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Preface: Number Systems 

 

What is Number Theory? 

When humans first started using numbers, they probably used the counting or 

natural numbers, ℕ, first. These are the numbers in the set ℕ = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, . . . , }. 

What is 5 − 5? We need a new number, call it zero, to mean nothing. Then we get the 

whole numbers, 𝕨 = {𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, . . . , }. Next, come the integers, which include 

0 and the negatives of all the natural numbers. The letter 𝒁 stands for the integers, and 

comes from the German word for number, zahlen. 

Number theory is the study of the set of natural numbers ℕ. We will especially 

want to study the relationships between different sorts of numbers. Since ancient times, 

people have separated the natural numbers into a variety of different types. Here are 

some familiar and not-so-familiar examples: 

Odd    1, 3, 5, 7, 9, 11, ... 

Even    2, 4, 6, 8, 10, ... 

Square   1, 4, 9, 16, 25, 36, ... 

Cube             1, 8, 27, 64, 125, ... 

Prime   2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... 

Composite            4,6,8,9,10,12,14,15,16, ... 

1(modulo 4)  1,5,9,13,17,21,25, .. . 

3 (modulo 4) 3,7,11,15,19,23,27, .. . 

Triangular            1,3,6,10,15,21, ... 
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Perfect   6, 28, 496, ... 

Fibonacci   1, 1, 2, 3, 5, 8, 13, 21, ... 

 

Many of these types of numbers are undoubtedly already known to you. Others 

may not be familiar. The Fibonacci numbers are created by starting with 1 and 1. Then, 

to get the next number in the list, just add the previous two.  

A number is perfect if the sum of all its divisors, other than itself, adds back up to the 

original number. Thus, the numbers dividing 6 are 1, 2, and 3, and  

1 + 2 + 3 = 6. 

Similarly, the divisors of 28 are 1, 2, 4, 7, and 14, and  1 + 2 + 4 + 7 + 14 = 28. 

We will encounter some of these types of numbers in our excursion through the theory 

of numbers. 

Twin Primes In the list of primes it is sometimes true that consecutive odd numbers 

are both prime. We have boxed these twin primes in the following list of primes less 

than 100: 

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 

67 71 73 79 83 89 97           

 

Are there infinitely many twin primes? That is, are there infinitely many prime numbers 

𝒑 such that 𝒑 + 𝟐 is also a prime? At present, no one knows the answer to this question. 

 

Primes of the Form 𝐍𝟐 + 𝟏 If we list the numbers of the form 𝐍𝟐 + 𝟏 taking N = 1, 2, 

3, ... , we find that some of them are prime. Of course, if N is odd, then 𝐍𝟐 + 𝟏 is even, 

so it won't be prime unless 𝐍 = 𝟏. So it's really only interesting to take even values of 

N. We've highlighted the primes in the following list: 
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𝟐𝟐 + 𝟏 = 𝟓,  𝟒𝟐 + 𝟏 = 𝟏𝟕,  𝟔𝟐 + 𝟏 = 𝟑𝟕,  𝟖𝟐 + 𝟏 = 𝟔𝟓 = 𝟓. 𝟏𝟓,  

𝟏𝟎𝟐 + 𝟏 = 𝟏𝟎𝟏,   𝟏𝟐𝟐 + 𝟏 = 𝟏𝟒𝟓 = 𝟓. 𝟐𝟗 ,  𝟏𝟒𝟐 + 𝟏 = 𝟏𝟗𝟕, 

𝟏𝟔𝟐 + 𝟏 = 𝟐𝟓𝟕,   𝟏𝟖𝟐 + 𝟏 = 𝟑𝟐𝟓 = 𝟓𝟐. 𝟏𝟑,  𝟐𝟎𝟐 + 𝟏 = 𝟒𝟎𝟏. 

It looks like there are quite a few prime values, but if you take larger values of N you 

will find that they become much rarer. So we ask whether there are infinitely many 

primes of the form 𝐍𝟐 + 𝟏. Again, no one presently knows the answer to this question.  

Some typical number theoretic questions 

Sums of Squares I. Can the sum of two squares be a square? The answer is clearly 

"YES"; for example 𝟑𝟐 + 𝟒𝟐 = 𝟓𝟐  and 𝟓𝟐 + 𝟏𝟐𝟐 = 𝟏𝟑𝟐 . These are examples of 

Pythagorean triples. 

Sums of Squares II. Which numbers are sums of two squares? It often turns out that 

questions of this sort are easier to answer first for primes, so we ask which (odd) prime 

numbers is a sum of two squares. For example, 

𝟑 = 𝑵𝒐,            𝟓 = 𝟏𝟐 + 𝟐𝟐,      𝟕 = 𝑵𝒐,  𝟏𝟏 = 𝑵𝒐,           𝟏𝟑 = 𝟐𝟐 + 𝟑𝟐, 

𝟏𝟕 = 𝟏𝟐 + 𝟒𝟐,  𝟏𝟗 = 𝑵𝒐,        𝟐𝟑 = 𝑵𝒐, 𝟐𝟗 = 𝟐𝟐 + 𝟓𝟐,       𝟑𝟏 = 𝑵𝒐.  

Do you see a pattern? Possibly not, since this is only a short list, but a longer list leads to 

the conjecture that p is a sum of two squares if it is congruent to 1 modulo 4. In other 

words, p is a sum of two squares if it leaves a remainder of 1 when divided by 4, and it 

is not a sum of two squares if it leaves a remainder of 3. 

Sums of Higher Powers Can the sum of two cubes be a cube? Can the sum of two 

fourth powers be a fourth power? In general, can the sum of two nth powers be an nth 

power? The answer is "NO." This famous problem, called Fermat's Last Theorem, 

states that no three positive integers 𝒂,𝒃,𝒄 can satisfy the equation 𝒂𝒏 + 𝒃𝒏 = 𝒄𝒏 for any 

http://en.wikipedia.org/wiki/Positive_number
http://en.wikipedia.org/wiki/Integer
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integer value of 𝒏 > 𝟐. This theorem was first conjectured by Pierre de Fermat in 

1637, but was not completely solved until 1994 by Andrew Wiles.  

Number Shapes The square numbers are the numbers 1, 4, 9, 16, 25, ... that can be 

arranged in the shape of a square. The triangular numbers are the numbers 1, 3, 6, 10, 

15, ... that can be arranged in the shape of  an equilateral  triangle, this led the ancient 

Greeks to call a number triangular if it is the sum of consecutive integers, beginning 

with 1. 

The pentagonal numbers are the numbers 1, 5 = 1+4, 12 = 1+4+7, 22= 1+4 +7 +10, 35= 

1+4+7+10+13, ... that can be arranged in the shape of a pentagon.  The first few 

triangular, square and pentagonal numbers are illustrated in the following figure. 

 

 

Number Shapes 

 

http://en.wikipedia.org/wiki/Conjectured
http://en.wikipedia.org/wiki/Pierre_de_Fermat
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A natural question to ask is whether there are any triangular numbers that are also 

square numbers (other than 1). The answer is "YES," the smallest example being 

36 = 62 = 1+2 + 3 + 4 + 5 + 6 + 7 + 8. 

We have now seen some of the types of questions that are studied in the Theory of 

Numbers. How does one attempt to answer these questions? 

Exercise  

(1) Prove that a number is triangular if and only if it is of the form 𝒏(𝒏 + 𝟏) 𝟐⁄ , 𝒏 ≥ 𝟏. 

(2) The integer 𝒏 is a triangular number if and only if 𝟖𝒏 + 𝟏 is a perfect square.  

(3) The sum of any two consecutive triangular numbers is a perfect square.  

(4) If 𝑷𝒏 denotes the nth pentagonal number, where 𝑷𝟏 = 𝟏 and 𝑷𝒏 = 𝑷𝒏−𝟏 + (𝟑𝒏 − 𝟐) 

for 𝒏 ≥ 𝟐, then prove that 𝑷𝒏 =
𝒏(𝟑𝒏−𝟏)

𝟐
, 𝒏 ≥ 𝟏. 

(5) Find three examples of triangular numbers that are sums of two other triangular 

numbers. 

1.2 Divisibility and the Division Algorithm 

The notions of divisibility and factorizations are important tools in number theory. 

We now discuss the concept of divisibility and its properties. 

Definition 1. If 𝑎 and 𝑏 are integers such that 𝑎 ≠ 0, then we say " 𝑎 divides 𝑏 " if there 

exists an integer 𝑘 such that 𝑏 = 𝑘𝑎. 

If 𝑎 divides 𝑏, we also say " 𝑎 is a factor of 𝑏 " or " 𝑏 is a multiple of 𝑎 " and we write 

𝑎 ∣ 𝑏. If 𝑎 doesn’t divide 𝑏, we write 𝑎 ∤ 𝑏. For example, 2 ∣ 4 and 7 ∣ 63, while 5 ∤ 26. 

Remarks: 

a. Note that any even integer has the form 2𝑘 for some integer 𝑘, while any odd 

integer has the form 2𝑘 + 1 for some integer 𝑘. Thus 2 ∣ 𝑛 if 𝑛 is even, while 2 ∤

𝑛 if 𝑛 is odd. 

b. ∀𝑎 ∈ ℤ one has that 𝑎 ∣ 0. 
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c. If 𝑏 ∈ ℤ is such that |𝑏| < 𝑎, and 𝑏 ≠ 0, then 𝑎 ∤ 𝑏. 

d. If 𝑎, 𝑏 and 𝑐 are integers such that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐, then 𝑎 ∣ 𝑐. Since 𝑎 ∣ 𝑏 and 𝑏 ∣

𝑐, then there exist integers 𝑘1 and 𝑘2 such that 𝑏 = 𝑘1𝑎 and 𝑐 = 𝑘2𝑏. As a result, 

we have 𝑐 = 𝑘1𝑘2𝑎 and hence 𝑎 ∣ 𝑐. Since 6 ∣ 18 and 18 ∣ 36, then 6 ∣ 36. 

The following theorem states that if an integer divides two other integers, then it divides 

any linear combination of these integers. 

Theorem 1. If 𝑎, 𝑏, 𝑐, 𝑚 and 𝑛 are integers, and if 𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏, then 𝑐 ∣ (𝑚𝑎 + 𝑛𝑏). 

Proof. Since 𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏, then by definition there exists 𝑘1 and 𝑘2 such that 𝑎 = 𝑘1𝑐 

and 𝑏 = 𝑘2𝑐. Thus 

𝑚𝑎 + 𝑛𝑏 = 𝑚𝑘1𝑐 + 𝑛𝑘2𝑐 = 𝑐(𝑚𝑘1 + 𝑛𝑘2), 

and hence 𝑐 ∣ (𝑚𝑎 + 𝑛𝑏). 

The above theorem can be generalized to any finite linear combination as follows. 

Theorem 2. If 𝑎|𝑏1, 𝑎|𝑏2, … , 𝑎 ∣ 𝑏𝑛, then 𝑎 ∣ ∑  𝑛
𝑗=1 𝑘𝑗𝑏𝑗. 

Proof. For any set of integers 𝑘1, ⋯ , 𝑘𝑛 ∈ ℤ. It would be a nice exercise to prove the 

generalization by induction. 

1.2.1 The Division Algorithm 

Well-ordering principle states that, every non-empty set 𝑺  of nonnegative 

integers contains a least element; that is, there is some integer 𝑎 in 𝑺 such that 𝒂 ≤ 𝒃, 

for all 𝒃′s belonging to 𝑺. 

The following result is called the Division Algorithm, and it plays an important role in 

the theory of numbers. 
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Theorem 3. (The Division Algorithm) If 𝑎 and 𝑏 are integers such that 𝑏 > 0, then 

there exist unique integers 𝑞 and 𝑟 such that 𝑎 = 𝑏𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑏. 

Proof. Consider the set 𝐴 = {𝑎 − 𝑏𝑘 ≥ 0 ∣ 𝑘 ∈ ℤ}. Note that 𝐴 is nonempty since for 

𝑘 < 𝑎/𝑏 we have 𝑎 − 𝑏𝑘 > 0. By the well ordering principle, 𝐴 has a least element 𝑟 =

𝑎 − 𝑏𝑞 for some 𝑞. Notice that 𝑟 ≥ 0 by construction. Now, if 𝑟 ≥ 𝑏 then (since  𝑏 > 0 

) 

𝑟 > 𝑟 − 𝑏 = 𝑎 − 𝑏𝑞 − 𝑏 = 𝑎 − 𝑏(𝑞 + 1) ≥ 0. 

This leads to a contradiction since 𝑟 is assumed to be the least positive integer of the 

form 𝑟 = 𝑎 − 𝑏𝑞. As a result, we have 0 ≤ 𝑟 < 𝑏. 

We will show that 𝑞  and 𝑟  are unique. Suppose that 𝑎 = 𝑏𝑞1 + 𝑟1  and 𝑎 = 𝑏𝑞2 + 𝑟2 

with 0 ≤ 𝑟1 < 𝑏 and 0 ≤ 𝑟2 < 𝑏. Then we have 

𝑏(𝑞1 − 𝑞2) + (𝑟1 − 𝑟2) = 0. 

As a result, we have 𝑏(𝑞1 − 𝑞2) = 𝑟2 − 𝑟1 

Thus, we get that 𝑏 ∣ (𝑟2 − 𝑟1). 

And since −max(𝑟1, 𝑟2) ≤ |𝑟2 − 𝑟1| ≤ max(𝑟1, 𝑟2) , and 𝑏 > max(𝑟1, 𝑟2) , then 𝑟2 − 𝑟1 

must be 0, i.e., 𝑟2 = 𝑟1. And since 𝑏𝑞1 + 𝑟1 = 𝑏𝑞2 + 𝑟2, we also get that 𝑞1 = 𝑞2. This 

proves uniqueness. 

We call 𝒂 the dividend and 𝒃 the divisor in the above theorem. The integers  𝑞 and 

𝑟 are called, respectively, the quotient and remainder in the division of  𝑎 by 𝑏. 

 

Example. If 𝑎 = 71 and 𝑏 = 6, then 71 = 6 ⋅ 11 + 5. Here 𝑞 = 11 and 𝑟 = 5. 
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Exercises 1 

1. Show that 5|25,19|38 and 2 ∣ 98. 

2. Use the division algorithm to find the quotient and the remainder when 76 is 

divided by 13. 

3. Use the division algorithm to find the quotient and the remainder when -100 is 

divided by 13. 

4. Show that if 𝑎, 𝑏, 𝑐 and 𝑑 are integers with 𝑎 and 𝑐 nonzero, such that 𝑎 ∣ 𝑏 and 𝑐 ∣

𝑑, then 𝑎𝑐 ∣ 𝑏𝑑. 

5. Show that if 𝑎 and 𝑏 are positive integers and 𝑎 ∣ 𝑏, then 𝑎 ≤ 𝑏. 

6. Prove that the sum of two even integers is even, the sum of two odd integers is 

even and the sum of an even integer and an odd integer is odd. 

7. Show that the product of two even integers is even, the product of two odd 

integers is odd and the product of an even integer and an odd integer is even. 

8. Show that if 𝑚 is an integer then 3 divides 𝑚3 − 𝑚. 

9. Show that the square of every odd integer is of the form 8𝑚 + 1. 

10.  Show that the square of any integer is of the form 3𝑚 or 3𝑚 + 1 but not of the 

form 3𝑚 + 2. 

11.  Show that if 𝑎𝑐 ∣ 𝑏𝑐, then 𝑎 ∣ 𝑏. 

12.  Show that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎 then 𝑎 = ±𝑏. 
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1.2.2 Representations of Integers in Different Bases 

In this section, we show how any positive integer can be written in terms of any 

positive base integer expansion in a unique way. Normally we use decimal notation to 

represent integers, we will show how to convert an integer from decimal notation into 

any other positive base integer notation and vice versa. Using the decimal notation in 

daily life is simply better because we have ten fingers which facilitates all the 

mathematical operations. 

Notation. An integer 𝑎 written in base 𝑏 expansion is denoted by (𝑎)𝑏. 

Theorem 4. Let 𝑏 be a positive integer with 𝑏 > 1. Then any positive integer 𝑚 can be 

written uniquely as 

𝑚 = 𝑎𝑙𝑏𝑙 + 𝑎𝑙−1𝑏𝑙−1 + ⋯ + 𝑎1𝑏 + 𝑎0, 

where 𝑙 is a positive integer, 0 ≤ 𝑎𝑗 < 𝑏 for 𝑗 = 0,1, … , 𝑙 and 𝑎𝑙 ≠ 0. 

Note that base 2 representation of integers is called binary representation. Binary 

representation plays a crucial role in computers. Arithmetic operations can be carried out 

on integers with any positive integer base but it will not be addressed in this course. We 

now present examples of how to convert from decimal integer representation to any 

other base representation and vice versa. 

Example 2. To find the expansion of 214 base 3, we do the following 

214  =  3 ⋅ 71 + 1
71  = 3 ⋅ 23 + 2
23  = 3 ⋅ 7 + 2

7  = 3 ⋅ 2 + 1
2  =  3 ⋅ 0 + 2

 

As a result, to obtain a base 3 expansion of 214, we take the remainders of divisions and 

we get that (214)10 = (21221)3. 
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To find the base 10 expansion, i.e., the decimal expansion, of (364)7 : 

We do the following: 4 ⋅ 70 + 6 ⋅ 71 + 3 ⋅ 72 = 4 + 42 + 147 = 193. 

In some cases where base 𝑏 > 10  expansion is needed, we add some characters to 

represent numbers greater than 9. It is known to use the alphabetic letters to denote 

integers greater than 9 in base b expansion for 𝑏 > 10. For example, (46𝐵𝐶29)13 where 

𝐴 = 10, 𝐵 = 11, 𝐶 = 12. 

To convert from one base to the other, the simplest way is to go through base 10 and 

then convert to the other base. There are methods that simplify conversion from one base 

to the other but it will not be addressed in this book. 

Exercises 3. 

1. Convert (7482)10 to base 6 notation. 

2. Convert (98156)10 to base 8 notation. 

3. Convert (101011101)2  to decimal notation. 

4. Convert (𝐴𝐵6𝐶7𝐷)16 to decimal notation. 

5. Convert (9𝐴0𝐵)16 to binary notation. 

1.2.3 The Greatest Common Divisor 

In this section we define the greatest common divisor (gcd) of two integers and 

discuss its properties. We also prove that the greatest common divisor of two integers is 

a linear combination of these integers. 

Two integers 𝑎 and 𝑏, not both 0, can have only finitely many divisors, and thus can 

have only finitely many common divisors. In this section, we are interested in the 
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greatest common divisor of 𝑎 and 𝑏. Note that the divisors of 𝑎 and that of |𝑎| are the 

same. 

Definition 4. The greatest common divisor of two integers 𝑎 and 𝑏 is the greatest integer 

that divides both 𝑎 and 𝑏. 

We denote the greatest common divisor of two integers 𝑎  and 𝑏  by (𝑎, 𝑏). We also 

define (0,0) = 0. 

Example 4. Note that the greatest common divisor of 24 and 18 is 6. In other words, 

(24,18) = 6. 

There are couples of integers (e.g., 3 and 4, etc...) whose greatest common divisor is 1 so 

we call such integers relatively prime integers. 

Definition 5. Two integers 𝑎 and 𝑏 are relatively prime if (𝑎, 𝑏) = 1. 

 

Example 5. The greatest common divisor of 9 and 16 is 1, thus they are relatively prime. 

Note that every integer has positive and negative divisors. If 𝑎 is a positive divisor of 𝑚, 

then −𝑎 is also a divisor of 𝑚. Therefore, by our definition of the greatest common 

divisor, we can see that (𝑎, 𝑏) = (|𝑎|, |𝑏|). 

We now present a theorem about the greatest common divisor of two integers. The 

theorem states that if we divide two integers by their greatest common divisor, then the 

outcome is a couple of integers that are relatively prime. 
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Theorem 5. If (𝑎, 𝑏) = 𝑑 then (𝑎/𝑑, 𝑏/𝑑) = 1. 

Proof. We will show that 𝑎/𝑑 and 𝑏/𝑑 have no common positive divisors other than 1 . 

Assume that 𝑘 is a positive common divisor such that 𝑘 ∣ 𝑎/𝑑 and 𝑘 ∣ 𝑏/𝑑. As a result, 

there are two positive integers 𝑚 and 𝑛 such that 

𝑎/𝑑 = 𝑘𝑚 and 𝑏/𝑑 = 𝑘𝑛 

Thus, we get that 

𝑎 = 𝑘𝑚𝑑 and 𝑏 = 𝑘𝑛𝑑. 

Hence 𝑘𝑑  is a common divisor of both 𝑎  and 𝑏 . Also, 𝑘𝑑 ≥ 𝑑 . However, 𝑑  is the 

greatest common divisor of 𝑎 and 𝑏. As a result, we get that 𝑘 = 1. 

The next theorem shows that the greatest common divisor of two integers does not 

change when we add a multiple of one of the two integers to the other. 

Theorem 6. Let 𝑎, 𝑏 and 𝑐 be integers. Then (𝑎, 𝑏) = (𝑎 + 𝑐𝑏, 𝑏). 

Proof. We will show that every divisor of 𝑎 and 𝑏 is also a divisor of 𝑎 + 𝑐𝑏 and 𝑏 and 

vise versa. Hence they have exactly the same divisors. So we get that the greatest 

common divisor of 𝑎 and 𝑏 will also be the greatest common divisor of 𝑎 + 𝑐𝑏 and 𝑏. 

Let 𝑘 be a common divisor of 𝑎 and 𝑏. By Theorem 2, 𝑘 ∣ (𝑎 + 𝑐𝑏) and hence 𝑘 is a 

divisor of 𝑎 + 𝑐𝑏. Now assume that 𝑙 is a common divisor of 𝑎 + 𝑐𝑏 and 𝑏. Also by 

Theorem 2 we have , 

𝑙 ∣ ((𝑎 + 𝑐𝑏) − 𝑐𝑏) = 𝑎. 

As a result, 𝑙 is a common divisor of 𝑎 and 𝑏 and the result follows. 

Example 6. Notice that (4,14) = (4,14 − 3 ⋅ 4) = (4,2) = 2. 
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We now present a theorem which proves that the greatest common divisor of two 

integers can be written as a linear combination of the two integers. 

Theorem 7. The greatest common divisor of two integers 𝑎 and 𝑏, not both 0 is the least 

positive integer 𝒅 such that 𝑚𝑎 + 𝑛𝑏 = 𝑑 for some integers 𝑚 and 𝑛. 

Proof. Assume without loss of generality that 𝑎 and 𝑏 are positive integers. Consider the 

set of all positive integer linear combinations of 𝑎 and 𝑏. This set is non empty since 

𝑎 = 1 ⋅ 𝑎 + 0 ⋅ 𝑏  and 𝑏 = 0 ⋅ 𝑎 + 1 ⋅ 𝑏  are both in this set. Thus, this set has a least 

element 𝑑 by the well-ordering principle. Thus 𝑑 = 𝑚𝑎 + 𝑛𝑏 for some integers 𝑚 and 

𝑛. We have to prove that 𝑑 divides both 𝑎 and 𝑏 and that it is the greatest divisor of 𝑎 

and 𝑏. By the division algorithm, we have 

𝑎 = 𝑑𝑞 + 𝑟,  0 ≤ 𝑟 < 𝑑. 

Thus, we have 

𝑟 = 𝑎 − 𝑑𝑞 = 𝑎 − 𝑞(𝑚𝑎 + 𝑛𝑏) = (1 − 𝑞𝑚)𝑎 − 𝑞𝑛𝑏. 

We then have that 𝑟 is a linear combination of 𝑎 and 𝑏. Since 0 ≤ 𝑟 < 𝑑 and 𝑑 is the 

least positive integer which is a linear combination of 𝑎 and 𝑏, then 𝑟 = 0 and 𝑎 = 𝑑𝑞. 

Hence 𝑑 ∣ 𝑎. Similarly, 𝑑 ∣ 𝑏. Now notice that if there is a divisor 𝑐 that divides both 𝑎 

and 𝑏. Then 𝑐 divides any linear combination of 𝑎 and 𝑏 by Theorem 4. Hence 𝑐 ∣ 𝑑. 

This proves that any common divisor of 𝑎 and 𝑏 divides 𝑑. Hence 𝑐 ≤ 𝑑, and 𝑑 is the 

greatest divisor. 

As a result, we conclude that if (𝑎, 𝑏) = 1 then there exist integers 𝑚 and 𝑛 such that 

𝑚𝑎 + 𝑛𝑏 = 1. 

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be integers, not all 0. The greatest common divisor of these integers is 

the largest integer that divides all of the integers in the set. The greatest common divisor 

of 𝑎1, 𝑎2, … , 𝑎𝑛 is denoted by (𝑎1, 𝑎2, … , 𝑎𝑛). 
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Definition 7. The integers 𝑎1, 𝑎2, … , 𝑎𝑛  are said to be mutually relatively prime if 

(𝑎1, 𝑎2, … , 𝑎𝑛) = 1. 

Example 7. The integers 3,6,7 are mutually relatively prime since (3,6,7) = 1 although 

(3,6) = 3. 

The integers 𝑎1, 𝑎2, … , 𝑎𝑛 are called pairwise prime if for each 𝑖 ≠ 𝑗, we have (𝑎𝑖 , 𝑎𝑗) =

1. 

Example 8. The integers 3,14,25 are pairwise relatively prime. Notice also that these 

integers are mutually relatively prime. 

Notice that if 𝑎1, 𝑎2, … , 𝑎𝑛 are pairwise relatively prime then they are mutually relatively 

prime. 

Exercises 4 

1. Find the greatest common divisor of 15 and 35. 

2. Find the greatest common divisor of 100 and 104. 

3. Find the greatest common divisor of -30 and 95. 

4. Let 𝑚 be a positive integer. Find the greatest common divisor of 𝑚 and 𝑚 + 1. 

5. Let 𝑚 be a positive integer, find the greatest common divisor of 𝑚 and 𝑚 + 2. 

6. Show that if 𝑚 and 𝑛 are integers such that (𝑚, 𝑛) = 1, then (m + n, m − n) = 1 or 2 . 

7. Show that if 𝑚 is a positive integer, then 3𝑚 + 2 and 5𝑚 + 3 are relatively prime. 

8. Show that if 𝑎 and 𝑏 are relatively prime integers, then (𝑎 + 2𝑏, 2𝑎 + 𝑏) = 1 or 3. 

9. Show that if 𝑎1, 𝑎2, … , 𝑎𝑛 are integers that are not all 0 and 𝑐 is a positive integer, 

then (𝑐𝑎1, 𝑐𝑎2, … , 𝑐𝑎𝑛) = 𝑐(𝑎1, 𝑎2, … 𝑎𝑛). 



CHAPTER One Number Systems  

 

      
15 

10. Write a program (in Python) to compute the greatest common divisor gcd (𝒂, 𝒃) of 

two integers 𝒂 and 𝒃. Your program should work even if one of a orb is zero. 

1.2.4 The Euclidean Algorithm 

In this section we describe a systematic method that determines the greatest 

common divisor of two integers. This method is called the Euclidean algorithm. 

Lemma 8. If 𝑎 and 𝑏 are two integers and 𝑎 = 𝑏𝑞 + 𝑟 where also 𝑞 and 𝑟 are integers, 

then (𝑎, 𝑏) = (𝑟, 𝑏). 

Note that by Theorem 6, we have (𝑏𝑞 + 𝑟, 𝑏) = (𝑏, 𝑟). 

The above lemma will lead to a more general version of it. We now present the 

Euclidean algorithm in its general form. It states that the greatest common divisor of two 

integers is the last non zero remainder of the successive division. 

Theorem 9. Let 𝑎 = 𝑟0 and 𝑏 = 𝑟1 be two positive integers where 𝑎 ≥ 𝑏. If we apply 

the division algorithm successively to obtain that 

𝑟𝑗 = 𝑟𝑗+1𝑞𝑗+1 + 𝑟𝑗+2 where 0 ≤ 𝑟𝑗+2 < 𝑟𝑗+1 

for all 𝑗 = 0,1, … , 𝑛 − 2 and 𝑟𝑛+1 = 0,  then (𝑎, 𝑏) = 𝑟𝑛. 

By applying the division algorithm, we see that 

𝑟0 = 𝑟1𝑞1 + 𝑟2 0 ≤ 𝑟2 < 𝑟1,
𝑟1 = 𝑟2𝑞2 + 𝑟3 0 ≤ 𝑟3 < 𝑟2,

⋅
⋅
⋅

𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 + 𝑟𝑛 0 ≤ 𝑟𝑛 < 𝑟𝑛−1,

𝑟𝑛−1 = 𝑟𝑛𝑞𝑛.
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Notice that, we will have a remainder of 0 eventually since all the remainders are 

integers and every remainder in the next step is less than the remainder in the previous 

one. By Lemma 1, we see that 

(𝑎, 𝑏) = (𝑏, 𝑟2) = (𝑟2, 𝑟3) = ⋯ = (𝑟𝑛, 0) = 𝑟𝑛. 

We will find the greatest common divisor of 4147 and 10672: 

Note that 

10672 = 4147 ⋅ 2 + 2378,
4147 = 2378 ⋅ 1 + 1769,
2378 = 1769 ⋅ 1 + 609,
1769 = 609 ⋅ 2 + 551,

609 = 551 ⋅ 1 + 58,
551 = 58 ⋅ 9 + 29,

58 = 29 ⋅ 2,

 

Hence (4147,10672) = 29. 

We now use the steps in the Euclidean algorithm to write the greatest common 

divisor of two integers as a linear combination of the two integers. The following 

example will actually determine the variables 𝑚 and 𝑛 described in Theorem 7. The 

following algorithm can be described by a general form but for the sake of simplicity of 

expressions we will present an example that shows the steps for obtaining the greatest 

common divisor of two integers as a linear combination of the two integers. 

 

 

 

 

 



CHAPTER One Number Systems  

 

      
17 

Example 9. Express 29 as a linear combination of 4147 and 10672: 

29 = 551 − 9 ⋅ 58,
= 551 − 9(609 − 551 ⋅ 1),
= 10.551 − 9.609,
= 10 ⋅ (1769 − 609 ⋅ 2) − 9 ⋅ 609,
= 10 ⋅ 1769 − 29 ⋅ 609,
= 10 ⋅ 1769 − 29(2378 − 1769 ⋅ 1),
= 39 ⋅ 1769 − 29 ⋅ 2378,
= 39(4147 − 2378 ⋅ 1) − 29 ⋅ 2378,
= 39 ⋅ 4147 − 68 ⋅ 2378,
= 39 ⋅ 4147 − 68(10672 − 4147 ⋅ 2),
= 175 ⋅ 4147 − 68 ⋅ 10672,

 

As a result, we see that 29 = 175 ⋅ 4147 − 68 ⋅ 10672. 

Exercises 5. 

1. Use the Euclidean algorithm to find the greatest common divisor of 412 and 32 

and express it in terms of the two integers. 

2. Use the Euclidean algorithm to find the greatest common divisor of 780 and 150 

and express it in terms of the two integers. 

3. Find the greatest common divisor of 70,98,108 

4. Let 𝑎 and 𝑏 be two positive even integers. Prove that (𝑎, 𝑏) = 2(𝑎/2, 𝑏/2). 

5. Show that if 𝑎  and 𝑏  are positive integers where 𝑎  is even and 𝑏  is odd, then 

(𝑎, 𝑏) = (𝑎/2, 𝑏). 

Exercises 6. 

1. Find an upper bound for the number of steps in the Euclidean algorithm that is 

used to find the greatest common divisor of 38472 and 957748838. 
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2. Find an upper bound for the number of steps in the Euclidean algorithm that is 

used to find the greatest common divisor of 15 and 75. Verify your result by using 

the Euclidean algorithm to find the greatest common divisor of the two integers. 

 

1.2.5 Greatest Common Divisor by Geometry 

The greatest common divisor of a pair of integers can be found by an interesting 

geometric method. Suppose the two integers whose G.C.D. is to be found are a and b. 

First, draw a rectangle of length a and breadth b. From this rectangle mark off the largest 

possible square. If a is greater than b, this will be a square of side b. After marking off 

the square, the portion which remains is a rectangle with sides b and  a – b. Again mark 

off the largest possible square from this rectangle. Continue this process till you obtain a 

square instead of a rectangle. The measure of the side of this square is equal to the 

G.C.D. of the original pair of numbers. 

This method is based on the fact that if a and b are both divisible by a number, 

then a – b will also be divisible by the same number. The same principle is applied 

recursively to obtain the G.C.D. 
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Example Let 𝒂 = 𝟏𝟐𝟎 and 𝒃 = 𝟒𝟓 and consider the following figure 

 

Therefore, 𝒈𝒄𝒅(𝟏𝟐𝟎, 𝟒𝟓) = 𝟏𝟓.  


