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The laws of nature are but the mathematical 

thoughts of God 

Euclid, Euclid of Alexandria 325-365 B.C. 
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Prime Numbers 

The history of prime numbers dates back to ancient civilizations. Here's a brief 

overview: 

(1) Ancient Civilizations: The concept of prime numbers has been known since ancient 

times. Mathematicians in civilizations like Ancient Egypt and Ancient Greece studied 

prime numbers. The Greek mathematician Euclid, around 300 BCE, famously proved 

that there are infinitely many prime numbers in his work "Elements." 

 

(2) Number Theory Development: Prime numbers became a central topic in number 

theory, a branch of mathematics dedicated to the study of integers. Mathematicians like 

Pierre de Fermat and Leonhard Euler made significant contributions to prime number 

theory in the 17th and 18th centuries. 

 

(3) The Prime Number Theorem: In the 19th century, mathematicians like Carl Friedrich 

Gauss and Bernhard Riemann made substantial progress in understanding the 

distribution of prime numbers. This led to the development of the Prime Number 

Theorem, which describes the asymptotic distribution of prime numbers. 

 

(4) Modern Research: Prime numbers continue to be a topic of active research. They 

play a crucial role in various fields, including cryptography (RSA algorithm), computer 

science (algorithms like the Sieve of Eratosthenes), and number theory (the Riemann 

Hypothesis, an unsolved conjecture about prime numbers). 

 

(5) Prime Number Records: Over the years, mathematicians and computers have 

discovered and verified increasingly large prime numbers. Notable examples include 

Mersenne primes and the largest known prime numbers, which are often expressed with 

millions of digits. 
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Prime numbers remain a fascinating and essential part of mathematics with a rich history 

of study and discovery. 

Prime numbers, the building blocks of integers, have been studied extensively over the 

centuries. Being able to present an integer uniquely as product of primes is the main 

reason behind the whole theory of numbers and behind the interesting results in this 

theory. Many interesting theorems, applications and conjectures have been formulated 

based on the properties of prime numbers. 

In this chapter, we present methods to determine whether a number is prime or 

composite using an ancient Greek method invented by Eratosthenes. We also show that 

there are infinitely many prime numbers. We then proceed to show that every integer 

can be written uniquely as a product of primes. 

We introduce as well the concept of Diophantine equations where integer solutions from 

given equations are determined using the greatest common divisor. We then mention the 

Prime Number theorem without giving a proof of course in addition to other conjectures 

and major results related to prime numbers. 

1.1. The Sieve of Eratosthenes 

Definition 1 A prime is an integer greater than 1 that is only divisible by 1 and itself.  

Example 15. The integers 2, 3, 5, 7, 11 are prime integers. Note that any integer greater 

than 1 that is not prime is said to be a composite number. 

We now present the sieve of Eratosthenes. The Sieve of Eratosthenes is an ancient 

method of finding prime numbers up to a specified integer. This method was invented by 

the ancient Greek mathematician Eratosthenes. There are several other methods used to 

determine whether a number is prime or composite. We first present a lemma that will 

be needed in the proof of several theorems. 
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Lemma 1 Every integer greater than one has a prime divisor. 

Proof. We present the proof of this Lemma by contradiction. Suppose that there is an 

integer greater than one that has no prime divisors. Since the set of integers with 

elements greater than one with no prime divisors is nonempty, then by the well ordering 

principle there is a least positive integer 𝑛 greater than one that has no prime divisors. 

Thus 𝑛 is composite since 𝑛 divides 𝑛. Hence 

𝑛 = 𝑎𝑏 with 1 < 𝑎 < n, and  1 < 𝑏 < 𝑛. 

Notice that 𝑎 < 𝑛 and as a result since 𝑛 is minimal, 𝑎 must have a prime divisor which 

will also be a divisor of 𝑛. 

 

Theorem 1 If 𝑛 is a composite integer, then 𝑛 has a prime factor not exceeding √𝑛 . 

Proof. Since 𝑛 is composite, then 𝑛 = 𝑎𝑏, where 𝑎 and 𝑏 are integers with 1 < 𝑎 ≤ 𝑏 <

𝑛. Suppose now that 𝑎 > √𝑛, then √𝑛 < 𝑎 ≤ 𝑏, 

and as a result 𝑎𝑏 > √𝑛√𝑛 = 𝑛. 

Therefore 𝑎 ≤ √𝑛. Also, by Lemma 1, 𝒂 must have a prime divisor 𝑎1 which is also a 

prime divisor of 𝑛 and thus this divisor is less than 𝑎1 ≤ 𝑎 ≤ √𝑛. 

 

We now present the algorithm of the Sieve of Eratosthenes that is used to determine 

prime numbers up to a given integer. 
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1.2. The Algorithm of the Sieve of Eratosthenes 

1. Write a list of numbers from 2 to the largest number 𝑛 you want to test. Note that 

every composite integer less than 𝑛 must have a prime factor less than √𝑛. Hence 

you need to strike off the multiples of the primes that are less than √𝑛 

2. Strike off all multiples of 2 greater than 2 from the list. The first remaining 

number in the list is a prime number. 

3. Strike off all multiples of this number from the list. 

4. Repeat the above steps until no more multiples are found of the prime integers 

that are less than √𝑛. 

1.3. Exercises 

1. Use the Sieve of Eratosthenes to find all primes less than 100. 

2. Use the Sieve of Eratosthenes to find all primes less than 200. 

3. Show that no integer of the form 𝑎3 + 1 is a prime except for 2 = 13 + 1. 

4. Show that if 2𝑛 − 1 is prime, then 𝑛 is prime. 

Hint: Use the identity (𝑎𝑘𝑙 − 1) = (𝑎𝑘 − 1)(𝑎𝑘(𝑙−1) + 𝑎𝑘(𝑙−2) + ⋯ + 𝑎𝑘 + 1). 

 

1.4. The infinitude of Primes 

We now show that there are infinitely many primes. There are several ways to prove this 

result. An alternative proof to the one presented here is given as an exercise. The proof 

we will provide was presented by Euclid in his book the Elements. 
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Theorem 2 (Euclid) There are infinitely many primes. 

Proof We present the proof by contradiction. Suppose there are finitely many primes 

𝑝1, 𝑝2, … , 𝑝𝑛, where 𝑛 is a positive integer. Consider the integer 𝑄 such that 

𝑄 = 𝑝1𝑝2 … 𝑝𝑛 + 1 

By Lemma 1, 𝑄 has at least a prime divisor, say 𝑞. If we prove that 𝑞 is not one of the 

primes listed then we obtain a contradiction. Suppose now that 𝑞 = 𝑝𝑖  for 1 ≤ 𝑖 ≤ 𝑛. 

Thus 𝑞 divides 𝑝1𝑝2 … 𝑝𝑛  and as a result 𝑞 divides 𝑄 − 𝑝1𝑝2 … 𝑝𝑛 . Therefore 𝑞 divides 

1. But this is impossible since there is no prime that divides 1 and as a result 𝑞 is not one 

of the primes listed. 

The following theorem discusses the large gaps between primes. It simply states that 

there are arbitrary large gaps in the series of primes and that the primes are spaced 

irregularly.  

Theorem 3 Given any positive integer 𝑛, there exists 𝑛 consecutive composite integers. 

Proof Consider the sequence of integers 

(𝑛 + 1)! + 2, (𝑛 + 1)! + 3, … , (𝑛 + 1)! + 𝑛, (𝑛 + 1)! + 𝑛 + 1 

Notice that every integer in the above sequence is composite because 𝑘 divides (𝑛 + 1) ! 

+𝑘 if 2 ≤ 𝑘 ≤ 𝑛 + 1 by 4. 

1.5. Exercises 

1. Show that the integer 𝑄𝑛 = 𝑛! + 1, where 𝑛 is a positive integer, has a prime 

divisor greater than 𝑛. Conclude that there are infinitely many primes. Notice that 

this exercise is another proof of the infinitude of primes. 

2. Find the smallest five consecutive composite integers. 
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3. Find one million consecutive composite integers. 

4. Show that there are no prime triplets other than 3,5,7. 

1.6. The Fundamental Theorem of Arithmetic 

The Fundamental Theorem of Arithmetic is one of the most important results in this 

chapter. It simply says that every positive integer can be written uniquely as a product of 

primes. The unique factorization is needed to establish much of what comes later. There 

are systems where unique factorization fails to hold. Many of these examples come from 

algebraic number theory. We can actually list an easy example where unique 

factorization fails. 

Consider the class 𝐶  of positive even integers. Note that 𝐶  is closed under 

multiplication, which means that the product of any two elements in 𝐶 is again in 𝐶. 

Suppose now that the only number we know are the members of 𝐶. Then we have 12 =

2.6 is composite where as 14 is prime since it is not the product of two numbers in 𝐶. 

Now notice that 60 = 2.30 = 6.10 and thus the factorization is not unique. 

We now give examples of the unique factorization of integers. 

Example 199 = 3 ⋅ 3 ⋅ 11 = 32 ⋅ 11,  32 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 25 

 

1.6.1. The Fundamental Theorem of Arithmetic 

To prove the fundamental theorem of arithmetic, we need to prove some lemmas about 

divisibility. 
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Lemma 2 If 𝑎, 𝑏, 𝑐 are positive integers such that (𝑎, 𝑏) = 1 and 𝑎 ∣ 𝑏𝑐, then 𝑎 ∣ 𝑐. 

Proof Since (𝑎, 𝑏) = 1 , then there exists integers 𝑥, 𝑦  such that 𝑎𝑥 + 𝑏𝑦 = 1 . As a 

result, 𝑐𝑎𝑥 + 𝑐𝑏𝑦 = 𝑐. Notice that since 𝑎 ∣ 𝑏𝑐, then by Theorem 4, 𝑎 divides 𝑐𝑎𝑥 + 𝑐𝑏𝑦 

and hence 𝑎 divides 𝑐. 

We can generalize the above lemma as such: If (𝑎, 𝑛𝑖) = 1 for every 𝑖 = 1,2, ⋯ , 𝑛 and 

𝑎 ∣ 𝑛1𝑛2 ⋯ 𝑛𝑘+1, then 𝑎 ∣ 𝑛𝑘+1. We next prove a case of this generalization and use this 

to prove the fundamental theorem of arithmetic. 

Lemma 3 If 𝑝 divides 𝑛1𝑛2𝑛3 … 𝑛𝑘 , where 𝑝 is a prime and 𝑛𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑘, 

then there is an integer 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 such that 𝑝 ∣ 𝑛𝑗.  

Proof We present the proof of this result by induction. For 𝑘 = 1, the result is trivial. 

Assume now that the result is true for 𝑘. Consider 𝑛1𝑛2 … 𝑛𝑘+1 that is divisible by 𝑝. 

Notice that either 

(𝑝, 𝑛1𝑛2 … 𝑛𝑘) = 1 or (𝑝, 𝑛1𝑛2 … 𝑛𝑘) = 𝑝 

Now if (𝑝, 𝑛1𝑛2 … 𝑛𝑘) = 1 then by Lemma 4, 𝑝 ∣ 𝑛𝑘+1. Now if 𝑝 ∣ 𝑛1𝑛2 … 𝑛𝑘, then by 

the induction hypothesis, there exists an integer 𝑖 such that 𝑝 ∣ 𝑛𝑖. 

We now state the fundamental theorem of arithmetic and present the proof using Lemma 

5. 

Theorem 4 (The Fundamental Theorem of Arithmetic) Every positive integer different 

from 1 can be written uniquely as a product of primes. 

Proof If 𝑛 is a prime integer, then 𝑛 itself stands as a product of primes with a single 

factor. If 𝑛 is composite, we use proof by contradiction. Suppose now that there is some 

positive integer that cannot be written as the product of primes. Let 𝑛 be the smallest 

such integer. Let 𝑛 = 𝑎𝑏 , with 1 < 𝑎 < 𝑛  and 1 < 𝑏 < 𝑛 . As a result 𝑎  and 𝑏  are 
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products of primes since both integers are less than 𝑛. As a result, 𝑛 = 𝑎𝑏 is a product of 

primes, contradicting that it is not. This shows that every integer can be written as 

product of primes. We now prove that the representation of a positive integer as a 

product of primes is unique.  

Suppose now that there is an integer 𝑛 with two different factorizations say 

𝑛 = 𝑝1𝑝2 … 𝑝𝑠 = 𝑞1𝑞2 … 𝑞𝑟 

where 𝑝1, 𝑝2, … 𝑝𝑠 , 𝑞1, 𝑞2, … 𝑞𝑟 are primes, 

𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ ⋯ ≤ 𝑝𝑠 and 𝑞1 ≤ 𝑞2 ≤ 𝑞3 ≤ ⋯ ≤ 𝑞𝑟 

Cancel out all common primes from the factorizations above to get 

𝑝𝑗1
𝑝𝑗2

… 𝑝𝑗𝑢
= 𝑞𝑖1

𝑞𝑖2
… 𝑞𝑖𝑣

 

Thus all the primes on the left side are different from the primes on the right side. Since 

any 𝑝𝑗𝑙
(𝑙 = 1, ⋯ , 𝑛) divides 𝑝𝑗1

𝑝𝑗2
… 𝑝𝑗𝑢

, then 𝑝𝑗𝑙
 must divide 𝑞𝑖1

𝑞𝑖2
… 𝑞𝑖𝑣

, and hence 

by Lemma 3, 𝑝𝑗𝑙
 must divide 𝑞𝑖𝑘

 for some 1 ≤ 𝑘 ≤ 𝑣 which is impossible. Hence the 

representation is unique. 

 

Remark 1 The unique representation of a positive integer 𝑛 as a product of primes can 

be written in several ways. We will present the most common representations. For 

example,  𝒏 = 𝒑𝟏
𝜶𝟏𝒑𝟐

𝜶𝟐 … 𝒑𝒌
𝜶𝒌 = ∏ 𝒑𝒊

𝜶𝒊𝒌
𝒊=𝟏 , where 𝒑𝟏 < 𝒑𝟐 < ⋯ < 𝒑𝒌 are primes and the 

𝜶𝒊 are positive integers 

This representation is called the canonical representation of 𝒏 , or the standard 

form of 𝒏. 
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Example 2 The prime factorization of 120 is given by 120 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 5 = 23 ⋅ 3 ⋅

5. Notice that 120 is written in the two ways described in 1. 

We know describe in general how prime factorization can be used to determine the 

greatest common divisor of two integers.  Let 𝑎 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑛
𝑎𝑛  and 𝑏 = 𝑝1

𝑏1𝑝2
𝑏2 … 𝑝𝑛

𝑏𝑛, 

where we exclude in these expansions any prime 𝑝 with power 0 in both 𝑎 and 𝑏 (and 

thus some of the powers above may be 0 in one expansion but not the other). Of course, 

if one prime 𝑝𝑖 appears in 𝑎 but not in 𝑏, then 𝑎𝑖 ≠ 0 while 𝑏𝑖 = 0, and vise versa. Then 

the greatest common divisor is given by 

(𝑎, 𝑏) = 𝑝1
min(𝑎1,𝑏2)

𝑝2
min(𝑎2,𝑏2)

… 𝑝𝑛
min(𝑎𝑛,𝑏𝑛)

 

where min(𝑛, 𝑚) is the minimum of 𝑚 and 𝑛. 

The following lemma is a consequence of the Fundamental Theorem of Arithmetic. 

Lemma 5 Let 𝑎 and 𝑏 be relatively prime positive integers. Then if 𝑑 divides ab, there 

exists 𝑑1 and 𝑑2 such that 𝑑 = 𝑑1𝑑2 where 𝑑1 is a divisor of a and 𝑑2 is a divisor of 𝑏. 

Conversely, if 𝑑1 and 𝑑2 are positive divisors of 𝑎 and 𝑏, respectively, then 𝑑 = 𝑑1𝑑2 is 

a positive divisor of 𝑎𝑏. 

Proof Let 𝑑1 = (𝑎, 𝑑) and 𝑑2 = (𝑏, 𝑑). Since (𝑎, 𝑏) = 1 and writing 𝑎 and 𝑏 in terms of 

their prime decomposition, it is clear that 𝑑 = 𝑑1𝑑2 and (𝑑1, 𝑑2) = 1. Note that every 

prime power in the factorization of 𝑑 must appear in either 𝑑1 or 𝑑2. Also the prime 

powers in the factorization of 𝑑 that are prime powers dividing a must appear in 𝑑1 and 

that prime powers in the factorization of 𝑑 that are prime powers dividing 𝑏 must appear 

in 𝑑2. Now conversely, let 𝑑1 and 𝑑2 be positive divisors of 𝑎 and 𝑏, respectively.  

Then 𝑑 = 𝑑1𝑑2  is a divisor of 𝑎𝑏. 
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1.6.2. More on the Infinitude of Primes 

There are also other theorems that discuss the infinitude of primes in a given arithmetic 

progression. The most famous theorem about primes in arithmetic progression is 

Dirichlet's theorem 

Theorem 6 (Dirichlet's Theorem) Given an arithmetic progression of terms 𝑎𝑛 + 𝑏, for 

𝑛 = 1,2, …, the series contains an infinite number of primes if 𝑎 and 𝑏 are relatively 

prime, 

This result had been conjectured by Gauss but was first proved by Dirichlet. Dirichlet 

proved this theorem using complex analysis, but the proof is so challenging.  

 

1.7. Exercises 

1. Find the prime factorization of 32, of 800 and of 289. 

2. Find the prime factorization of 221122 and of 9 !!. 

3. Show that all the powers of in the prime factorization of an integer 𝑎 are even if 

and only if a is a perfect square. 

4. Show that there are infinitely many primes of the form 6𝑛 + 5. 
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2. Least Common Multiple 

We can use prime factorization to find the smallest common multiple of two positive 

integers. 

Definition 2 The least common multiple (l.c.m.) of two positive integers is the smallest 

positive integer that is a multiple of both. 

We denote the least common multiple of two positive integers 𝑎 an 𝑏 by ⟨𝑎, 𝑏⟩. 

Example 3 ⟨2,8⟩ = 8, ⟨5,8⟩ = 40 

We can figure out ⟨𝑎, 𝑏⟩ once we have the prime factorization of 𝑎 and 𝑏. To do that, let 

𝑎 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑚
𝑎𝑛 and 𝑏 = 𝑝1

𝑏1𝑝2
𝑏2 … 𝑝𝑚

𝑏𝑛 , 

where (as above) we exclude any prime with 0 power in both 𝑎 and 𝑏. Then ⟨𝑎, 𝑏⟩ =

𝑝1
max(𝑎1,𝑏1)

𝑝2
max(𝑎2,𝑏2)

 … 𝑝𝑚
max(𝑎𝑛,𝑏𝑛)

, where max(𝑎, 𝑏)  is the maximum of the two 

integers 𝑎 and 𝑏. We now prove a theorem that relates the least common multiple of two 

positive integers to their greatest common divisor. In some books, this theorem is 

adopted as the definition of the least common multiple. To prove the theorem we present 

the following lemma 

Lemma 7 If 𝑎 and 𝑏 are two real numbers, then 

min(𝑎, 𝑏) + max(𝑎, 𝑏) = 𝑎 + 𝑏 

Proof Assume without loss of generality that 𝑎 ≥ 𝑏. Then 

max(𝑎, 𝑏) = 𝑎 and min(𝑎, 𝑏) = 𝑏, 

and the result follows. 
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Theorem 8 Let 𝑎 and 𝑏 be two positive integers. Then 

1. ⟨𝑎, 𝑏⟩ ≥ 0;  

2. 2. ⟨𝑎, 𝑏⟩ = 𝑎𝑏/(𝑎, 𝑏); 

3. If 𝑎 ∣ 𝑚 and 𝑏 ∣ 𝑚, then ⟨𝑎, 𝑏⟩ ∣ 𝑚 

 Proof The proof of part 1 follows from the definition. 

As for part 2, let 𝑎 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑚
𝑎𝑛, and 𝑏 = 𝑝1

𝑏1𝑝2
𝑏2 … 𝑝𝑚

𝑏𝑛 

Notice that since 

(𝑎, 𝑏) = 𝑝1
min(𝑎1,𝑏2)

𝑝2
min(𝑎2,𝑏2)

… 𝑝𝑛
min(𝑎𝑛,𝑏𝑛)

 

and 

⟨𝑎, 𝑏⟩ = 𝑝1
max(𝑎1,𝑏1)

𝑝2
max(𝑎2,𝑏2)

… 𝑝𝑚
max(𝑎𝑛,𝑏𝑛)

 

then 

⟨𝑎, 𝑏⟩(𝑎, 𝑏)  = 𝑝1
max(𝑎1,𝑏1)

𝑝2
max(𝑎2,𝑏2)

… 𝑝𝑚
max(𝑎𝑛,𝑏𝑛)

𝑝1
min(𝑎1,𝑏2)

𝑝2
min(𝑎2,𝑏2)

… 𝑝𝑛
min(𝑎𝑛,𝑏𝑛)

 = 𝑝1
max(𝑎1,𝑏1)+min(𝑎1,𝑏1)

𝑝2
max(𝑎2,𝑏2)+min(𝑎2,𝑏2)

… 𝑝𝑚
max(𝑎𝑛,𝑏𝑛)+min(𝑎𝑛,𝑏𝑛)

 = 𝑝1
𝑎1+𝑏1𝑝2

𝑎2+𝑏2 … 𝑝𝑛
(𝑎𝑛+𝑏𝑛)

 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑚
𝑎𝑛𝑝1

𝑏1𝑝2
𝑏2 … 𝑝𝑚

𝑏𝑛 = 𝑎𝑏

 

Note also that we used Lemma 8 in the above equations.  

For part 3, it would be a nice exercise to show that 𝑎𝑏/(𝑎, 𝑏) ∣ 𝑚 (Exercise 6 ).  

Thus ⟨𝑎, 𝑏⟩ ∣ 𝑚. 
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2.1. Exercises 

1. Find the least common multiple of 14 and 15. 

2. Find the least common multiple of 240 and 610. 

3. Find the least common multiple and the greatest common divisor of 25567211 

and 23587213 

4. Show that every common multiple of two positive integers 𝑎 and 𝑏 is divisible by 

the least common multiple of 𝑎 and 𝑏. 

5. Show that if 𝑎 and 𝑏 are positive integers then the greatest common divisor of 𝑎 

and 𝑏 divides their least common multiple. When are the least common multiple 

and the greatest common divisor equal to each other. 

6. Show that 𝑎𝑏/(𝑎, 𝑏) ∣ 𝑚 where 𝑚 =< 𝑎, 𝑏 >. 

3. Linear Diophantine Equations 

In this section, we discuss equations in two variables called Diophantine equations. 

These kinds of equations require integer solutions. The goal of this section is to present 

the set of points that determine the solution to this kind of equations. Geometrically 

speaking, the Diophantine equation represents the equation of a straight line. We need to 

find the points whose coordinates are integers and through which the straight line passes. 

Definition 3 A linear equation of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑎, 𝑏 and 𝑐 are integers is 

known as a linear Diophantine equation. 

Note that a solution to the linear Diophantine equation (𝑥0, 𝑦0) requires 𝑥0 and 𝑦0 to be 

integers. The following theorem describes the case in which the diophantine equation 

has a solution and what are the solutions of such equations. 
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Theorem 9 The equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has integer solutions if and only if 𝑑 ∣ 𝑐 where 

𝑑 = (𝑎, 𝑏). If the equation has one solution 𝑥 = 𝑥0, 𝑦 = 𝑦0 , then there are infinitely 

many solutions and the solutions are given by 

𝑥 = 𝑥0 + (𝑏/𝑑)𝑡 𝑦 = 𝑦0 − (𝑎/𝑑)𝑡,  where 𝑡 is an arbitrary integer. 

Proof Suppose that the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has integer solution 𝑥 and 𝑦. Thus since 

𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏, then  𝑑 ∣ (𝑎𝑥 + 𝑏𝑦) = 𝑐. 

Now we have to prove that if 𝑑 ∣ 𝑐, then the equation has integral solution. Assume that 

𝑑 ∣ 𝑐. By theorem 9, there exist integers 𝑚 and 𝑛 such that 𝑑 = 𝑎𝑚 + 𝑏𝑛. 

And also there exists integer 𝑘 such that  𝑐 = 𝑑𝑘. 

Now since 𝑐 = 𝑎𝑥 + 𝑏𝑦, we have  𝑐 = 𝑑𝑘 = (𝑚𝑎 + 𝑛𝑏)𝑘 = 𝑎(𝑘𝑚) + 𝑏(𝑛𝑘). 

Hence a solution for the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 is  𝑥0 = 𝑘𝑚 and 𝑦0 = 𝑘𝑛.  

What is left to prove is that we have infinitely many solutions.  

Let  𝑥 = 𝑥0 + (𝑏/𝑑)𝑡 and 𝑦 = 𝑦0 − (𝑎/𝑑)𝑡. 

We have to prove now that 𝑥 and 𝑦 are solutions for all integers 𝑡.   

Notice that  𝑎𝑥 + 𝑏𝑦 = 𝑎(𝑥0 + (𝑏/𝑑)𝑡) + 𝑏(𝑦0 − (𝑎/𝑑)𝑡) = 𝑎𝑥0 + 𝑏𝑦0 = 𝑐. 

We now show that every solution for the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 is of the form 

𝑥 = 𝑥0 + (𝑏/𝑑) tand 𝑦 = 𝑦0 − (𝑎/𝑑)𝑡. 

Notice that since 𝑎𝑥0 + 𝑏𝑦0 = 𝑐, we have 

𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) = 0. 

Hence  𝑎(𝑥 − 𝑥0) = 𝑏(𝑦 − 𝑦0). 
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Dividing both sides by 𝑑, we get  𝑎/𝑑(𝑥 − 𝑥0) = 𝑏/𝑑(𝑦 − 𝑦0). 

Notice that (𝑎/𝑑, 𝑏/𝑑) = 1 and thus we get by Lemma 4 that 𝑎/𝑑 ∣ 𝑦 − 𝑦0.  

As a result, there exists an integer 𝑡 such that 𝑦 = 𝑦0 − (𝑎/𝑑)𝑡. Now substituting 𝑦 − 𝑦0 

in the equation  𝑎(𝑥 − 𝑥0) = 𝑏(𝑦 − 𝑦0). 

We get 𝑥 = 𝑥0 + (𝑏/𝑑)𝑡. 

Example 4 The equation 3𝑥 + 6𝑦 = 7 has no integer solution because (3,6) = 3 does 

not divide 7. 

Example 5 There are infinitely many integer solutions for the equation 4𝑥 + 6𝑦 = 8 

because (4,6) = 2 ∣ 8. We use the Euclidean algorithm to determine 𝑚  and 𝑛  where 

4𝑚 + 6𝑛 = 2 . It turns out that 4(−1) + 6(1) = 2 . And also 8 = 2.4 . Thus 𝑥0 =

4. (−1) = −4 and 𝑦0 = 4.1 = 4 is a particular solution. The solutions are given by 

𝑥 = −4 + 3𝑡 𝑦 = 4 − 2𝑡 

for all integers 𝑡. 

3.1. Exercises 

1. Either find all solutions or prove that there are no solutions for the diophantine 

equation 21𝑥 + 7𝑦 = 147 

2. Either find all solutions or prove that there are no solutions for the diophantine 

equation 2𝑥 + 13𝑦 = 31 

3. Either find all solutions or prove that there are no solutions for the diophantine 

equation 2𝑥 + 14𝑦 = 17. 4. A grocer orders apples and bananas at a total cost of 

$8.4. If the apples cost 25 cents each and the bananas 5 cents each, how many of 

each type of fruit did he order. 
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4. The Greatest Integer Function [𝑥] 

Definition 4 The function [𝑥] represents the largest integer not exceeding 𝑥. In other 

words, for real 𝑥, [𝑥] is the unique integer such that 

𝑥 − 1 < [𝑥] ≤ 𝑥 < [𝑥] + 1. 

We also define ((𝑥)) to be the fractional part of 𝑥. In other words ((𝑥)) = 𝑥 − [𝑥] 

We now list some properties of [𝑥] that will be used in later or in more advanced courses 

in number theory. 

1. [𝑥 + 𝑛] = [𝑥] + 𝑛, if 𝑛 is an integer. 

2. [𝑥] + [𝑦] ≤ [𝑥 + 𝑦] 

3. [𝑥] + [−𝑥] is 0 if 𝑥 is an integer and -1 otherwise. 

4. The number of integers 𝑚 for which 𝑥 < 𝑚 ≤ 𝑦 is [𝑦] − [𝑥]. 5. The number of 

multiples of 𝑚 which do not exceed 𝑥 is [𝑥/𝑚]. 

Using the definition of [𝑥], it will be easy to see that the above properties are direct 

consequences of the definition. 

5. Conjectures involving prime numbers 

We have proved that there are infinitely many primes. We have also proved that there 

are arbitrary large gaps between primes. Several other theorems were proved concerning 

prime numbers. Many great mathematicians approached problems that are related to 

primes. There are still many open problems of which we will mention some. 
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Conjecture 1 (Twin Prime Conjecture) There are infinitely many pairs primes 𝑝 and 𝑝 + 2. 

Conjecture 2 (Goldbach's Conjecture) Every even positive integer greater than 2 can be 

written as the sum of two primes. 

Conjecture 3 (The 𝑛2 + 1 Conjecture) There are infinitely many primes of the form 

𝑛2 + 1, where 𝑛 is a positive integer. 

Conjecture 4 (Polignac Conjecture) For every even number 2𝑛 are there infinitely many 

pairs of consecutive primes which differ by 2𝑛. 

Conjecture 5 (Opperman Conjecture) Is there always a prime between 𝑛2 and (𝑛 + 1)2? 


