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Abstract  

  

     In this project, we study the Sombor coindex of various specialized graphs, 

including Path graphs, Circle graphs, Wheel graphs, Ladder graphs, Grid 

graphs, and Crystal Lattice graphs. Subsequently, our focus shifts to the 

maximal chain of ideals of rings ℤ𝑛  where 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 …𝑝𝑘
𝛼𝑘  , 𝑝𝑖 ’s are 

distinct primes, 𝛼𝑖 ∈ ℤ
+,and 1 ≤ 𝑖 ≤ 𝑘.  Finally, we find a technique to find the 

Sombor coindex of  some maximal ideal graphs 𝑚(ℤ𝑛) of rings ℤ𝑛.   
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Introduction  

  

   Let 𝑅  be a ring.  An ideal  𝐼1 of  is maximal in an ideal 𝐼2 of 𝑅 if there is no 

ideal 𝐼3 of   such that 𝐼1 ⊂ 𝐼3 ⊂ 𝐼2    (Ahmad and Hummadi 2023). A chain of 

proper ideals 𝐼1 ⊂ 𝐼2 ⊂ 𝐼3 ⊂ ⋯    of 𝑅 is called maximal chain of ideals of  if 

𝐼𝑡−1 is maximal in 𝐼𝑡 for each . The maximal ideal graph of 𝑅 , denoted by 

𝑚(𝑅), is the undirected graph with vertex set, the set of all ideals of 𝑅 , where 

two vertices and  are adjacent if and only if   maximal in , or  maximal in 

𝐼 (Ahmad & Hummadi, 2023). Let 𝐺 =  (𝑉, 𝐸) be a finite simple graph. The 

Sombor index 𝑆𝑂(𝐺) of 𝐺  is defined as ∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢,𝑣∈𝐸(𝐺)  and the Sombor 

coindex 𝑆𝑂(𝐺)̅̅ ̅̅ ̅̅ ̅̅  of 𝐺 is defined as ∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢,𝑣∉𝐸(𝐺)  where 𝑑𝑢 is the degree of 

vertex 𝑢 in 𝐺 (Du, et al., 2023) and  (Ghanbari & Alikhani, Sat, 20 Feb 2021). 

In this work, we study both indexes for some certain graphs. In the chapter 

three we focus on finding the Sombor coindex of maximal ideal graphs   

where = 𝑝1
𝛼1𝑝2

𝛼2 …𝑝𝑘
𝛼𝑘, ’s are distinct primes,  and . 
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Chapter One  

Definitions and Backgrounds of ring theory  

 

Definition 1.1 (ATIYAH & MACDONALD, 1969). A ring R is a set with two 

binary operations (addition and multiplication) such that  

1) 𝑅 is an abelian group with respect to addition (so that 𝑅 has a zero element, 

denoted by 0, and every 𝑥 ∈ 𝑅 has an (additive) inverse, −𝑥).  

2) Multiplication is associative ((𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)) and distributive over addition  

(𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧, (𝑦 + 𝑧)𝑥 = 𝑦𝑥 + 𝑧𝑥).  

We shall consider only rings which are commutative:  

3) 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝑅, and have an identity element (denoted by 1):  

4) ∃1 ∈ 𝑅 such that 𝑥1 = 1𝑥 = 𝑥 for all 𝑥 ∈ 𝑅.  

  

Example 1.2 (DUMMIT & FOOTE, 2004).   

1. The ring of integers ℤ, under the usual operations of addition and 

multiplication is a commutative ring with identity (the integer 1).  

2. The quotient group ℤ/𝑛 ℤ is a commutative ring with identity (the element 

1) under the operations of addition and multiplication of residue classes.   

  

Definition 1.3 (DUMMIT & FOOTE, 2004). A subring of the ring 𝑅 is a 

subgroup of 𝑅 that is closed under multiplication.  
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Definition 1.4 (DUMMIT & FOOTE, 2004, p. 242). Let 𝑅 be a ring, let 𝐼 be a 

subset of 𝑅 and let 𝑟 ∈ 𝑅.  

1) 𝑟𝐼 =  {𝑟𝑎 | 𝑎 ∈  𝐼} and 𝐼𝑟 = {𝑎𝑟 | 𝑎 ∈ 𝐼}.  

2) 𝐴 subset 𝐼 of 𝑅 is a left ideal of 𝑅 if 

a. 𝐼 is a subring of 𝑅, and  

b. 𝐼 is closed under left multiplication by elements from 𝑅, i.e., 𝑟𝐼 ⊆ 𝐼 for all 𝑟 ⊆ 

𝑅.  

Similarly 𝐼 is a right ideal if (a) holds and in place of (b) one has  

c. 𝐼 is closed under right multiplication by elements from 𝑅, i.e., 𝐼𝑟 ⊆ 𝐼 for all 𝑟 

∈ 𝑅.  

3) A subset 𝐼 that is both a left ideal and a right ideal is called an ideal (or, for 

added emphasis, a two-sided ideal) of 𝑅.   

  

Example 1.5. Consider the ring of all rational numbers ℚ. Then ℤ is a subring 

of ℚ but it is not an ideal of ℚ.  

  

Definition 1.6 (DUMMIT & FOOTE, 2004, p. 255). Assume 𝑅 is commutative. 

An ideal 𝑃 is called a prime ideal if 𝑃 ≠ 𝑅 and whenever the product 𝑎𝑏 of two 

elements 𝑎, 𝑏 ∈ 𝑅 is an element of 𝑃, then at least one of 𝑎 and 𝑏 is an element 

of 𝑃.  

  

Definition 1.7 (DUMMIT & FOOTE, 2004, p. 253). An ideal 𝑀 in an arbitrary 

ring 𝑅 is called a maximal ideal if 𝑀 ≠ 𝑅 and the only ideals containing 𝑀 are 

𝑀 and 𝑅.   



4  

  

 

Definition 1.8 (Ahmad & Hummadi, 2023). Let   be a ring.  An ideal  of  

is maximal in an ideal  of  if there is no ideal  of   such that   . 

. 

 

Definition 1.9 (Ahmad & Hummadi, 2023). A chain of proper ideals 

 of  is called maximal chain of ideals of  if  is maximal 

in  for each .  

 

Example 1.10. Consider the ring ℤ36 = {0, 1, 2, … , 35}. The ring ℤ36 has the 

following proper ideals: 𝐼0 =< 0 >, 𝐼1 =< 18 >= {0, 18}, 𝐼2 =< 12 > = {0, 12, 

24}, 𝐼3 =< 9 >={0, 9, 18, 27}, 𝐼4 =< 6 > ={0, 6, 12, 18, 24, 30}, 𝐼5 =< 4 >

={0, 4, 8, 12, 16, 20, 24, 28, 32}, 𝐼6 =< 3 >={0, 3, 6, 12, 15,18, 21, 24, 27, 

30, 33}, 𝐼7 =< 2 >={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 

32, 34}. 

The following diagram illustrates the maximal chain of ideals of the 

ring ℤ36. 

𝐼0 ⊂

{
 
 

 
 𝐼1 ⊂ {

𝐼3 ⊂ 𝐼6 ⊂ ℤ36

𝐼4 ⊂ {
𝐼6 ⊂ ℤ36
𝐼7 ⊂ ℤ36

𝐼2 ⊂ {
𝐼4 ⊂ {

𝐼6 ⊂ ℤ36
𝐼7 ⊂ ℤ36

𝐼5 ⊂ 𝐼7 ⊂ ℤ36
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Chapter Two 

Definitions and Backgrounds of Graph Theory                                               

 

Definition 2.1 (Gross, et al., 2014, p. 2). A graph 𝐺 = (𝑉, 𝐸) consists of two 

sets 𝑉and 𝐸.  

1) The elements of 𝑉 are called vertices (or nodes).  

2) The elements of 𝐸 are called edges.  

3) Each edge has a set of one or two vertices associated to it, which are 

called its endpoints. An edge is said to join its endpoints.  

  

Definition 2.2 (NADUVATH, 2017, p. 23). A walk in a graph 𝐺 is an 

alternating sequence of vertices and connecting edges in 𝐺. In other words, 

a walk is any route through a graph from vertex to vertex along edges. If the 

starting and end vertices of a walk are the same, then such a trail is called a 

closed walk.  

  

Definition 2.3 (NADUVATH, 2017, p. 23). A trail is a walk that does not pass 

over the same edge twice. A trail might visit the same vertex twice, but only 

if it comes and goes from a different edge each time. A tour is a trail that 

begins and ends on the same vertex.  
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Definition 2.4 (NADUVATH, 2017, p. 23). A path is a walk that does not 

include any vertex twice, except that its first vertex might be the same as its 

last. A cycle or a circuit is a path that begins and ends on the same vertex.  

 

Definition 2.5 (NADUVATH, 2017, p. 23). The length of a walk or circuit or 

path or cycle is the number of edges in it.  

 

Definition 2.6. The number of edges incident on a vertex 𝑢, is called the 

degree of the vertex 𝑣 and is denoted by 𝑑𝑒𝑔𝐺(𝑢) or 𝑑𝑒𝑔(𝑢) or simply 𝑑(𝑢) 

or 𝑑𝑢. 

 

Definition 2.7 (Ghanbari & Alikhani, Sat, 20 Feb 2021). Let 𝐺 =  (𝑉, 𝐸) be a 

finite simple graph. The Sombor index 𝑆𝑂(𝐺)  of 𝐺  is defined as 

∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢𝑣∈𝐸(𝐺)  and the Sombor coindex 𝑆𝑂̅̅̅̅ (𝐺)  of 𝐺  is defined as 

∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢𝑣∉𝐸(𝐺)   where 𝑑𝑢 is the degree of vertex 𝑢 in 𝐺.  

Note that for each 𝑢𝑣 ∈ 𝐸(𝐺)  or 𝑢𝑣 ∉ 𝐸(𝐺) , 𝑆𝑂(𝑢𝑣) = √𝑑𝑢
2 + 𝑑𝑣

2 . So that  

𝑆𝑂(𝐺) = ∑ 𝑆𝑂(𝑢𝑣)𝑢𝑣∈𝐸(𝐺) = ∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢𝑣∈𝐸(𝐺)  

 

Notation. Let 𝐺 =  (𝑉, 𝐸) be a finite simple graph, where 𝑉  is the set of 

vertices and 𝐸  is the set of edges of graph G. The complement of 𝐸(𝐺), 

denoted by 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅, is the set of all possible edges that do not belong to 𝐸(𝐺). 
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Therefore, 𝑆𝑂̅̅̅̅ (𝐺) of 𝐺  is defined as ∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢𝑣∉𝐸(𝐺) = ∑ √𝑑𝑢

2 + 𝑑𝑣
2

𝑢𝑣∈𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅   

where 𝑑𝑢 is the degree of vertex 𝑢 in 𝐺. 

 

Definition 2.8 (Bondy & Murty, 1976). A cycle graph or circular graph is 

a graph that consists of a single cycle, or in other words, some number 

of vertices (at least 3, if the graph is simple) connected in a closed chain. The 

cycle graph with 𝑛 vertices is called 𝐶𝑛. The number of vertices in 𝐶𝑛 equals 

the number of edges, and every vertex has degree 2; that is, every vertex has 

exactly two edges incident with it. 

 

Example 2.9. Consider the following three cycle graphs:  

 

1. 𝑉(𝐶3) ={𝑣1, 𝑣2, 𝑣3}, 𝐸(𝐶3)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣1}and E(𝐶3)̅̅ ̅̅ ̅̅ ̅ = ∅. Then  𝑆𝑂(𝐶3) =

6√2 and  𝑆𝑂̅̅̅̅ (𝐶3) = 0. 

2. 𝑉(𝐶4) ={𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸(𝐶4)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1} and E(𝐶4)̅̅ ̅̅ ̅̅ ̅ =

{𝑣1𝑣3, 𝑣2𝑣4}. Then 𝑆𝑂(𝐶4) = 8√2 and 𝑆𝑂̅̅̅̅ (𝐶4) = 4√2. 

3. 𝑉(𝐶5) ={𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, 𝐸(𝐶5)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣5, 𝑣5𝑣1} and E(𝐶4)̅̅ ̅̅ ̅̅ ̅ =

{𝑣1𝑣3, 𝑣1𝑣4  𝑣2𝑣4, 𝑣2𝑣5, 𝑣3𝑣5}. Then 𝑆𝑂(𝐶5) = 𝑆𝑂̅̅̅̅ (𝐶5) = 10√2  

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)
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Definition 2.10. A complete graph is a simple undirected graph in which 

every pair of distinct vertices is connected by a unique edge. The complete 

graph on 𝑛 vertices is denoted by 𝐾𝑛.  

 

Example 2.11. Consider the following complete graphs:  

 

1. 𝑆𝑂(𝐾2) = √2 and  𝑆𝑂̅̅̅̅ (𝐾2) = 0. 

2. 𝑆𝑂(𝐾3) = 6√2 and  𝑆𝑂̅̅̅̅ (𝐾3) = 0. 

3. 𝑆𝑂(𝐾4) = 18√2 and  𝑆𝑂̅̅̅̅ (𝐾4) = 0. 

4. 𝑆𝑂(𝐾𝑛) =
𝑛(𝑛−1)

2
√(𝑛 − 1)2 + (𝑛 − 1)2 =

𝑛(𝑛−1)2√2

2
 and  𝑆𝑂̅̅̅̅ (𝐾𝑛) = 0. 

 

Remark 2.12. Let 𝐺 =  (𝑉, 𝐸) be a finite simple graph, where 𝑉 is the set of 

vertices and 𝐸 is the set of edges of graph G. Then the complement of 𝐸(𝐺), 

denoted by 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅, is the set of all possible edges that do not belong to 𝐸(𝐺). 

Therefore, 𝑆𝑂̅̅̅̅ (𝐺)  of 𝐺  is defined as ∑ √𝑑𝑢
2 + 𝑑𝑣

2
𝑢𝑣∉𝐸(𝐺) = ∑ √𝑑𝑢

2 + 𝑑𝑣
2

𝑢𝑣∈𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅   

where 𝑑𝑢 is the degree of vertex 𝑢 in 𝐺.  

https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
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Definition 2. 13. A path graph (or linear graph) is a graph whose vertices can 

be listed in the order  𝑣1, 𝑣2, … , 𝑣𝑛  such that the edges are 𝑣𝑖𝑣𝑖+1  where 𝑖 =

 1, 2, … ,  𝑛 −  1. Equivalently, a path with at least two vertices is connected and 

has two terminal vertices (vertices that have degree 1), while all others (if any) 

have degree 2.  The path graph with 𝑛 vertices is called 𝑃𝑛. The number of 

edges in 𝑃𝑛 equals 𝑛 − 1. 

Example 2.14. Consider the following four path graphs: 

 

1. 𝑉(𝑃1) ={𝑣1}, 𝐸(𝑃1) = ∅ and 𝐸(𝑃1)̅̅ ̅̅ ̅̅ ̅̅ = ∅;  

2. 𝑉(𝑃2) ={𝑣1, 𝑣2}, E(𝑃2)= {𝑣1𝑣2} and 𝐸(𝑃2)̅̅ ̅̅ ̅̅ ̅̅ = ∅; 

3. 𝑉(𝑃3) ={𝑣1, 𝑣2, 𝑣3}, 𝐸(𝑃3)= {𝑣1𝑣2, 𝑣2𝑣3} and 𝐸(𝑃3)̅̅ ̅̅ ̅̅ ̅̅ = {𝑣1𝑣3} ;  

4. 𝑉(𝑃4) ={𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸(𝑃4)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4} and 𝐸(𝑃4)̅̅ ̅̅ ̅̅ ̅ =

{𝑣1𝑣3, 𝑣1𝑣4, 𝑣2𝑣4} ; 

Then we obtain the following results:  

1. 𝑆𝑂(𝑃1) = 𝑆𝑂̅̅̅̅ (𝑃1) = 0; 

2. 𝑆𝑂(𝑃2) = √1
2 + 12 = √2 and  𝑆𝑂̅̅̅̅ (𝑃2) = 0; 

3. 𝑆𝑂(𝑃3) = 2√1
2 + 22 = 2√5 and 𝑆𝑂̅̅̅̅ (𝑃3) = √1

2 + 12 = √2; 

4. 𝑆𝑂(𝑃4) = 2√1
2 + 22 + √22 + 22 = 2√5 + 2√2 and 𝑆𝑂̅̅̅̅ (𝑃4) = √1

2 + 12 +

2√12 + 22 = √2 + 2√5 

 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)


10  

  

Definition 2.15. A wheel graph is a graph formed by connecting a 

single universal vertex to all vertices of a cycle. A wheel graph with 𝑛 vertices 

can also be defined as the 1-skeleton of an (𝑛 – 1)-gonal pyramid. The wheel 

graph with 𝑛 vertices is called 𝑊𝑛  which is formed by connecting a single 

vertex to all vertices of a cycle of length 𝑛-1. 

 

Example 2.16. Consider the following three wheel graphs:  

 

𝑉(𝑊4) ={𝑣0, 𝑣1, 𝑣2, 𝑣3}, 𝐸(𝑊4)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣1, 𝑣1𝑣0, 𝑣2𝑣0, 𝑣3𝑣0}, 𝐸(𝑊4)̅̅ ̅̅ ̅̅ ̅̅ =

∅, 𝑉(𝑊5) ={𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸(𝑊5)= {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1, 𝑣1𝑣0, 𝑣2𝑣0, 𝑣3𝑣0, 

𝑣4𝑣0 }, 𝐸(𝑊5)̅̅ ̅̅ ̅̅ ̅̅ ̅ = {𝑣1𝑣3, 𝑣2𝑣4}   , 𝑉(𝑊6) = { 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 } and 𝐸 (𝑊6) = 

{𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4 , 𝑣4𝑣5 , 𝑣5𝑣1, 𝑣1𝑣0, 𝑣2𝑣0, 𝑣3𝑣0 , 𝑣4𝑣0 , 𝑣5𝑣0 }, 𝐸(𝑊6)̅̅ ̅̅ ̅̅ ̅̅ ̅ = {𝑣1𝑣3,

𝑣1𝑣4, 𝑣2𝑣4, 𝑣2𝑣5, 𝑣3𝑣5}. So that in 𝑊6,  𝑑𝑣𝑖 = 3 for 1 ≤ 𝑖 ≤ 5 and  𝑑𝑣0 = 5. Then 

𝑆𝑜(𝑣𝑖𝑣𝑗) = √3
2 + 32 = 3√2  and 𝑆𝑜(𝑣𝑖𝑣0) = √3

2 + 52 = √34  for 1 ≤ 𝑖, 𝑗 ≤ 5 . 

Therefore, 𝑆𝑂(𝑊6) = 5(3√2) + 5(√34) = 15√2 + 5√34  and 𝑆𝑂̅̅̅̅ (𝑊6) =

5(3√2) = 15√2. Similarly 𝑆𝑂(𝑊5) = 4(3√2) + 4(5) = 12√2 + 20, 𝑆𝑂̅̅̅̅ (𝑊5) =

2(3√2) = 6√2, 𝑆𝑂(𝑊4) = 6(3√2) + 4(5) = 18√2 and 𝑆𝑂̅̅̅̅ (𝑊4) = ∅. 

 

https://en.wikipedia.org/wiki/Universal_vertex
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Skeleton_(topology)
https://en.wikipedia.org/wiki/Pyramid_(geometry)
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Definition 2.17 (Sagan , et al., 1996, p. 960). The Cartesian product of two 

graphs 𝐺1 and 𝐺2, is a graph  𝐺1 × 𝐺2 such that 𝑉(𝐺1 × 𝐺2) = {(𝑣1, 𝑣2): 𝑣1 ∈ 𝐺1 

and 𝑣2 ∈ 𝐺2}  and 𝐸(𝐺1 × 𝐺2) = {(𝑢1, 𝑢2)(𝑣1, 𝑣2):  𝑢1𝑣1 ∈ 𝐸(𝐺1)  and 𝑢2 = 𝑣2  or 

𝑢2𝑣2 ∈ 𝐸(𝐺2) and 𝑢1 = 𝑣1}. 

 

Definition 2.18. The ladder graph 𝐿𝑛 is  undirected graph with 2𝑛 vertices and 

3𝑛 –  2 edges. The ladder graph can be obtained as the Cartesian product of 

two path graphs, one of which has only one edge: 𝐿𝑛 =  𝑃𝑛 × 𝑃2.  

 

Example 2.19. Consider the following ladder graphs:  

 

Then 𝑆𝑂(𝐿1) = √2, 𝑆𝑂̅̅̅̅ (𝐿1) = ∅ and  𝑆𝑂(𝐿2) = 𝑆𝑂̅̅̅̅ (𝐿2) = 4(2√2)= 8√2. 

 

Definition 2.20. The grid graph 𝐺𝑚,𝑛 is  undirected graph can be obtained as 

the Cartesian product of two path graphs 𝑃𝑚 × 𝑃𝑛, that is 𝐺𝑚,𝑛 =  𝑃𝑚 × 𝑃𝑛.  

 

Example 2.21. Consider the following grid graphs:  

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph
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Then 𝐸(𝐺3,3) = 𝐴2,3 ∪ 𝐴3,4  where 𝐸(𝐺3,3)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵2,2 ∪ 𝐵2,3 ∪ 𝐵2,4 ∪ 𝐵3,3  where 

both  𝐴𝑖,𝑗  and 𝐵𝑖,𝑗 contains edges of degree 𝑖 and 𝑗. 𝐴2,3 contains 8 edges, 

𝐴3,4  contains 4 edges, 𝐵2,2  contains 2 edges, 𝐵2,3  contains 16 edges, 𝐵2,4 

contains 4 edges and 𝐵3,3 contains 6 edges. See Remark 3.2. 

 𝑆𝑂(𝐺3,3) = 8√2
2 + 32 + 4√32 + 42 = 8√13 + 20  and 𝑆𝑂(𝐺3,3)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

2√22 + 22 + 16√22 + 32 + 4√22 + 42 + 6√32 + 32 = 4√2 + 16√13 + 4√20 +

18√2 = 22√2 + 16√13 + 4√20. 

 

Definition 2.22. The Crystal Lattice graph 𝐶𝐿,𝑚,𝑛 is  undirected graph can be 

obtained as the Cartesian product of three path graphs  𝑃𝐿 × 𝑃𝑚 × 𝑃𝑛, that is 

𝐶𝐿,𝑚,𝑛 =  (𝑃𝐿 × 𝑃𝑚) × 𝑃𝑛.   

 

Example 2.23. Consider the Crystal Lattice graph 𝐶2,2,2: 

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Path_graph
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Then 𝑆𝑂(𝐶2,2,2) = 𝑆𝑂(𝐶2,2,2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 12√32 + 32 = 36√2  and 𝑆𝑂(𝐶2,2,2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

16√32 + 32 = 48√2. 
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Chapter Three 

Definition 3.1 (Ahmad, 2023). Let 𝑅 be a commutative ring with identity. The 

maximal ideal graph of 𝑅, denoted by 𝑚(𝑅), is the undirected graph with vertex 

set, the set of all ideals of 𝑅, where two vertices 𝐼 and 𝐽 are adjacent if and only 

if  𝐼 maximal in 𝐽, or 𝐽 maximal in 𝐼. 

 

Remark 3.2. Let 𝐺  be a graph, 𝑉(𝐺) = {𝑣𝑖; 1 ≤ 𝑖 ≤ 𝑡} = ⋃ 𝐴𝛼𝑖
𝑥𝑖𝑙

𝑖=1 , 𝐸(𝐺) =

⋃ 𝐵𝛽𝑖,𝛾𝑖
𝑦𝑖𝑚

𝑖=1  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = ⋃ 𝐶𝛿𝑖,𝜀𝑖
𝑧𝑖𝑛

𝑖=1  where 𝐴𝛼𝑖
𝑥𝑖  is a set of vertices which contains 

𝑥𝑖 vertices of degree  𝛼𝑖, 𝐵𝛽𝑖,𝛾𝑖
𝑦𝑖  is a set of edges which contains 𝑦𝑖 edges with 

endpoints of degree  𝛽𝑖 and  𝛾𝑖,   𝐶𝛿𝑖,𝜀𝑖
𝑧𝑖  is a set of edges contains 𝑧𝑖 edges with 

endpoints of degree 𝛿𝑖 and 𝜀𝑖. Then 

1. 𝐸(𝐺)⋂𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = ∅; 

2. 𝐸(𝐺)⋃𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = {𝑣𝑖𝑣𝑗; 1 ≤ 𝑖 < 𝑗 ≤ 𝑡}; 

3. |𝐸(𝐺)⋃𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅| = |𝐾|𝐺|| =
|𝐺|(|𝐺|−1)

2
=

𝑡(𝑡−1)

2
 

4. 𝐸(𝐺)⋃𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = (⋃ 𝐴𝛼𝑖,𝛼𝑖

𝑥𝑖(𝑥𝑖−1)

2 )𝑙
𝑖=1 ⋃(⋃ (⋃ 𝐴𝛼𝑖,𝛼𝑗

|𝐴𝛼𝑖
𝑥𝑖 |.|𝐴𝛼𝑗

𝑥𝑗
|

𝑖−1
𝑗=1 )𝑚

𝑖=2 ) and  𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ =

⋃ 𝐶𝛿𝑖,𝜀𝑖
𝑧𝑖𝑛

𝑖=1 = (⋃ 𝐴𝛼𝑖,𝛼𝑖

𝑥𝑖(𝑥𝑖−1)

2 )𝑙
𝑖=1 ⋃(⋃ (⋃ 𝐴𝛼𝑖,𝛼𝑗

|𝐴𝛼𝑖
𝑥𝑖 |.|𝐴𝛼𝑗

𝑥𝑗
|

𝑖−1
𝑗=1 )𝑚

𝑖=2 ) − 𝐸(𝐺); 
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So that 𝑆𝑂(𝐺) = ∑ 𝑦𝑖√𝛽𝑖
2 + 𝛾𝑖

2𝑚
𝑖=1  and  𝑆𝑂(𝐺)̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝑧𝑖√𝛿𝑖

2 + 𝜀𝑖
2𝑛

𝑖=1 . 

Furthermore,  and 𝑆𝑂(𝐺)̅̅ ̅̅ ̅̅ ̅̅ = (⋃ 𝐴𝛼𝑖,𝛼𝑖

𝑥𝑖(𝑥𝑖−1)

2 )𝑙
𝑖=1 ⋃(⋃ (⋃ 𝐴𝛼𝑖,𝛼𝑗

|𝐴𝛼𝑖
𝑥𝑖 |.|𝐴𝛼𝑗

𝑥𝑗
|

𝑖−1
𝑗=1 )𝑚

𝑖=2 ) −

∑ 𝑦𝑖√𝛽𝑖
2 + 𝛾𝑖

2𝑚
𝑖=1  

 

Remark 3.3. The maximal ideal graph 𝑚(ℤ𝑝𝑛) is the path graph 𝑃𝑛+1 where 𝑝 

prime number and 𝑛 is a positive integer. See the following graph. 

 

   

Theorem 3.4. Consider the path 𝑃𝑛 = {𝑣1, 𝑣2, … , 𝑣𝑛} where is a positive integer. 

Then 

1. 𝐸(𝑃1) = 𝐸(𝑃1)̅̅ ̅̅ ̅̅ ̅̅ = ∅, then 𝑆𝑂(𝑃1) = 𝑆𝑂(𝑃1)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

2. 𝐸(𝑃2) = 𝐴1,1
1  and 𝐸(𝑃2)̅̅ ̅̅ ̅̅ ̅̅ = ∅, 𝑆𝑂(𝑃1) = √2 and 𝑆𝑂(𝑃1)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

3. 𝐸(𝑃3) = 𝐴2,1
2  and 𝐸(𝑃3)̅̅ ̅̅ ̅̅ ̅̅ = 𝐴1,1

1 , 𝑆𝑂(𝑃3) = 2√5 and 𝑆𝑂(𝑃3)̅̅ ̅̅ ̅̅ ̅̅ ̅ = √2; 

4. For 𝑛 ≥ 4, 𝐸(𝑃𝑛) = 𝐴2,1
2 ⋃𝐴2,2

𝑛−3, and 𝐸(𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ = 𝐴1,1
1 ⋃𝐴2,2

𝑛2−7𝑛+12

2 ⋃𝐴1,2
2n−6; 

5. 𝑆𝑂(𝑃𝑛) = 2√5 + 2(𝑛 − 3)√2 and 𝑆𝑂(𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑛2 − 7𝑛 + 13)√2 + (2𝑛 − 6)√5; 

Proof 1, 2, 3. They are obvious. 

Proof 4, 5. It is clear that 𝐸(𝑃𝑛) contains two edges with endpoints of degree 1 

and 2, contains 𝑛-3 edges with endpoints of degree 2. Therefore, 𝐸(𝑃𝑛) =

𝐴1,2
2 ⋃𝐴2,2

𝑛−3 and 𝑆𝑂(𝑃𝑛) = 2√5 + 2(𝑛 − 3)√2. On the other hand,  𝐸(𝐺)⋃𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ =
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(⋃ 𝐴𝛼𝑖,𝛼𝑖

𝑥𝑖(𝑥𝑖−1)

2 )𝑙
𝑖=1 ⋃(⋃ (⋃ 𝐴𝛼𝑖,𝛼𝑗

|𝐴𝛼𝑖
𝑥𝑖 |.|𝐴𝛼𝑗

𝑥𝑗
|

𝑖−1
𝑗=1 )𝑚

𝑖=2 ) = 𝐴1,1
1 ⋃𝐴2,2

(𝑛−2)(𝑛−3)

2 ⋃𝐴1,2
2(𝑛−2)

. So that 

𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴1,1
1 ⋃𝐴2,2

(𝑛−2)(𝑛−3)

2 ⋃𝐴1,2
2(𝑛−2)

− 𝐴1,2
2 ⋃𝐴2,2

𝑛−3 = 𝐴1,1
1 ⋃𝐴2,2

(𝑛−2)(𝑛−3)

2
−(𝑛−3)

⋃𝐴1,2
2(𝑛−2)−2

 

= 𝐴1,1
1 ⋃𝐴2,2

(𝑛−2)(𝑛−3)−2𝑛+6

2 ⋃𝐴1,2
2n−6 = 𝐴1,1

1 ⋃𝐴2,2

𝑛2−5𝑛+6−2𝑛+6

2 ⋃𝐴1,2
2n−6 =

𝐴1,1
1 ⋃𝐴2,2

𝑛2−7𝑛+12

2 ⋃𝐴1,2
2n−6 . So that 𝐸(𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅  contains one edges with endpoints of 

degree 1, 2𝑛 − 6 edges with endpoints of degree 1 and 2, and 
𝑛2−7𝑛+12

2
 edges 

with endpoints of degree 2. Therefore, 𝑆𝑂(𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ = √2 + (2𝑛 − 6)√5 +

2(
𝑛2−7𝑛+12

2
)√2 = (𝑛2 − 7𝑛 + 13)√2 + (2𝑛 − 6)√5; 

 

Corollary 3.5. Consider the ring ℤ𝑝𝑛  where 𝑝 is a prime number and 𝑛 is a 

positive integer. Then for 𝑛 > 3, 𝑆𝑂(𝑚(ℤ𝑝𝑛))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑛2 − 5𝑛 + 7)√2 + (2𝑛 − 4)√5; 

Proof. It is obvious. 

 

Remark 3.6. Consider the ring ℤ𝑝𝑚𝑞  where 𝑝 and 𝑞 are two prime numbers 

and 𝑚 is a positive integer. The maximal ideal graph 𝑚(ℤ𝑝𝑚𝑞) is the ladder 

graph 𝐿𝑛 =  𝑃𝑛 × 𝑃2 where 𝑛 = 𝑚 + 1. See the following graph 
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Theorem 3.7. Consider a ladder graph 𝑃𝑛 × 𝑃2 where 𝑛 is a positive integer. 

Then  

1. If 𝑛 = 1 , then 𝐸(𝐺) = 𝐴1,1
1  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = ∅  and 𝑆𝑜(𝑃𝑛 × 𝑃2) = √2  and 

𝑆𝑜(𝑃𝑛 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

2. If 𝑛 = 2 , then 𝐸(𝐺) = 𝐴2,2
4  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

2  and 𝑆𝑜(𝑃2 × 𝑃2) = 8√2  and  

𝑆𝑜(𝑃2 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4√2; 

3. If 𝑛 = 3 , then 𝐸(𝐺) = 𝐴2,2
2 ∪ 𝐴2,3

4 ∪ 𝐴3,3
1  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

4 ∪ 𝐴2,3
4 ∪ 𝐴3,3

0  and 

𝑆𝑜(𝑃3 × 𝑃2) = 2√2
2+22 + 4√22+32 + √32+32 = 7√2 + 4√13  and 

𝑆𝑜(𝑃3 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4√22+22 + 4√22+32 = 7√2 + 8√13;  

4. If 𝑛 > 3 , 𝐸(𝐺) = 𝐴2,2
2 ∪ 𝐴2,3

4 ∪ 𝐴3,3
3𝑛−8  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

4 ∪ 𝐴2,3
12n−36 ∪

𝐴3,3
9𝑛2−54𝑛+80  and 𝑆𝑜(𝑃𝑛 × 𝑃2) = (9𝑛 − 20)√2 + 4√13  and 𝑆𝑜(𝑃𝑛 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

(27𝑛2 − 162𝑛 + 248)√2 + (12𝑛 − 36)√13;  
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Proof 1. If 𝑛 = 1 , then 𝐸(𝐺) = 𝐴1,1
1  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = ∅  and 𝑆𝑜(𝑃𝑛 × 𝑃2) = √2  and 

𝑆𝑜(𝑃𝑛 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

Proof 2. If 𝑛 = 2 , then 𝐸(𝐺) = 𝐴2,2
4  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

2  and 𝑆𝑜(𝑃2 × 𝑃2) = 8√2 

and  𝑆𝑜(𝑃2 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4√2; 

Proof 3. If 𝑛 = 3, then 𝐸(𝐺) = 𝐴2,2
2 ∪ 𝐴2,3

4 ∪ 𝐴3,3
1  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

4 ∪ 𝐴2,3
4 ∪ 𝐴3,3

0  

and 𝑆𝑜(𝑃3 × 𝑃2) = 2√2
2+22 + 4√22+32 + √32+32 = 7√2 + 4√13  and 

𝑆𝑜(𝑃3 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4√22+22 + 4√22+32 = 7√2 + 8√13;  

Proof 4. It is clear that the ladder graph 𝑃𝑛 × 𝑃2, consisting of rungs and rails. 

It has 3𝑛 − 2 edges, including  𝑛 rungs and 2𝑛 − 2 rails.  

1. The first and final rungs each have endpoints of degree 2, while the others 

have endpoints of degree 3. 

2. The two side rails of the graph represent two paths. Each path includes two 

edges (first and final) with endpoints of degree 2 and 3, while the remaining 

edges have endpoints of degree 3. 
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Therefor, 𝐸(𝐺) = 𝐴2,2
2 ∪ 𝐴2,3

4 ∪ 𝐴3,3
3𝑛−8  and 𝐸(𝐺)̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

6 ∪ 𝐴2,3
4(3𝑛−8)

∪

𝐴3,3
(3𝑛−8)(3n−9)

− 𝐴2,2
2 ∪ 𝐴2,3

4 ∪ 𝐴3,3
3𝑛−8 = 𝐴2,2

4 ∪ 𝐴2,3
12n−36 ∪ 𝐴3,3

(3𝑛−8)(3n−9)−(3𝑛−8)
=

𝐴2,2
4 ∪ 𝐴2,3

12n−36 ∪ 𝐴3,3
9𝑛2−54𝑛+80  and 𝑆𝑜(𝑃𝑛 × 𝑃2) = 2√2

2+22 + 4√22+32 + (3𝑛 −

8)√32+32 = (9𝑛 − 20)√2 + 4√13  and 𝑆𝑜(𝑃𝑛 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4√22+22 + (12𝑛 −

36)√22+32 + (9𝑛2 − 54𝑛 + 80)√32+32 = (8 + 3(9𝑛2 − 54𝑛 + 80))√2 +

(12n − 36)√13 = (27𝑛2 − 162𝑛 + 248)√2 + (12𝑛 − 36)√13;  

 

Note that the Sombor index of the ladder graph was determined incorrectly in 

(Ghanbari & Alikhani, Sat, 20 Feb 2021). 

 

Corollary 3.8. Consider the ring ℤ𝑝𝑛𝑞  where 𝑝 and 𝑞 are two prime number 

and 𝑛  is a positive integer greater than 2. Then 𝑆𝑂(𝑚(ℤ𝑝𝑛𝑞)) =  4√13 +

(9(𝑛 + 1) − 20)√2 = 4√13 + (9𝑛 − 11)√2  and 𝑆𝑜(𝑚(ℤ𝑝𝑛𝑞)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (27𝑛2 − 108𝑛 +

275)√2 + (12𝑛 − 24)√13;  

 

Example 3.9. Consider the maximal graph 𝑚(ℤ𝑝3𝑞) . Then 𝑆𝑜 (𝑚(ℤ𝑝3𝑞)) =

4√13 + 16√2 and 𝑆𝑜 (𝑚(ℤ𝑝3𝑞))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 275√2 + 24√13. 

 

 

 



20  

  

Remark 3.10. Consider the ring ℤ𝑝𝑚𝑞𝑛  where 𝑝  and 𝑞  are two prime 

numbers and 𝑚 and 𝑛 are two positive integers. The maximal ideal graph 

𝑚(ℤ𝑝𝑚𝑞𝑛) is the grid graph 𝑃𝑚+1 × 𝑃n+1. See the following graph. 

 

Remark 3.11. Consider two paths, 𝑃𝑚 and 𝑃𝑛 where 𝑚, 𝑛 > 2. Then  

1. 𝑉(𝑃𝑚 × 𝑃𝑛) = {(𝑢i, 𝑣j): 1 ≤ i ≤ m and 1 ≤ 𝑗 ≤ 𝑛}  and 𝐸(𝑃𝑚 × 𝑃𝑛) =

{(𝑢1, 𝑢2)(𝑣1, 𝑣2):  𝑢1𝑣1 ∈ 𝐸(𝑃𝑚) and 𝑢2 = 𝑣2 or 𝑢2𝑣2 ∈ 𝐸(𝑃𝑛) and 𝑢1 = 𝑣1}. 

2. |𝑉(𝑃𝑚 × 𝑃𝑛)| = 𝑚𝑛  and |𝐸(𝑃𝑚 × 𝑃𝑛)| = (𝑚 − 1)𝑛 +𝑚(𝑛 − 1) = 2𝑚𝑛 −

(𝑚 + 𝑛) 

3. 𝑑(𝑢𝑖,𝑣j) = 𝑑𝑢i+𝑑𝑣j, that is  

a. 𝑑(𝑣1,𝑣1) = 𝑑(𝑣1,𝑣n) = 𝑑(𝑣m,𝑣1) = 𝑑(𝑣m,𝑣n) = 2; 

b. 𝑑(𝑣i,𝑣1) = 𝑑(𝑣1,𝑣j) = 3 where 1 < 𝑖 < 𝑚 and 1 < 𝑗 < 𝑛; 

c. 𝑑(𝑣i,𝑣𝑗) = 4 where 1 < 𝑖 < 𝑚 and 1 < 𝑗 < 𝑛;  

 

Theorem 3.12. Consider two paths, 𝑃𝑚  and  𝑃𝑛  where 𝑚  and 𝑛 are two 

positive integers. Then  
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1. 𝑆𝑂(𝑃1 × 𝑃1) = 𝑆𝑂(𝑃1 × 𝑃1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑆𝑂(𝑃1 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 ; 𝑆𝑂(𝑃1 × 𝑃2) = 𝑆𝑂(𝑃2 ×

 𝑃1) = √2; 

2. 𝑆𝑂(𝑃2 × 𝑃2) = 8√2 and 𝑆𝑂(𝑃2 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 4√2; 

3. For 𝑛 > 2 , 𝑆𝑂(𝑃2 × 𝑃𝑛) = 𝑆𝑂(𝑃𝑛 × 𝑃2) = 4√13 + (9𝑛 − 20)√2  and 

𝑆𝑜(𝑃𝑛 × 𝑃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (27𝑛2 − 162𝑛 + 248)√2 + (12𝑛 − 36)√13;  

4. For 𝑚 > 2 , 𝑆𝑂(𝑃3 × 𝑃𝑚) = 𝑆𝑂(𝑃𝑚 × 𝑃3) = 10(𝑚 − 1) + 8√ 13 + (10𝑚 −

30)√2  and 𝑆𝑂(𝑃3 × 𝑃𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (8𝑚2 − 35𝑚 + 63)√2 + 8(𝑚 − 2)√13 + 4(𝑚 −

2)√20 + 5(2𝑚2 − 8𝑚 + 6) 

5. 𝑆𝑂(𝑃𝑚 × 𝑃𝑛) =  10(𝑚 + 𝑛 − 4) + 8√ 13 + (8𝑚𝑛 − 14𝑚 − 14𝑛 − 12)√2  and 

𝑆𝑂(𝑃𝑚 × 𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (14𝑚2 + 14𝑛2 + 34𝑚𝑛 − 41𝑚 − 41𝑛 + 2𝑚2𝑛2 − 8𝑚2𝑛 −

8𝑚𝑛2 + 54)√2 + (8𝑚 + 8𝑛 − 24)√13 + (4𝑚𝑛 − 8𝑚 − 8𝑛 + 16)√20 +

5(2𝑚2𝑛 − 4𝑚2 − 12𝑚𝑛 + 14𝑚 + 2𝑚𝑛2 − 4𝑛2 + 14𝑛 − 8) 

 

Proof 1, 2, 3. They are obvious. 

Proof 4. From the graph 𝑃𝑚 × 𝑃3 we obtain the following facts:  

V(𝑃𝑚 × 𝑃3) = 𝐴2
4 ∪ 𝐴3

2m−2 ∪ 𝐴4
m−2  and E(𝑃𝑚 × 𝑃3) ∪ E(𝑃𝑚 × 𝑃3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2

6 ∪

𝐴3,3

(2m−2)(2m−3)

2 ∪ 𝐴4,4

(m−2)(m−3)

2 ∪ 𝐴2,3
4(2𝑚−2)

∪ 𝐴2,4
4(𝑚−2)

∪ 𝐴3,4
(2𝑚−2)(𝑚−2)

. We have to find 

𝐸(𝑃𝑚 × 𝑃3) and 𝐸(𝑃𝑚 × 𝑃3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as follows:  

1. There are eight edges with endpoints of degree 2 and 3. 

2. There are 2(𝑚-3) edges with endpoints of degree 3. 

3. There are 2(𝑚-1) edges with endpoints of degree 3 and 4. 

4. There are 𝑚 − 3 edges with endpoints of degree 4. 

So that 𝐸(𝑃𝑚 × 𝑃3) = 𝐴2,3
8 ∪ 𝐴3,3

2m−6 ∪ 𝐴3,4
2𝑚−2 ∪ 𝐴4,4

𝑚−3  and  
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   𝐸(𝑃𝑚 × 𝑃3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2
6−0 ∪ 𝐴3,3

(2m−2)(2m−3)

2
−(2m−6)

∪ 𝐴4,4

(m−2)(m−3)

2
−(𝑚−3)

∪ 𝐴2,3
4(2𝑚−2)−8

∪

𝐴2,4
4(𝑚−2)−0

∪ 𝐴3,4
(2𝑚−2)(𝑚−2)−(2𝑚−2)

= 𝐴2,2
6 ∪ 𝐴3,3

(2𝑚2−7𝑚+9)
∪ 𝐴4,4

𝑚2

2
−
7m

2
+6
∪ 𝐴2,3

8𝑚−16 ∪

𝐴2,4
4(𝑚−2)

∪ 𝐴3,4
2𝑚2−8𝑚+6. 

Therefore, 𝑆𝑂(𝑃𝑚 × 𝑃3) =  8√ 2
2 + 32 + 2(𝑚 − 3)√32 + 32 + 2(𝑚 −

1)√32 + 42 + (𝑚 − 3 )√42 + 42 = 8√ 13 + 6(𝑚 − 3)√2 + 10(𝑚 − 1) + 4(𝑚 −

3)√2 = 10(𝑚 − 1) + 8√ 13 + (10𝑚 − 30)√2. 

Also 𝑆𝑂(𝑃𝑚 × 𝑃3) =̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   6√ 22 + 22 + (2𝑚2 − 7𝑚 + 9)√32 + 32 + (
𝑚2

2
−
7m

2
+

6 )√42 + 42 +  8 (𝑚 − 2)√22 + 32 + 4(𝑚 − 2)√22 + 42 + (2𝑚2 − 8𝑚 +

6)√32 + 42 = (12 + 6𝑚2 − 21𝑚 + 27 + 2𝑚2 − 14𝑚 + 24)√2 + 8(𝑚 −

2)√13 + 4(𝑚 − 2)√20 + 5(2𝑚2 − 8𝑚 + 6) = (8𝑚2 − 35𝑚 + 63)√2 + 8(𝑚 −

2)√13 + 4(𝑚 − 2)√20 + 5(2𝑚2 − 8𝑚 + 6) 

 

Proof 5. From the graph 𝑃𝑚 × 𝑃𝑛 we obtain the following facts:  
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V(𝑃𝑚 × 𝑃𝑛) = 𝐴2
4 ∪ 𝐴3

2𝑚+2𝑛−4 ∪ 𝐴4
(𝑚−2)(𝑛−2)

 and E(𝑃𝑚 × 𝑃𝑛) ∪ E(𝑃𝑚 × 𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝐴2,2
6 ∪ 𝐴3,3

(2𝑚+2𝑛−4)(2𝑚+2𝑛−5)

2 ∪ 𝐴4,4

(𝑚𝑛−2𝑚−2𝑛+4)(𝑚𝑛−2𝑚−2𝑛+3)

2 ∪ 𝐴2,3
4(2𝑚+2𝑛−4)

∪

𝐴2,4
4(𝑚𝑛−2𝑚−2𝑛+4)

∪ 𝐴3,4
(2𝑚+2𝑛−4)(𝑚𝑛−2𝑚−2𝑛+4)

= 𝐴2,2
6 ∪ 𝐴3,3

(𝑚+𝑛−2)(2𝑚+2𝑛−5)
∪

𝐴4,4

(𝑚𝑛−2𝑚−2𝑛+4)(𝑚𝑛−2𝑚−2𝑛+3)

2 ∪ 𝐴2,3
4(2𝑚+2𝑛−4)

∪ 𝐴2,4
4(𝑚𝑛−2𝑚−2𝑛+4)

∪

𝐴3,4
(2𝑚+2𝑛−4)(𝑚𝑛−2𝑚−2𝑛+4)

. We have to find 𝐸(𝑃𝑚 × 𝑃𝑛)  and 𝐸(𝑃𝑚 × 𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  as 

follows:  

1. There are eight edges with endpoints of degree 2 and 3. 

2. There are 2(𝑛-3)+ 2(𝑚-3) edges with endpoints of degree 3. 

3. There are 2(𝑛-2)+ 2(𝑚-2) edges with endpoints of degree 3 and 4. 

4. The other edges with endpoints of degree 4 which are 2𝑚𝑛 − (𝑚 + 𝑛) −

(8 + (2(𝑛 − 3) +  2(𝑚 − 3)) + (2(𝑛 − 2) +  2(𝑚 − 2))) = 2𝑚𝑛 − 5𝑚 − 5𝑛 +

12.  

So that E(𝑃𝑚 × 𝑃𝑛) = 𝐴2,2
0 ∪ 𝐴3,3

2(𝑛−3)+ 2(𝑚−3)
∪ 𝐴4,4

(2𝑚𝑛−5𝑚−5𝑛+12)
∪ 𝐴2,3

8 ∪ 𝐴2,4
0 ∪

𝐴3,4
2(𝑛−2)+ 2(𝑚−2)

.  Therefore, 𝑆𝑂(𝑃𝑚 × 𝑃𝑛) =  8√ 2
2 + 32 + (2𝑚 + 2𝑛 −

12)√32 + 32 + (2𝑚 + 2𝑛 − 8)√32 + 42 + (2𝑚𝑛 − 5𝑚 − 5𝑛 + 12 )√42 + 42 = 

8√ 13 + (6𝑚 + 6𝑛 − 36)√2 + (10𝑚 + 10𝑛 − 40) + (8𝑚𝑛 − 20𝑚 − 20𝑛 +

48)√2 = 8√ 13 + (8𝑚𝑛 − 20𝑚 − 20𝑛 + 48 + 6𝑚 + 6𝑛 − 36)√2 + (10𝑚 +

10𝑛 − 40) = 8√ 13 + (8𝑚𝑛 − 14𝑚 − 14𝑛 + 12)√2 + (10𝑚 + 10𝑛 − 40). 

𝐸(𝑃𝑚 × 𝑃𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐴2,2
6−0 ∪ 𝐴3,3

(𝑚+𝑛−2)(2𝑚+2𝑛−5)−(2m+2n−12)
∪

𝐴4,4

(𝑚𝑛−2𝑚−2𝑛+4)(𝑚𝑛−2𝑚−2𝑛+3)

2
−(2𝑚𝑛−5𝑚−5𝑛+12)

∪ 𝐴2,3
4(2𝑚+2𝑛−4)−8

∪

𝐴2,4
4(𝑚𝑛−2𝑚−2𝑛+4)−0

∪ 𝐴3,4
(2𝑚+2𝑛−4)(𝑚𝑛−2𝑚−2𝑛+4)−(2m+2n−8)

= 
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𝐴2,2
6 ∪ 𝐴3,3

2𝑚2+2𝑛2+4𝑚𝑛−11𝑚−11𝑛+22 ∪ 𝐴4,4

𝑚2𝑛2−4𝑚2𝑛+4𝑚2−4𝑚𝑛2+11𝑚𝑛−4𝑚+4𝑛2−4𝑛−12
2

∪ 𝐴2,3
8𝑚+8𝑛−24 ∪ 𝐴2,4

4𝑚𝑛−8𝑚−8𝑛+16

∪ 𝐴3,4
2𝑚2𝑛−4𝑚2−12𝑚𝑛+14𝑚+2𝑚𝑛2−4𝑛2+14𝑛−8 

𝐴2,2
6 ∪ 𝐴3,3

2𝑚2+2𝑛2+4𝑚𝑛−11𝑚−11𝑛+22 ∪ 𝐴4,4

𝑚2𝑛2−4𝑚2𝑛+4𝑚2−4𝑚𝑛2+11𝑚𝑛−4𝑚+4𝑛2−4𝑛−12
2

∪ 𝐴2,3
8𝑚+8𝑛−24 ∪ 𝐴2,4

4𝑚𝑛−8𝑚−8𝑛+16

∪ 𝐴3,4
2𝑚2𝑛−4𝑚2−12𝑚𝑛+14𝑚+2𝑚𝑛2−4𝑛2+14𝑛−8 

 

Therefore, 𝑆𝑂(𝑃𝑚 × 𝑃𝑛) =̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   6√ 22 + 22 + (2𝑚2 + 2𝑛2 + 4𝑚𝑛 − 11𝑚 − 11𝑛 +

22)√32 + 32 + (
𝑚2𝑛2−4𝑚2𝑛+4𝑚2−4𝑚𝑛2+11𝑚𝑛−4𝑚+4𝑛2−4𝑛−12

2
 ) √42 + 42 +  (8𝑚 +

8𝑛 − 24)√22 + 32 + (4𝑚𝑛 − 8𝑚 − 8𝑛 + 16)√22 + 42 + (2𝑚2𝑛 − 4𝑚2 −

12𝑚𝑛 + 14𝑚 + 2𝑚𝑛2 − 4𝑛2 + 14𝑛 − 8)√32 + 42 

= (14𝑚2 + 14𝑛2 + 34𝑚𝑛 − 41𝑚 − 41𝑛 + 2𝑚2𝑛2 − 8𝑚2𝑛 − 8𝑚𝑛2 + 54)√2 +

(8𝑚 + 8𝑛 − 24)√13 + (4𝑚𝑛 − 8𝑚 − 8𝑛 + 16)√20 + 5(2𝑚2𝑛 − 4𝑚2 −

12𝑚𝑛 + 14𝑚 + 2𝑚𝑛2 − 4𝑛2 + 14𝑛 − 8); 
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 ختەوپ

 

گرافی  وەکو ینەدەک جۆری گراف هەندێك ئیندێکسکۆ سۆمبۆرسەر لە  ئێمە لێکۆلینەوەۆژەیەدا لەم پر

پاشان   ،گرافی تۆریی بلوریی وگرافی بازنەیی ، گرافی ویل ، گرافی پەیژەیی ، گرافی تۆریی  ،هێلی

یەکسانە   𝑛 کاتێك  ℤ𝑛 زۆرترین زنجیرەی ئایدیالەکانی ئەلقەیی سەر ەخەینە د سەرنج

 𝑝1
𝛼1  𝑝2

𝛼2 … 𝑝𝑘
𝛼𝑘کاتێك 𝑝𝑖 ەوجیاوازن 𝛼𝑖 ∈ ℤ

1 و + ≤  𝑖 ≤ k. لە کۆتایدا ، تەکنیکێک 

زنجیرەی زۆرترین هەندێک گرافی  ئیندێکسکۆۆمبۆر س دۆزینەوەی دەکەین بۆ شکەشێپ

   .ℤ𝑛بۆ ئەلقەکانی  𝑚(ℤ𝑛)ئایدیاڵ

 

 

 الخلاصة

 
الرسام البیانیة لبعض الرسام البیانیة الخاصة مثل  کس ێندیئکۆ سومبور بدراسة موقنفي هذا المشروع 

الرسام البیانیة الدائریة، الرسام البیانیة العجمة ، الرسام البیانیة السلمیة ، الرسام البیانیة الشبكیة  المساریة،

𝑛حیث   ℤ𝑛ثم نركز على السلسلة القصوى للحلقات البیانیة الشبكیة البلوریة ، الرسام  =

𝑝1
𝛼1  𝑝2

𝛼2 … 𝑝𝑘
𝛼𝑘  ,𝑝𝑖   مختلفة ولیةالعدد الأ 𝛼𝑖 ∈ ℤ

1 و    + ≤ 𝑖 ≤ 𝑘  تقنیة  مقدن. وأخیرا ، و

  .ℤ𝑛للحلقات  𝑚(ℤ𝑛)لبعض الرسام البیانیة المثالیة القصوى  کسێندیئکۆ سومبور لأیجاد


