Treatment Machines for External Beam Radiotherapy

Hemn A Rahman, MSc Medical Physics & Clinical Engineering Assistant Lecturer Salahaddin University-Erbil College of Science, Physics Department, Medical Branch, 4th Stage April 5, 2022 Lecture_3

Contents

- Introduction Discovery of x-rays
- How x-ray machine works
- Types of teletherapy machines
- How does Cobalt-60 teletherapy machine works
 - Radioactive sources used
 - The head and the source housing
 - Dose delivery mechanism

Objective

 To understand the basic principles of equipment used for external beam radiotherapy.

Introduction

- The study and use of ionizing radiation in medicine started with three important discoveries:
 - X rays by Wilhelm Roentgen in 1895.
 - Natural radioactivity by Henri Becquerel in 1896.
 - Radium-226 by Pierre and Marie Curie in 1898.

Introduction

- During the first 50 years of radiation medicine the technological progress was aimed mainly towards:
 - Development of analogue imaging techniques.
 - Optimization of image quality with concurrent minimization of dose.
 - Ever increasing energies and beam intensities.
- During the last 2 decades most developments in radiation medicine were related to:
 - Integration of computers in imaging
 - Development of digital imaging techniques
 - Incorporation of computers into therapeutic dose delivery with high energy linear accelerators (linacs).

Treatment machines used for EBRT

- X- ray machine:
 - Superficial x-ray machine: 10 100 kVp
 - Orthovoltage x-ray machine: 100 500 kVp
- Cobalt-60 teletherapy machine (Megavoltage)
- Linear accelerator (linac):
 - Megavoltage x rays: 6 25 MV
 - Electrons: 6 30 MeV

X-ray Machine

X-ray Machine

- Superficial and orthovoltage beams used in radiotherapy are produced by x-ray machines. The main components of a radiotherapy x-ray machine are:
 - 1) X-ray tube
 - 2) Target cooling system
 - 3) Ceiling or floor mount for the x-ray tube
 - 4) Patient support assembly
 - 5) Control console
 - 6) X-ray power generator

X-ray Machine

- The main components of a typical therapy <u>x-ray tube</u> are:
 - Heated filament (cathode)
 - Water or oil cooled target (anode)

Kvp & mAs

Increasing Kvp

Increasing mAs

Superficial x-ray machine

Superficial x-ray machine

- The energy is between 10 Kvp to 100 Kvp
- Treats small skin lesions to the depth of up to 5 mm
- The size of the applicator varies
- Typical SSD is < 30 cm
- Beam quality (HVL) is between 0.5 mm to 8 mm of AL
- Filter are used in the machine to absorb low energy photons which may unnecessarily increase the skin dose.
- The photon beam sometime contaminated with electrons scattered from the applicator.

Superficial x-ray machine

Superficial x-ray machine

Orthovoltage x-ray machine

Orthovoltage x-ray machine

- The energy is between 100 Kvp to 500 Kvp
- Treats small skin lesions and bone metastasis (Ribs) to the depth of up to 20 mm
- Typical SSD is from 30 to 60 cm
- Beam quality (HVL) is between 0.2 mm to 5 mm of Cu
- Sometimes replaces megavoltage machine for palliative treatments

Orthovoltage x-ray machine

Cobalt 60 teletherapy unit

Cobalt-60 production

• Co-59 bombarded by neutrons in nuclear reactors:

```
^{59}_{27}Co + ^{1}_{0}n \rightarrow ^{60}_{27}Co + \gamma
```

Cobalt-60 teletherapy machine

- Cobalt-60 teletherapy unit, developed in Canada in 1950s, was the first truly practical megavoltage therapy machine.
- The important features of a teletherapy source are:
 - 1) Relatively high energy gamma ray emission (about 1 MV)
 - 2) Relatively long half-life (about several years)
 - 3) Relatively high specific activity (of the order of 100 Ci/g)
 - 4) Relatively simple means of production

Radionuclides

- Of the close to 300 natural nuclides and over 3000 artificially produced radionuclides:
 - Only four of them meet the teletherapy source requirements (Co-60, Cs-137, Eu-152, and Ra-226) and only cobalt-60 is actually used in practice.

Radionuclide	Со-б0	Cs-137	Eu-152	Ra-226
Half-life (y)	5.26	30	13.4	1600
Energy (MeV)	1.25, 1.33	0.660	0.6-1.4	0.18-2.2
Specific activity (Ci/g)	1130	80	180	0.988
Means of production	⁵⁹ Co+n in reactor	Fission by-product	¹⁵¹ Eu+n in reactor	Natural ²³⁸ U series

Specific activity comparison

Teletherapy machines

- Treatment machines used for external beam radiotherapy with gamma ray sources are called teletherapy machines.
- They are most often mounted isocentrically with source to axis distance (SAD) of 80 cm or 100 cm.
- The main components of a teletherapy machine are:
 - 1) Radioactive source
 - 2) Source housing, including beam collimator and source movement mechanism.
 - 3) Gantry and stand.
 - 4) Patient support assembly.
 - 5) Machine control console

Co-60 Teletherapy machines

Cobalt-60 teletherapy machine

Cobalt 60 teletherapy machine, Canada

Teletherapy sources – Co-60

- Teletherapy sources are cylinders with height of 2.5 cm and diameter of 1, 1.5, or 2 cm.
 - The smaller is the source diameter, the smaller is the physical beam penumbra and the more expensive is the source.
 - Often a diameter of 1.5 cm is chosen as a compromise between the cost and penumbra.
- Typical source activity: of the order of 5,000 10,000 Ci (185 370 TBq).
- Typical dose rates at 80 cm from source: of the order of 100 200 cGy/min
- Teletherapy source is usually replaced within one half-life after it is installed. Financial considerations often result in longer source usage.

Collimator and penumbra

- Collimators of teletherapy machines provide square and rectangular radiation fields typically ranging from 5 x 5 to 35 x 35 cm² at 80 cm from the source.
- The geometric penumbra resulting from the finite source diameter, may be minimized by using:
 Source + s→
 - Small source diameter
 - Penumbra trimmers as close as possible to the patient's skin (z = 0)

Teletherapy source housing

Teletherapy source housing

- The source head consists of:
 - Steel shell with lead for shielding purposes
 - Mechanism for bringing the source in front of the collimator opening to produce the clinical gamma ray beam.
- Currently, two methods are used for moving the tele-therapy source from the BEAM-OFF into the BEAM-ON position and back:
 - 1. Source on a sliding drawer
 - 2. Source on a rotating cylinder

Teletherapy source housing

 Methods for moving the teletherapy source from the BEAM-OFF into the BEAM-ON position and back:

Teletherapy source housing

Teletherapy source housing

- Both methods (source-on-drawer and source-on-cylinder) incorporate a safety feature in which the beam is terminated automatically in the event of power failure or emergency.
- When the source is in the BEAM-OFF position, a light source appears in the BEAM-ON position above the collimator opening, allowing an optical visualization of the radiation field, as defined by the machine collimator.

Dose delivery mechanism

- The prescribed dose is delivered to the patient with the help of two treatment timers: primary and secondary.
 - The primary timer actually controls the treatment time and turns the beam off upon reaching the prescribed beam-on time.
 - The secondary timer serves as a backup timer in case of the primary timer's failure to turn the beam off.
- The set treatment time should incorporate the shutter correction time to account for the travel time of the source from the BEAM-OFF to the BEAM-ON position at the start of the irradiation and for the reverse travel at the end of irradiation.

Modern Cobalt-60 Unit

Reference

- Radiation Oncology Physics: A Handbook for Teachers and Students by: EB. Podgorsak (Chapter 5, p.123)
- Discovery of x-rays, YouTube link: <u>https://www.youtube.com/watch?v=vYztZlLJ3ds</u>

Any Questions ? Thank you!