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CHAPTER 

Three 

Mathematics is the most beautiful and most 

powerful creation of the human spirit 

Johann Carl Friedrich Gauss, a German(1777 –1855). 
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1. Congruences 

A Congruence is nothing more than a statement about divisibility. The theory of 

congruences was introduced and developed by Carl Friedreich Gauss at the beginning of 

the nineteenth century. Gauss often referred to as the "Prince of Mathematicians", He 

introduced many of the basic concepts and notations used in the theory of congruences, 

such as modular arithmetic and the   symbol, and he established the field's terminology. 

Moreover, he contributed to the basic ideas of congruences and proved several theorems 

related to this theory. We start by introducing congruences and their properties. We 

proceed to prove theorems about the residue system in connection with the Euler  -

function. We then present solutions to linear congruences which will serve as an 

introduction to the Chinese remainder theorem. We present finally important congruence 

theorems derived by Wilson, Fermat and Euler. 

1.1. Introduction to Congruences 

Congruences have a wide range of applications in number theory and mathematics as a 

whole. They are crucial for solving diophantine equations, understanding the properties 

of prime numbers, and exploring the divisibility of integers. Additionally, congruences 

play a vital role in areas such as cryptography, computer science, and algebraic number 

theory. 

Definition 1 Let   be a positive integer. We say that   is congruent to   modulo   if 

        where   and   are integers, i.e. if        where    . 

If   is congruent to   modulo  , we write           .  

Example               .  

Similarly               which means every odd number is congruent to 1 modulo 

2. 
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There are many common properties between equations and congruences. Some 

properties are listed in the following theorem. 

Theorem 1 Let       and   denote integers. Let   be a positive integers. Then: 

1. If           , then           . 

2. If           , and           , then           . 

3. If           , then               . 

4. If           , then               . 

5. If           , then             . 

6. If           , then              , for    . 

7. If            and            then                 . 

8. If            and            then                 . 

9. If            and            then             .  

Proof.  

(1) If           , then        . Thus there exists integer   such that     

  , this implies           and thus        . Consequently   

        . 

(2) Since           , then        . Also,           , then        . As 

a result, there exit two integers   and   such that        and       , 

which imply that            giving that           . 

(3)  Since           , then        . So if we add and subtract   we get 

               , and as a result               . 
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(4) Since          , then         so we can subtract and add   and we get 

               , and as a result              . 

(5) If          , then        . Thus there exists integer   such that     

   and as a result            .  

Thus            and hence             . 

(6) If          , then        . Thus there exists integer   such that     

   and as a result            . 

Thus           , and hence              . 

Example 1 Because            then           . 

Because             and           . Notice that           . 

Because             , then                       . 

Because             , then                       . 

Because            , then                        . 

Because             , then                             . 

Because             and            , then              

         . 

Because             and            , then             

        . 

Because             and            , then                 

         . 

We now present a theorem that will show one difference between equations and 

congruences. In equations, if we divide both sides of the equation by a nonzero number, 
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equality holds. While in congruences, it is not necessarily true. In other words, dividing 

both sides of the congruence by the same integer doesn't preserve the congruence. 

Theorem 2 If       and   are integers such that             and    

         , then         
 

 
 , if         and                     

        . 

Proof. For part 1, if             , then                   

Hence there exists   such that          .  

Dividing both sides by  , we get                   . Since            , it 

follows that          . Hence             . 

Part 2 follows immediately from Part 1.  

 

Example             . Since         then           . 

The following theorem combines several congruences of two numbers with different 

moduli. 

Theorem 3 If                                      ,  

where                are integers and            are positive, then 

       ⟨         ⟩ . 

2. Exercises 

1. Determine whether 3 and 99 are congruent modulo 7 or not. 

2. Show that if   is an odd integer, then            
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3. Show that if       and   are integers such that   and   are positive,     and 

          , then           . 

4. Show that if             for          , where   is a positive integer and 

      are integers for          , then     
         

           

5. For which   does the expression                     holds. 

3. Residue Systems 

Suppose   is a positive integer. Given two integers   and  , we see that by the division 

algorithm that        where      . We call   the least nonnegative residue of 

a modulo  . As a result, we see that any integer is congruent to one of the integers 

            modulo  . 

Definition 2 A complete residue system modulo   is a set of integers such that every 

integer is congruent modulo   to exactly one integer of the set. 

The easiest complete residue system modulo   is the set of integers            . 

Every integer is congruent to one of these integers modulo  . 

Example 3 The set of integers             form a complete residue system modulo 5. 

Another complete residue system modulo 5 could be 6, 7, 8, 9, 10. 

Definition 3 A reduced residue system modulo   is a set of integers    such that 

         for all   and             if    . 

Notice that, a reduced residue system modulo   can be obtained by deleting all the 

elements of the complete residue system set that are not relatively prime to  . 

Example 4 The set of integers       is a reduced residue system modulo 6 . 
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The following lemma will help to determine a complete residue system modulo any 

positive integer  . 

Lemma 1 A set of   incongruent integers modulo   forms a complete residue system 

modulo  .  

Theorem 4 If            is a complete residue system modulo  , and if   is a 

positive integer with        , then 

                    

is another complete residue system modulo   for any integer  . 

4. Euler’s Phi- Function 

Leonhard Euler (1707–1783) was born in Basel, 

Switzerland. At the age of 13 he enrolled at 

the University of Basel, and in 1723, received his 

Master of Philosophy with a dissertation that 

compared the philosophies of Descartes and Newton. 

At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who 

quickly discovered his new pupil's incredible talent for mathematics.  

He was a pioneering Swiss mathematician and physicist. He made important discoveries 

in fields as diverse as infinitesimal calculus and graph theory. He also introduced much 

of the modern mathematical terminology and notation, particularly for mathematical 

analysis, such as the notion of a mathematical function. He is also renowned for his 

work in mechanics, fluid dynamics, optics, astronomy, and music theory. 

Euler is considered to be the pre-eminent mathematician of the 18th century and one of 

the greatest mathematicians to have ever lived. He is also one of the most prolific 

mathematicians; his collected works fill 60–80 quarto volumes. 

http://en.wikipedia.org/wiki/Basel
http://en.wikipedia.org/wiki/University_of_Basel
http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Infinitesimal_calculus
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Mathematical_notation
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Astronomy
http://en.wikipedia.org/wiki/Music_theory
http://en.wikipedia.org/wiki/Quarto_(text)
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Definition For    , let      denote the number of positive integers not exceeding    

that are relatively prime to  . The function      is called Euler's phi-function. 

As an illustration of the definition, we find that        ; for, among the 

positive integers that do not exceed 30, there are eight that are relatively prime to 30; 

specifically,   1, 7, 11, 13, 17, 19, 23, 29. 

Similarly, for the first few positive integers, we may check that 

  1 2 3 4 5 6 7 8 9 10 

     1 1 2 2 4 2 6 4 6 4 

Notice that if   is a prime number then every integer less than   is relatively prime to  . 

So for prime numbers we have the formula  

         if and only if   is prime. 

Now we can say that the number of elements in a reduced residue system modulo   is 

    . 

Theorem 5 If               is a reduced residue system modulo   and        , 

then                  is a reduced residue system modulo  . 

5. Exercises 

1. Give a reduced residue system modulo 12 . 

2. Give a complete residue system modulo 13 consisting only of odd integers. 

Find      and       . 

Theorem (Gauss) For any positive integer  , 

          . 
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Example A simple example of what we have just said is provided by 

    .  

These contain        ,       ,        and        integers respectively. 

Therefore 

                                 . 

Theorem The function   is a multiplicative function, i.e., if           , then 

                . 

Theorem Let   be prime and    , then 

 (  )            (  
 

 
)           . 

Proof The only numbers between 1 and    that are not relatively prime to    are the 

ones that are divisible by  , and they are of the form 

               . There are 
  

 
      of these. So we have that 

 (  )         .  

Example We have 

                   and                         . 

Theorem If the integer     has the prime factorization     
    

     
   where 

           are distinct primes, then  

      (  
 

  
) (  

 

  
) (  

 

  
). 

Proof Since            are distinct primes, then    (  
    

 

  
)   , for    . 

Hence, by the multiplicative formula we have 
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Then we use the power formula to get 

     (  
     

    
)(  

     
    

) (  
     

    
), 

or,       (  
 

  
) (  

 

  
) (  

 

  
). 

Example We have  

                      (  
 

 
) (  

 

 
) (  

 

 
)     . 

Exercise Find all values of   that solve each of the following equations. 

(1)      
 

 
,  (2)      

 

 
,    (3)      

 

 
. 

5.1. Linear Congruences 

Because congruences are analogous to equations, it is natural to ask about solutions of 

linear equations. In this section, we will be discussing linear congruences of one variable 

and their solutions. We start by defining linear congruences. Definition 16. A 

congruence of the form            where   is an unknown integer is called a linear 

congruence in one variable. 

It is important to know that if    is a solution for a linear congruence, then all integers    

such that              are solutions of the linear congruence. Notice also that 

            is equivalent to a linear Diophantine equation i.e. there exists   such 

that        . We now prove theorems about the solutions of linear congruences. 

Theorem 6 Let     and   be integers such that     and let        . If   does not 

divide  , then the congruence             has no solutions. If    , then 

            

has exactly   incongruent solutions modulo  . 
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Proof. As we mentioned earlier,             is equivalent to        . By 

Theorem 19 on Diophantine equations, we know that if   does not divide  , then the 

equation,         has no solutions. Notice also that if    , then there are 

infinitely many solutions whose variable   is given by 

            

Thus the above values of   are solutions of the congruence           . Now we 

have to determine the number of incongruent solutions that we have. Suppose that two 

solutions are congruent, i.e. 

                              

Thus we get 

                      

Now notice that             and thus             . 

Thus we get a set of incongruent solutions given by            , where   is taken 

modulo c. 

Remark 1 Notice that if          , then there is a unique solution modulo   for 

the equation           . 

Example 6 Let us find all the solutions of the congruence            . Notice that 

        and     . Thus there are three incongruent solutions modulo 6. We use the 

Euclidean algorithm to find the solution of the equation          as described in 

chapter 2.  

As a result, we get     . Thus the three incongruent solutions are given by  

           , for        . 
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Hence,              ,                 and                . 

As we mentioned earlier in Remark 2 , the congruence            has a unique 

solution if        . This will allow us to talk about modular inverses.  

Definition 5 A solution for the congruence            for         is called the 

modular inverse of a modulo  . We denote such a solution by  ‾. 

Example 7 The modular inverse of 7 modulo 48 is 7 . Notice that a solution for     

         is           . 

Example 8 Solve the linear congruence                  

Because              and   surely divides   , then we have exactly six solutions, 

which are incongruent modulo 4. We see that, one solution 

is found to be      (Check). 

The six solutions are as folows 

    (  
 ⁄ )               ,                

Or,                            . 

Example 9 Solve the linear congruence                 

First we shall find gcd(42, 13). 

42=3(13)+3 

13=4(3)+1 

3=3(1)+0 

Thus, gcd(42, 13)= 1. Therefor the equation has a unique solution. 

Next, we reverse the steps to find the solution to the given equation. 

3=42-3(13) 

1=13-4(3) 
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  =13-4(42)+12(13) 

  =13(13)-4(42) 

Therefore, the solution is      . Or, the (multiplicative) inverse of      modulo 

   is                . 

6. Exercises 

1. Find all solutions of           . 

2. Find all solutions of           . 

3. Find an inverse modulo 13 of 2 and of 11. 

4. Show that if  ‾ is the inverse of   modulo   and  ‾ is the inverse of   modulo  , 

then  ‾ ‾ is the inverse of    modulo  . 

6.1. The Chinese Remainder Theorem 

In this section, we discuss the solution of a system of congruences having different 

moduli. An example of this kind of systems is the following; find a number that leaves a 

remainder of 1 when divided by 2, a remainder of 2 when divided by three and a 

remainder of 3 when divided by 5. This kind of question can be translated into the 

language of congruences. As a result, in this chapter, we present a systematic way of 

solving this system of congruences. 

The Chinese Remainder Theorem (CRT) has ancient roots, dating back to ancient China 

around the 3rd century. Sunzi Suanjing, a Chinese mathematical text, introduced a 

method resembling CRT. However, the modern formulation is credited to the Chinese 

mathematician Qin Jiushao in the 13th century. The CRT gained prominence in the West 

through translations of Chinese mathematical works in the 17th century. It has since 
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become a fundamental concept in number theory and modular arithmetic, with 

applications in cryptography and computer science. 

Theorem 7 (Chinese Remainder Theorem) If            are pairwise relatively 

prime positive integers, then the system of linear congruences 

            ,             , …,             , 

has a unique solution modulo           given by  

 ̃                        , 

in which    
 

  
  and   is the unique solution to the congruence 

              , for          . 

We now present an example that will show how the Chinese remainder theorem is used 

to determine the solution of a given system of congruences. 

Example 8 Solve the system of linear congruences 

          ,           ,           . 

We have           . Also 

                                     

So we have to solve              ,              , and             . 

Thus            . 

In the same way, we find that                             

As a result, we get  
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Exercises 

1. Find an integer that leaves a remainder of 2 when divided by either 3 or 5 , but 

that is divisible by 4 . 

2. Find all integers that leave a remainder of 4 when divided by 11 and leaves a 

remainder of 3 when divided by 17 . 

3. Find all integers that leave a remainder of 1 when divided by 2 , a remainder of 2 

when divided by 3 and a remainder of 3 when divided by 5 . 

7.1. Theorems of Fermat, Euler, and Wilson 

In this section we present three applications of congruences. The first theorem is 

Wilson's theorem which states that          is divisible by  , for   prime. Next, we 

present Fermat's theorem, also known as Fermat's little theorem which states that    and 

  have the same remainders when divided by   where    . Finally we present Euler's 

theorem which is a generalization of Fermat's theorem and it states that for any positive 

integer   that is relatively prime to an integer                 where   is Euler's 

 -function. We start by proving a theorem about the inverse of integers modulo primes. 

Theorem 8 Let   be a prime. A positive integer   is its own inverse modulo   if and 

only if   divides     or   divides    .  

Proof. Suppose that   is its own inverse. Thus 

             

Hence, from the definition of congruence we have        .  

As a result,                     

We get that           or            . 
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Conversely, suppose that 

                          

Thus 

            

Theorem 9 (Wilson's Theorem)     is a prime, then 

                 . (If   is a prime number, then   divides         .)  

Proof When    , the congruence holds. Suppose that   is an odd prime. We know 

that every number  in the set             has an inverse          .  

The only numbers which are equal to their inverses are   and    . The other     

numbers in the range can be paired with their inverses, so that the product of each pair is 

congruent to          . Now, multiplying all these numbers together gives 

                                                  . 

Theorem 10 If   is a positive integer with     such that 

                 , then   is prime. 

Proof. Suppose that   has a proper divisor    and that 

                  

That is        where        and       . Thus    is a divisor of        . 

Also, since 

             

we get 
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As a result, by Theorem 4, we get that 

                      

which gives that     . This is a contradiction and hence   is prime. 

Theorem 11 (Euler's Theorem) If   is a positive integer and   is an integer such that 

       1 , then               . 

Example 9 Note that               . Also,                     . 

An immediate consequence of Euler's Theorem is: 

Corollary 1 (Fermat's Theorem) If   is a prime and   is a positive integer with    , 

then              . 

We now present a couple of theorems that are direct consequences of Fermat's theorem. 

The first states Fermat's theorem in a different way. It says that the remainder of    

when divided by   is the same as the remainder of   when divided by  . The other 

theorem determines the inverse of an integer a modulo   where    . 

Theorem 12 If   is a prime number and   is a positive integer, then             

Proof. If    , by Fermat's theorem we know that                

Thus, we get            . 

Now if    , we have 
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Theorem 13 If   is a prime number and   is an integer such that    , then      is the 

inverse of a modulo  . 

Proof. If    , then Fermat's theorem says that              . 

Hence                 

As a result,      is the inverse of   modulo  . 

8. Exercises 

1. Show that       is divisible by 11 . 

2. What is the remainder when      ! is divided by 31 ? 

3. What is the remainder when      is divided by 7 ? 

4. Show that if   is an odd prime, then                  . 

5. Find a reduced residue system modulo   , where   is a positive integer. 

6. Show that if               is a reduced residue system modulo  , where   is a 

positive integer with    , then                       . 

7. Show that if   is an integer such that   is not divisible by 3 or such that   is 

divisible by 9 , then             . 


