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Abstract

In this project, we study the Sombor coindex of various specialized graphs,
including Path graphs, Circle graphs, Wheel graphs, Ladder graphs, Grid
graphs, and Crystal Lattice graphs. Subsequently, our focus shifts to the
maximal chain of ideals of rings Z, where n = p;“1p,%*2 ...p,% , p;’s are
distinct primes, a; € Z*,and 1 < i < k. Finally, we find a technique to find the

Sombor coindex of some maximal ideal graphs m(Z,,) of rings Z,.
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Introduction

Let R be aring. Anideal I; of Ris maximal in an ideal I, of R if there is no
ideal I; of R suchthatl; cI; c I, (Ahmad and Hummadi 2023). A chain of
proper ideals I, c I, c I; c -~ of R is called maximal chain of ideals of R if
I,_; is maximal in I, for each t € Z*. The maximal ideal graph of R , denoted by
m(R), is the undirected graph with vertex set, the set of all ideals of R , where
two vertices Jand J are adjacent if and only if 7 maximal in /, or / maximal in

I (Ahmad & Hummadi, 2023). Let G = (V,E) be a finite simple graph. The
Sombor index SO(G) of G is defined as ¥, yer) v di + di and the Sombor

coindex SO(G) of G is defined as ¥, y¢r(6) v/ di + di where d,, is the degree of
vertex u in G (Du, et al., 2023) and (Ghanbari & Alikhani, Sat, 20 Feb 2021).
In this work, we study both indexes for some certain graphs. In the chapter

three we focus on finding the Sombor coindex of maximal ideal graphs ™M(Zx)

where = p,*1p,%2 ...p, %, Pi’s are distinct primes, & € L' and1<i<k,



Chapter One

Definitions and Backgrounds of ring theory

Definition 1.1 (ATIYAH & MACDONALD, 1969). A ring R is a set with two

binary operations (addition and multiplication) such that

1) Ris an abelian group with respect to addition (so that R has a zero element,
denoted by 0, and every x € R has an (additive) inverse, —x).

2) Multiplication is associative ((xy)z = x(yz)) and distributive over addition
(x(y +z) =xy + xz, (y + 2)x = yx + zx).
We shall consider only rings which are commutative:

3) xy = yx for all x, y € R, and have an identity element (denoted by 1):
4) 31 € R such that x1 = 1x = x for all x € R.

Example 1.2 (DUMMIT & FOOTE, 2004).

1. The ring of integers Z, under the usual operations of addition and
multiplication is a commutative ring with identity (the integer 1).

2. The quotient group Z/n Z is a commutative ring with identity (the element
1) under the operations of addition and multiplication of residue classes.

Definition 1.3 (DUMMIT & FOOTE, 2004). A subring of the ring R is a

subgroup of R that is closed under multiplication.



Definition 1.4 (DUMMIT & FOOTE, 2004, p. 242). Let R be aring, let I be a
subset of R and let r € R.
1) rl = {ra|a € I}and Ir ={ar | a € I}.
2) A subset I of R is a left ideal of R if
a. Iis a subring of R, and
b. Iis closed under left multiplication by elements from R, i.e., rI € [ for all r €
R.

Similarly I is a right ideal if (a) holds and in place of (b) one has

c. Iis closed under right multiplication by elements from R, i.e., Ir € [ for all r
€ R.
3) A subset I that is both a left ideal and a right ideal is called an ideal (or, for

added emphasis, a two-sided ideal) of R.

Example 1.5. Consider the ring of all rational numbers Q. Then Z is a subring
of Q but it is not an ideal of Q.

Definition 1.6 (DUMMIT & FOOTE, 2004, p. 255). Assume R is commutative.
An ideal P is called a prime ideal if P # R and whenever the product ab of two
elements a, b € R is an element of P, then at least one of a and b is an element
of P.

Definition 1.7 (DUMMIT & FOOTE, 2004, p. 253). An ideal M in an arbitrary
ring R is called a maximal ideal if M # R and the only ideals containing M are
M and R.



Definition 1.8 (Ahmad & Hummadi, 2023). Let R be a ring. An ideal [1 of R

is maximal in an ideal /2 of R if there is no ideal I3 0f R such that l1 € I3 € I,

Definition 1.9 (Ahmad & Hummadi, 2023). A chain of proper ideals
Iy cly €l € of Ris called maximal chain of ideals of R if [t-1 is maximal

in It foreach t € Z™.

Example 1.10. Consider the ring Z;, = {0,1, 2,...,35}. The ring Z5¢ has the
following properideals: I, =<0 >,1; =< 18 >=1{0,18}, [, =< 12 > ={0, 12,
24}, I; =<9 >={0, 9, 18, 27}, 1, =< 6 > ={0, 6, 12, 18, 24, 30}, I; =< 4 >
={0, 4, 8, 12, 16, 20, 24, 28, 32}, I, =< 3 >={0, 3, 6, 12, 15,18, 21, 24, 27,
30, 33}, I, =< 2 >={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34}.

The following diagram illustrates the maximal chain of ideals of the

rnng Zs.

( I3 Clg © Zse
I © {14 c {16 C Zzg

IOC< I7CZ36

I, {14 - {17 C Zse
\

Is C I, CZsg



Chapter Two

Definitions and Backgrounds of Graph Theory

Definition 2.1 (Gross, et al., 2014, p. 2). A graph G = (V, E) consists of two
sets Vand E.

1) The elements of V are called vertices (or nodes).
2) The elements of E are called edges.

3) Each edge has a set of one or two vertices associated to it, which are

called its endpoints. An edge is said to join its endpoints.

Definition 2.2 (NADUVATH, 2017, p. 23). A walk in a graph G is an
alternating sequence of vertices and connecting edges in G. In other words,
a walk is any route through a graph from vertex to vertex along edges. If the
starting and end vertices of a walk are the same, then such a trail is called a

closed walk.

Definition 2.3 (NADUVATH, 2017, p. 23). A trail is a walk that does not pass
over the same edge twice. A trail might visit the same vertex twice, but only
if it comes and goes from a different edge each time. A tour is a trail that

begins and ends on the same vertex.



Definition 2.4 (NADUVATH, 2017, p. 23). A path is a walk that does not
include any vertex twice, except that its first vertex might be the same as its

last. A cycle or a circuit is a path that begins and ends on the same vertex.

Definition 2.5 (NADUVATH, 2017, p. 23). The length of a walk or circuit or

path or cycle is the number of edges in it.

Definition 2.6. The number of edges incident on a vertex u, is called the
degree of the vertex v and is denoted by deg;(u) or deg(u) or simply d(u)

ord,.

Definition 2.7 (Ghanbari & Alikhani, Sat, 20 Feb 2021). Let G = (V,E) be a
finite simple graph. The Sombor index SO(G) of G is defined as

Yuverc)Vd2 +dz and the Sombor coindex SO(G) of G is defined as
Yuvee(c) V44 + dz where d,, is the degree of vertex u in G.

Note that for each uv € E(G) or uv € E(G), SO(uv) = /d2 + d2. So that
SO(G) = ZquE(G) S0 (uv) = ZquE(G) V dlzl + d%

Notation. Let ¢ = (V,E) be a finite simple graph, where V is the set of
vertices and E is the set of edges of graph G. The complement of E(G),

denoted by E(G), is the set of all possible edges that do not belong to E(G).



Therefore, SO(G) of G is defined as Yy ve¢r)Vd2 + d2 = Xyver@y VA2 + d?

where d,, is the degree of vertex u in G.

Definition 2.8 (Bondy & Murty, 1976). A cycle graph or circular graph is
a graph that consists of a single cycle, or in other words, some number
of vertices (at least 3, if the graph is simple) connected in a closed chain. The
cycle graph with n vertices is called C,,. The number of vertices in C,, equals
the number of edges, and every vertex has degree 2; that is, every vertex has

exactly two edges incident with it.

Example 2.9. Consider the following three cycle graphs:

C;

. V(C3) ={vy, vy, v3}, E(C3)= {v,v,, V1,13, v3v }and E(C;) = @. Then SO(C3) =
62 and SO(C,) = 0.

. V(Cy) ={v1, V3,3, 04}, E(C4)= {v10;, 5V, V3Vs, vyv;} and E(C,) =

{v,v3, v,1,}. Then SO(C,) = 8vV2 and SO(C,) = 4v/2.

. V(Cs) ={v1, V5,03, 04,Vs}, E(Cs)= {v1v2, 0,03, V304, V405, vsv1} and E(C,) =

{V1V3, V1V, V,V,, V,Us, V3Us). Then SO(Cs) = SO(Cs) = 1042


https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)

Definition 2.10. A complete graphis a simple undirected graph in which
every pair of distinct vertices is connected by a unique edge. The complete

graph on n vertices is denoted by K,,.

Example 2.11. Consider the following complete graphs:

1. SO(K,) =2 and SO(K,) = 0.
2. SO(K3) = 6v/2 and SO(K;) = 0.
3. SO(K,) = 18vV2 and S0(K,) = 0.

nn-1)

4. SO(Ky) =" [ =1 + (n— 1)? =

n(n-1)%v2
2

and SO(K,) = 0.

Remark 2.12. Let G = (V,E) be a finite simple graph, where V is the set of
vertices and E is the set of edges of graph G. Then the complement of E(G),
denoted by E(G), is the set of all possible edges that do not belong to E(G).
Therefore, SO(G) of G is defined as Yyver(c)Vdz + d2 = Yuverey V42 + d2

where d,, is the degree of vertex u in G.


https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)

Definition 2. 13. A path graph (or linear graph) is a graph whose vertices can
be listed in the order v,,v,,...,v, such that the edges are v;,v;,; where i =
1,2,.., n — 1. Equivalently, a path with at least two vertices is connected and
has two terminal vertices (vertices that have degree 1), while all others (if any)
have degree 2. The path graph with n vertices is called P,. The number of

edges in P, equals n — 1.

Example 2.14. Consider the following four path graphs:

v1 V] e—— 2 v1 v2 v3 v v2 v3 vd:

Pl P2 P3 P4
1. V(P,) ={v;}, E(P;) = @ and E(P,) = 0;

2. V(Py) ={vy,v2}, E(P,)={v,v,} and E(P,) = 0;

3. V(P3) ={v1,v;,v3}, E(P3)={v1v,,v,v3} and E(P3) = {v1v3};
4. V(Py) ={v1, V2, V3, V4}, E(Py)={v1V5, V23, 304} and E(P,) =

{v1V3, V104, Vo104 }

Then we obtain the following results:

1. SO(P,) =S0(P,) = 0;

2. SO(P,) =V12+12 =+/2 and SO(P,) = 0;

3. SO(P;) = 2V1%2 + 22 = 2\/5and S0(P;) = V12 + 12 = V/2;

4. SOP) =2V12 4+ 22 +/22 + 22 = 24/5+ 2v/2 and SO(P,) = V12 + 12 +
2V12+ 22 =2+ 2V5



https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)

Definition 2.15. Awheel graphis a graph formed by connecting a
single universal vertex to all vertices of a cycle. A wheel graph with n vertices
can also be defined as the 1-skeleton of an (n — 1)-gonal pyramid. The wheel
graph with n vertices is called W, which is formed by connecting a single

vertex to all vertices of a cycle of length n-1.

Example 2.16. Consider the following three wheel graphs:

A%}@

W4 WS 6

V(W,) ={vo, v1,V5,V3}, EWL)= {0105, 0,03, V301,010, VoV, V3Vo}, E(W,) =
B, V(Ws) ={vo, v1, V2, V3, Vu}, E(Ws5)= {v1V,, V203, V3V, V401, V100, V2Vo, V3V,
v Y, EWs) = {103, 0,00}, V(IWe) ={vo,v1,V,,V3,v4,v5} and E (We) =
{V1V2, V03, V3V,, VaVs, VsV, V1V, VoV, V3V, Vb, VsVo}, E(We) = {v1s,
V1V, VaVy, Vo Vs, V3Us}. SO thatin We, d, =3 for1 <i<5and d, =5.Then
So(vivj) =+/32+4+32 =32 and So(v;v,) =V32 +52=+34 for 1 <i,j<5.
Therefore, SO(W,) = 5(3v2) +5(V34) = 15V2+5vV34 and SO(W) =
5(3v2) = 15v2. Similarly SO(Ws) = 4(3v2) + 4(5) = 122 + 20, SO(W;) =
2(3v2) = 6v2, sSo(W,) = 6(3v2) + 4(5) = 18V2 and SO(W,) = @.

10


https://en.wikipedia.org/wiki/Universal_vertex
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Skeleton_(topology)
https://en.wikipedia.org/wiki/Pyramid_(geometry)

Definition 2.17 (Sagan , et al., 1996, p. 960). The Cartesian product of two
graphs G, and G,, is a graph G, X G, such that V(G; X G,) = {(v,,v,):v; € G;
and v, € G,} and E(G, X G,) = {(uq,u,)(vy,v,): uyv; € E(G;) and u, = v, or
u,v, € E(G,) and u; = v, }.

Definition 2.18. The ladder graph L,, is undirected graph with 2n vertices and
3n - 2 edges. The ladder graph can be obtained as the Cartesian product of

two path graphs, one of which has only one edge: L,, = B, X P,.

Example 2.19. Consider the following ladder graphs:

Then SO(L,) =2, SO(L,) = ® and SO(L,) = SO(L,) = 4(2V2)= 8V2.

Definition 2.20. The grid graph G,,, is undirected graph can be obtained as

the Cartesian product of two path graphs P,, X P,, thatis G,,,, = P, X P,.

Example 2.21. Consider the following grid graphs:

11


https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph

v4 (15) Gfp
v7 é ’vg
Gs.:

Then E(G3’3) == A2’3 U A3'4 Where E(G3’3) = BZ,Z U 32,3 U B2,4 U B3'3 Where
both A;; and B; ; contains edges of degree i and j. A, ; contains 8 edges,
A3, contains 4 edges, B,, contains 2 edges, B, 3 contains 16 edges, B, ,

contains 4 edges and B; 3 contains 6 edges. See Remark 3.2.
SO(Gs3) = 822 + 3% + 4432 + 42 = 813 + 20 and S0(Gs3) =

2v22 + 22 + 16V22 + 32 + 422 + 42 + 6+/32 + 32 = 442 + 16V13 + 420 +
18v2 = 22v2 + 16+/13 + 44/20.

Definition 2.22. The Crystal Lattice graph C; ,,, is undirected graph can be
obtained as the Cartesian product of three path graphs P, X P,, X P, that is
CL,m,n = (PL X Pm) X P.

Example 2.23. Consider the Crystal Lattice graph C, ; ,:

12


https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph

C 222

Then  SO(Cpz,) =S0(Cyz,) =12V32+32=36vV2 and  SO(Cy,2) =
16v32 + 32 = 48V/2.

13



Chapter Three

Definition 3.1 (Ahmad, 2023). Let R be a commutative ring with identity. The
maximal ideal graph of R, denoted by m(R), is the undirected graph with vertex
set, the set of all ideals of R, where two vertices I and J are adjacent if and only

if I maximalin J, or ] maximal in I.

Remark 3.2. Let G be a graph, V(G) ={v;1<i<t}=Uj_;4;, E(G) =

m Byi

.Bg. and E(G) = UL, G5/, where 4! is a set of vertices which contains

x; vertices of degree a;, Bgifyi Is a set of edges which contains y; edges with
endpoints of degree f; and vy;, Cazf,ei Is a set of edges contains z; edges with
endpoints of degree §; and ¢;. Then

1. E(GNEG) = ;

2. EGOVUEG) ={viv;1<i<j<t)

leldal-1) _ t(t-1)
2 2

3. [E(@UEG)| = |Kig| =

xi(xi—1)

g

4. E(G)UE(G) = (U§=1Aai’a2i )U< n, (U;'.;ll Aai,aj. aj )) and E(G) =

J4c]

xi(%=1) , Al vl
U?:l Cé?il,si - (UézlAai,éi ) U ( ﬁz (U;_:lAai,aj ]|>> - E(G)i

14



So that SO(G) = ﬁl Vi /,Biz + ]/iz and SO(G) = ?:1 Zj /61'2 + Eiz

_ xj(xi—=1) ] At 'Aaj-
Furthermore, and S0(G) = (U§=1Aai,§i )U( A (U;-;ll ALi o J|>> —

Yitq Vi, ’.31'2 + ¥i?

Remark 3.3. The maximal ideal graph m(Z,~) is the path graph P,.,; where p

prime number and n is a positive integer. See the following graph.

O—O—----- O—0O

n _1 L )
<p"> <p"i> <pl> <p>

‘ m(an)

Theorem 3.4. Consider the path P, = {v,, v, ..., v,,} Where is a positive integer.
Then

1. E(P,)) = E(P,) = @, then SO(P,) = SO(P,) = 0;

2. E(P,) =Al, and E(P,) = @, SO(P,) = V2 and SO(P,) = 0;

3. E(P;) = A3, and E(P;) = Al,, SO(P;) = 2V/5 and SO(P;) = V2;

nZ2-7n+12

4. Forn =4, E(P,) = A5,UA32%, and E(R,) = A[,UA,, > UATSS;

5. SO(P,) = 25+ 2(n—3)v2 and SO(B,) = (n? — 7n + 13)V2 + (2n — 6)V/5;

Proof 1, 2, 3. They are obvious.

Proof 4, 5. It is clear that E (P,) contains two edges with endpoints of degree 1

and 2, contains n-3 edges with endpoints of degree 2. Therefore, E(B,) =

A2 ,UA%;® and SO(P,) = 2V/5 + 2(n — 3)V2. On the other hand, E(G)UE(G) =

15



2,2

xj(xi=1) |Axl| A
(Uiz14g,q, U Ui A,

(n-2)(n-3) (n—-2)(n-3)

- -3
E(G) = At,UA,, *  UATG™ — 43,U433° = A}, U4,, * " )UAZ(n 2)=2

4 T T
= A;,UA UA4;, ™. So that

(n-2)(n-3)-2n+6 n2-5n+6-2n+6

— A%,1UA2,2 2 UAZn 6 — 1UA2 5 2 UAZn 6 —

nZ-7n+12

Ai,U4,,* UA?S°. So that E(P,) contains one edges with endpoints of

n?-7n+12
—— edges

degree 1, 2n — 6 edges with endpoints of degree 1 and 2, and
with endpoints of degree 2. Therefore, SO(B,) =+V2+ (2n—6)V5+

2(112_72—11“2)\/5 = (n? - 7n+13)vV2 + 2n — 6)V/5;

Corollary 3.5. Consider the ring Z,» where p is a prime number and n is a

positive integer. Then for n > 3, SO(m(Z,n))= (n? — 5n 4+ 7)V2 + (2n — 4)V/5;

Proof. It is obvious.

Remark 3.6. Consider the ring Z,m, where p and q are two prime numbers
and m is a positive integer. The maximal ideal graph m(Z,m,) is the ladder

graph L, = B, X P, where n = m + 1. See the following graph

16



<p'q> <p"‘1q> e o o o o o<p1q> <p0q>

Theorem 3.7. Consider a ladder graph B, x P, where n is a positive integer.
Then

1.

If n=1, then E(G) =4}, and E(G)=9 and So(P, X P,) =2 and
So(P, X P;) = 0;

If n=2, then E(G) =A%, and E(G) = A%, and So(P, X P,) = 8V2 and
So(P, X P) = 4V2;

If n=13, then E(G) =A%, VA4, UAL; and E(G) = A%, U A%, UAY; and

So(P; X Py) = 222422 + 422432 4+ /32432 = 74/2 + 44/13 and
So(P; X P,) = 4V22+22 + 4422432 = 7+/2 + 8V13;
If n>3 , E(G)=A45,UA%;UA3% % and E(G)=A43,UA U

AJY~541+80  and  So(P, X P,) = (9n — 20)V2 + 413 and So(P, X P,) =
(27n% — 162n + 248)V2 + (12n — 36)V/13;

17



Proof 1. If n =1, then E(G) = A}, and E(G) = @ and So(P, x P,) =+/2 and

So(P, X Pp) = 0;

Proof 2. If n =2, then E(G) = A%, and E(G) = A3, and So(P, x P,) = 8V2

and So(P, X P,) = 4V/2;

Proof 3. If n =3, then E(G) = A3, UA%; UAL; and E(G) = A3, U A%, u4),

and So(P; X P,) = 222422 + 422432 + /32432 = 74/2 + 4/13  and

So(P; X P,) = 4v22+422 4 4+4/22432 = 74/2 + 8/13;

Proof 4. It is clear that the ladder graph P, X P,, consisting of rungs and rails.

It has 3n — 2 edges, including n rungs and 2n — 2 rails.

1. The first and final rungs each have endpoints of degree 2, while the others
have endpoints of degree 3.

2. The two side rails of the graph represent two paths. Each path includes two

edges (first and final) with endpoints of degree 2 and 3, while the remaining

edges have endpoints of degree 3.

18



Therefor, E(G) =A3,UA%; U A3Y® and EG) = AS, U A;‘g"‘s) U

(3n-8)(3n-9) 2 4 3n—-8 _ 44 12n-36 (3n-8)(3n-9)-(3n-8) __
Az — A3, UA33 UA3S ° = A3, UA;3"°° UASS =

A%, U ATZPT36 Y AJY 54480 and So(P, X P,) = 2v22+22 + 4v22+432 4+ (3n —
8)V32432 = (9n—20)V2 +4vV13 and  So(P, x P,) = 4V22422 4+ (12n —
36)V22+32 + (9n? — 54n + 80)V32+32 = (8 + 3(9n? — 54n + 80) V2 +

(12n — 36)V13 = (27n? — 162n + 248)V2 + (12n — 36)V13;

Note that the Sombor index of the ladder graph was determined incorrectly in
(Ghanbari & Alikhani, Sat, 20 Feb 2021).

Corollary 3.8. Consider the ring Z,», where p and g are two prime number

and n is a positive integer greater than 2. Then SO(m(anq))z 44/13 +

(9(n + 1) — 20)v2 = 4V13 + (9n — 11)v2 and So(m(Z,ny) = (27n% — 108n +
275)V2 + (12n — 24)V/13;

Example 3.9. Consider the maximal graph m(Z,z,). Then So (m(Zpgq)) =

4V13 +16vZ and So (m(Zy:q) ) = 275v2 + 2413,
E—AD—AD——Ars
CF—CF—C—C



Remark 3.10. Consider the ring Z,m,» where p and q are two prime

numbers and m and n are two positive integers. The maximal ideal graph

m(Zy,mgn) is the grid graph Py, X Pp,4. See the following graph.

1,n
<prgr> <P > - <P o pogn s
< pmqn—1> - e . < pt}qn—l >
< qul > e e . < pﬁqn—l >
< pmqﬂ >
<pmig > st <plq° > <p°q® >
m(Zymgn)

Remark 3.11. Consider two paths, P,, and P, where m,n > 2. Then
1L VP % P)={(u,1):1<i<m and 1<j<n} and E(B,X B)=
{(uy, uy)(vy,v5): wyv, € E(RP,) and u, = v, Or u,v, € E(P,) and u; = v, }.
2. [V(B,X B)|l=mn and |E(P,X B)|=(m—-1)n+mn—-1)=2mn—
(m+n)
3. d(ui,vj) = dui+dv]-1 that is
A A, ) = Awyen) = Ay = Ao = 25
b. dy,v) = d(vl,vj) =3wherel<i<mandl1l<j<n;

C. diyp)) = 4wherel<i<mandl<j<n,

Theorem 3.12. Consider two paths, B, and P, where m and n are two

positive integers. Then
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1. SO(P; X P;)=S0O(P,x P))=S0(P,x P,)=0 ; SO(P;x P,)=S0(P, X
P) = 2;

2. SO(P, x P,) =82 and SO(P, x P,) = 4V2;

3.For n>2 , SO(P,x P)=S0(P,xP,)=4V13+ (9n—20)vV2 and
So(P, x P,) = (27n2 — 162n + 248)V2 + (12n — 36)V13;

4. For m>2 , SO(P;x B,) =SO(P, xP;) =10(m—1) +8V 13 + (10m —
30)v2 and SO(P; X P,,) = (8m? —35m + 63)V2 + 8(m — 2)V13 + 4(m —
2)V/20 + 5(2m? — 8m + 6)

5. SO(P, x P) = 10(m+n—4) + 8V 13 + (8mn — 14m — 14n — 12)¥2 and
SO(P, X P,) = (14m? + 14n? + 34mn — 41m — 41n + 2m?n? — 8m?n —
8mn? + 54)V2 + (8m + 8n — 24)V13 + (4mn — 8m — 8n + 16)V20 +
5(2m?n — 4m? — 12mn + 14m + 2mn? — 4n? + 14n — 8)

Proof 1, 2, 3. They are obvious.

Proof 4. From the graph P,, X P; we obtain the following facts:

V(Pp X P3) =A3UAS™2UAP? and E(B, X P;)UE(P, X P;) =43, U
(2m-2)(2m-3) (m-2)(m-3)

Ay, 2 U4, * uadmPug P ual P we have to find

E(P, X P;) and E(P,, X P;) as follows:

1. There are eight edges with endpoints of degree 2 and 3.
2. There are 2(m-3) edges with endpoints of degree 3.
3. There are 2(m-1) edges with endpoints of degree 3 and 4.

4. There are m — 3 edges with endpoints of degree 4.
So that E(Pm X P3) = A§,3 U A%g}_6 U A%TZ—Z U AZ,I4_3 and
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(2m-2)(2m-3) (m-2)(m-3)
R B ————-(2m-6) = —————(m-3) 4(2m-2)-8
E(Ppx P;) = AS;°UA,, ° Ud,, * UA;3; U
m? 7m

oY _ oY _ 2 ——+6
A;(;n 2)-0 UAgiIn 2)(m-2)—-(2m-2) =Ag,2 UAgz?:n 7m+9) UA4‘24 > UA%TQ_M U

4(m-2) 2m%-8m+6
A2,4 U A3,4 .

Therefore, SO(P, X P;) = 8V22+32+2(m—-3)V32+32+2(m-—
DV3Z+ 42+ (m—3)V4%>+4> =8V 13+ 6(m —3)V2+10(m — 1) + 4(m —
3)V2 = 10(m — 1) + 8V 13 + (10m — 30)V2.

2
Also SOP, X P3) = 6V22+22+(2m?—7m+9)V3Z + 3% + ("‘— -2y

2
6)m+ 8 (m—2)V2Z + 32 + 4(m — 2)V22 + 42 + (2m? — 8m +
6)V32 + 42 = (12 + 6m? — 21m + 27 + 2m? — 14m + 24)V2 + 8(m —
2)V13 +4(m—2)V20+52m%2 —8m+6) = (8m? —35m + 63)V2 + 8(m —
2)V13 + 4(m — 2)v/20 + 5(2m? — 8m + 6)

* - - e L ® »
W, @ - - TR o * ® UnV2 4
wy v, ® & ® - & *
UV, Up-1V, UyV,
P X P,

Proof 5. From the graph P,, X P, we obtain the following facts:
22



V(B, X B) = At u AZm+2n=4 y g(m=D(2) ang E(B, x B) UE®, X By =

(2m+2n-4)(2m+2n-5) (mn-2m-2n+4)(mn-2m-2n+3)

AS,UA,, u4,, 2 U AFEmHInY
4(mn-2m-2n+4) (2m+2n—4)(mn-2m-2n+4) _ (m+n-2)(2m+2n->5)
Az'lnn m n UA34711 n mn m n —Agz UA3TT; n m n U
(mn—2m—2n+4-)2(mn—2m—2n+3) 4(2m+2n-4) 4(mn-2m-2n+4)
A,, UA,, UA,, U
AGmrImmmn2m=2ntd) e have to find E(P, x P,) and E(B, X B,) as
follows:
1. There are eight edges with endpoints of degree 2 and 3.
2. There are 2(n-3)+ 2(m-3) edges with endpoints of degree 3.
3. There are 2(n-2)+ 2(m-2) edges with endpoints of degree 3 and 4.
4. The other edges with endpoints of degree 4 which are 2mn — (m+n) —

(8+(2(n—3)+ 2(m—3)) + (2(n—2) + 2(m—2))) — 2mn —5m — 5n +
12.

So that E(P, X B,) = A3, U AS =9+ 20n=3) y fZmn=sm=sntiz) a8 u 43, U
AL+ 2m=2), Therefore, SO(P, x B) = 8V22+324+(2m+2n—
12)V32 4+ 32+ (2m+2n—8)V32 + 42 + 2mn—5m —5n+ 12 )V42 + 42 =
8v 13 + (6m + 6n — 36)V2 + (10m + 10n — 40) + (8mn — 20m — 20n +

48)V2 = 8V 13 + (8mn — 20m — 20n + 48 + 6m + 6n — 36)V2 + (10m +
10n — 40) = 8V 13 + (8mn — 14m — 14n + 12)V2 + (10m + 10n — 40).

- -2)(2 2n—-5)—(2 2n—12
E(Pm X Pn) = AS,ZO UAgngn )(2m+2n-5)—(2m+2n )U
(mn-2m-2n+4)(mn-2m-2n+3)
A 2 (2mn-5m-5n+12) U A4(2m+2n—4)—8 U
4,4 2,3

4(mn-2m-2n+4)-0 2m+2n—-4)(mn-2m-2n+4)—(2m+2n-8)
Ayl UA;z, =
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m2n?—-am?n+4m?2-4mn2+11mn—4m+4n?-4n—12

Agz UAZm +2n2+4mn—-11m-11n+22 UA 2

UA8m+8n—24- UAlzl-Zln—Sm—Sn+16

AZm n—-4m?-12mn+14m+2mn?—4n?+14n-8

m?n?—am?n+4m?—-4mn?+11mn—4m+4n?—-4n—12
A UAZm +2n?24+4mn—-11m—-11n+22 UA 2

UA8m+8n 24 UA4mn—8m—8n+16

UAZm n—4m?-12mn+14m+2mn?-4n?+14n-8

Therefore, SO(P,, X P,) = 6V 22+22+ (2m?+2n®>+4mn—11m—11n+

2.2 g2 2_ 2 _ 2_pn—
ZZ)W"‘ (m n —4msn+4m 4mn2+11mn 4m+4n-—4n 12) /—42 T 42 + (8m+

8n —24)V22 + 32+ (4mn — 8m — 8n + 16)V22 + 42 + (2m?n — 4m? —
12mn + 14m + 2mn? — 4n? + 14n — 8)V32 + 42

= (14m? + 14n? + 34mn — 41m — 41n + 2m?n? — 8m?n — 8mn? + 54)V2 +

(8m + 8n — 24)V13 + (4mn — 8m — 8n + 16)V20 + 5(2m?n — 4m? —
12mn + 14m + 2mn? — 4n? + 14n — 8);
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ulvl uzv‘l sen

U,

UV

Uy 11 Uy V4

Uy

UmVUn-1

Up_1Vp Upy
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