined by 𝑊̅(𝐺; 𝑞) = ∑ 𝑥𝑑(𝑢,𝑣)

(𝑢,𝑣)               
, where the sum is over all ordered pairs (𝑢, 𝑣) 

of vertices, including those where 𝑢 =  𝑣. Thus, 𝑊̅(𝐺; 𝑞) = ∑ 𝑥𝑑(𝑢,𝑣)

(𝑢,𝑣)               
=

2𝑊(𝐺; 𝑞) + |𝑉(𝐺)|.  

 

Theorem 3.21 (Sagan , et al., 1996, pp. 961, Proposition 1.4(2)). Suppose that 𝐺1 

and 𝐺2 are two connected graphs. Then 𝑊̅( 𝐺1 × 𝐺2; 𝑥) = 𝑊̅(𝐺1; 𝑥) × 𝑊̅(𝐺2; 𝑥). 

 

Theorem 3.22. Let 𝑝 and 𝑞 be any two prime numbers and 𝑛, 𝑚 ∈ ℤ+. Then 

𝑊(𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛); 𝑥) = 2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 +

1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + (𝑚 + 1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥). 

Proof. By Theorem 3.21, 𝑊̅(ℤ𝑝𝑚 × ℤ𝑞𝑛; 𝑥) = 𝑊̅(ℤ𝑝𝑚; 𝑥) × 𝑊̅(ℤ𝑞𝑛; 𝑥). Then 

by  Definition 3.20, (2𝑊(𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛)) |) =

(2𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚)) |) (2𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + |𝑉 (𝑚(ℤ𝑞𝑛)) |). So 

that 2𝑊(𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛); 𝑥)=4𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

2 |𝑉 (𝑚(ℤ𝑞𝑛))| 𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + 2 |𝑉 (𝑚(ℤ𝑝𝑚))| 𝑊(𝑚(ℤ𝑞𝑛); 𝑥). Then 

𝑊(𝑚(ℤ𝑝𝑚 × ℤ𝑞𝑛); 𝑥)=2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) +

|𝑉 (𝑚(ℤ𝑞𝑛))| 𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + |𝑉 (𝑚(ℤ𝑝𝑚))| 𝑊(𝑚(ℤ𝑞𝑛); 𝑥) = 
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2𝑊(𝑚(ℤ𝑝𝑚); 𝑥)𝑊(𝑚(ℤ𝑞𝑛); 𝑥) + (𝑛 + 1)𝑊(𝑚(ℤ𝑝𝑚); 𝑥) + (𝑚 +

1)𝑊(𝑚(ℤ𝑞𝑛); 𝑥).  

 

Corollary 3.23. Consider the group ℤ𝑝 × ℤ𝑞where 𝑝 and 𝑞 are two prime 

numbers. Then  

1. The wiener polynomial of the maximal subgroup graph 𝑚(ℤ𝑝 × ℤ𝑞) is 

𝑊(𝑚(ℤ𝑝 × ℤ𝑞); 𝑥) = 4𝑥 + 2𝑥2.  

2. The wiener index of the maximal subgroup graph 𝑚(ℤ𝑝 × ℤ𝑞) is 𝑊(𝑚(ℤ𝑝 ×

ℤ𝑞)) = 8. 

Proof.  

1. By Proposition 3.13, 𝑊 (𝑚(ℤ𝑝)) = 𝑊 (𝑚(ℤ𝑞)) = 𝑥. By Theorem 3.22, 

𝑊(𝑚(ℤ𝑝 × ℤ𝑞); 𝑥) = 2𝑊(𝑚(ℤ𝑝); 𝑥)𝑊(𝑚(ℤ𝑞); 𝑥) + (1 +

1)𝑊(𝑚(ℤ𝑝); 𝑥) + (1 + 1)𝑊(𝑚(ℤ𝑞); 𝑥)= 4𝑥 + 2𝑥2. 

2. 𝑊(𝑚(ℤ𝑝 × ℤ𝑞)) = 𝑊′(𝑚(𝑊(𝑚(ℤ𝑝 × ℤ𝑞); 1) = 4 + 4(1) = 8. 

The following diagram illustrates the maximal chains of subgroups of ℤ𝑝 × ℤ𝑞. 

𝐼1 ⊂ {
𝐼2 ⊂  ℤ𝑝 × ℤ𝑞

𝐼3 ⊂  ℤ𝑝 × ℤ𝑞
 

 

The following figure illustrates the maximal subgroup graph 𝑚𝐺(ℤ𝑝 × ℤ𝑞) 

 

Example 3.24. Consider the maximal graphs 𝑚(ℤ2 × ℤ3), 𝑚(ℤ2 × ℤ5), 𝑚(ℤ2 ×

ℤ7), 𝑚(ℤ2 × ℤ11), 𝑚(ℤ3 × ℤ5) and 𝑚(ℤ3 × ℤ7). If 𝐺 is one of the above group, 

then  
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a) 𝑊(𝑚(𝐺)) = 8. 

b) 𝑊(𝑚(𝐺); 𝑥) = 4𝑥 + 2𝑥2. 

c) 𝑑𝑖𝑎𝑚(𝑚(𝐺)) = 2. 

d) 𝑟𝑎𝑑(𝑚(𝐺)) = 2. 

 

Theorem 3.25. Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑟 be 𝑟 distinct prime numbers and 𝑟, 𝛼1, 𝛼2,

𝛼3, … , 𝛼𝑟 ∈ ℤ+. Then  

1. ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 = ℤ𝑝1

𝛼1 × ℤ𝑝2
𝛼2 × … × ℤ𝑝𝑟

𝛼𝑟 = ℤ𝑝1
𝛼1 ⊕ ℤ𝑝2

𝛼2 ⊕ … ⊕

ℤ𝑝𝑟
𝛼𝑟 =⊕𝑖=1

𝑟 ℤ𝑝𝑖
𝛼𝑖 . 

2. 𝑚(ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ) = 𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) × 𝑚(ℤ𝑝𝑟
𝛼𝑟 ) = 𝑚(ℤ𝑝1

𝛼1 ) ×

𝑚(ℤ𝑝2
𝛼2 ) × … × 𝑚(ℤ𝑝𝑟

𝛼𝑟 ). 

3. 𝑉(𝑚(ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 )) = 𝑉(𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) )) × 𝑉(𝑚(ℤ𝑝𝑟
𝛼𝑟 )) =

𝑉(𝑚(ℤ𝑝1
𝛼1 )) × 𝑉(𝑚(ℤ𝑝2

𝛼2 )) × … × 𝑉(𝑚(ℤ𝑝𝑟
𝛼𝑟)) 

4. 𝑊(𝑚(ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ); 𝑥) =

2𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ) ; 𝑥) 𝑊(𝑚(ℤ𝑝𝑟

𝛼𝑟 ); 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ) ; 𝑥) + ∏ (𝛼𝑖 + 1)𝑟−1

1 𝑊(𝑚(ℤ𝑝𝑟
𝛼𝑟); 𝑥) 

Proof.  

1. By (Dummit & Foote, 2004, pp. 357, Exercises 20(a)), we obtain the result.  

2. By Definition 3.18, we obtain the result. 

3. By Definition 3.18, we obtain the result. 

4. By Theorem 3.21,  𝑊̅ (𝑚(ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ); 𝑥) = 𝑊̅ (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) ; 𝑥) ×

𝑊̅ (𝑚 (ℤ𝑝𝑟
𝛼𝑟 ) ; 𝑥). Then by Definition 3.20,  (2𝑊 (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝𝑟

𝛼𝑟 ) ; 𝑥) +

|𝑉 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 )) |) = (2𝑊 (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) ; 𝑥) +

|𝑉 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) )) |) (2𝑊 (𝑚 (ℤ𝑝𝑟

𝛼𝑟 ) ; 𝑥) + |𝑉 (𝑚 (ℤ𝑝𝑟
𝛼𝑟)) |). So that 

2𝑊(𝑚(ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ); 𝑥)=4𝑊 (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) ; 𝑥) 𝑊 (𝑚 (ℤ𝑝𝑟
𝛼𝑟 ) ; 𝑥) +

2 |𝑉 (𝑚 (ℤ𝑝𝑟
𝛼𝑟))| 𝑊 (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) ; 𝑥) +
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2 |𝑉 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ))| 𝑊 (𝑚 (ℤ𝑝𝑟

𝛼𝑟) ; 𝑥). Then 𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ) ; 𝑥) 

2𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ) ; 𝑥) 𝑊 (𝑚 (ℤ𝑝𝑟

𝛼𝑟 ) ; 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ) ; 𝑥) + ∏ (𝛼𝑖 + 1)𝑟−1

1 𝑊 (𝑚 (ℤ𝑝𝑟
𝛼𝑟) ; 𝑥) .  

Therefore,  

𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟 ) ; 𝑥)=2𝑊 (𝑚 (ℤ𝑝1

𝛼1𝑝2
𝛼2…𝑝(𝑟−1)

𝛼(𝑟−1) ) ; 𝑥) 𝑊 (𝑚 (ℤ𝑝𝑟
𝛼𝑟 ) ; 𝑥) + (𝛼𝑟 +

1)𝑊 (𝑚 (ℤ𝑝1
𝛼1𝑝2

𝛼2…𝑝(𝑟−1)
𝛼(𝑟−1) ) ; 𝑥) + ∏ (𝛼𝑖 + 1)𝑟−1

1 𝑊 (𝑚 (ℤ𝑝𝑟
𝛼𝑟 ) ; 𝑥) 

 

Corollary 3.26. The wiener polynomial of the graph  𝑚(ℤ𝑝2 × ℤ𝑞) is 

𝑊(𝑚(ℤ𝑝2 × ℤ𝑞); 𝑥) = 7𝑥 + 6𝑥2 + 2𝑥3 and the wiener index of the graph 

 𝑚(ℤ𝑝2 × ℤ𝑞) is 7 + 12 + 6 = 25.  The following figure illustrates the maximal 

subgroup graph 𝑚𝐺(ℤ𝑝2 × ℤ𝑞) where 𝐼𝑖 denoted by 𝑖 for each 1 ≤ 𝑖 < 7 

 

Example 3.27. Consider the maximal graphs 𝑚(ℤ4 × ℤ3), 𝑚(ℤ4 × ℤ5), 𝑚(ℤ2 ×

ℤ7), 𝑚(ℤ2 × ℤ11), 𝑚(ℤ3 × ℤ5) and 𝑚(ℤ3 × ℤ7). If 𝐺 is one of the above group, 

then  

a) 𝑊(𝑚(𝐺)) = 8. 

b) 𝑊(𝑚(𝐺); 𝑥) = 4𝑥 + 2𝑥2. 

c) 𝑑𝑖𝑎𝑚(𝑚(𝐺)) = 2. 

d) 𝑟𝑎𝑑(𝑚(𝐺)) = 2. 



21 
 

Example 3.28. The wiener polynomial of the graph 𝑚(ℤ8 × ℤ3) is (𝑚(ℤ8 ×

ℤ3); 𝑥) = 10𝑥 + 10𝑥2 + 6𝑥3 + 2𝑥4 and the wiener index of the graph 

 𝑚(ℤ𝑝3 × ℤ𝑞) is 10+20+18+8=56 The following figure illustrates the maximal 

subgroup graph 𝑚𝐺(ℤ8 × ℤ3) where 𝐼𝑖 denoted by 𝑖 for each 1 ≤ 𝑖 < 9. 

 

e) 𝑊(𝑚(𝐺)) = 56. 

f) 𝑊(𝑚(𝐺); 𝑥) = 10𝑥 + 10𝑥2 + 6𝑥3 + 2𝑥4. 

g) 𝑑𝑖𝑎𝑚(𝑚(𝐺)) = 4. 

h) 𝑟𝑎𝑑(𝑚(𝐺)) =4. 
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 ثوختة
 

 diameterو   wiener index  graphsو wiener polynomial هةريةك لة ئيَمة ثرِوَذةيةدا،لةم 
لة ة بضوكتر يئوّردةر 𝐺 طروبى دا كاتيَكلة  وَزينةوةةدد    maximal subgroup graph 𝑚(𝐺)   وَب

 ة. 26

 

 

 الخلاصة
 

حيث  𝐺ات زمرلل 𝑚(𝐺)  متعددة حدود وينر و مؤشر وينر للرسوم البيانية القصوي   دالمشروع ،نجفي هذا 
|𝐺| < 26 . 


