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Abstract 
 

      In this work we study Root Systems and their applications. First we write 

basic definitions and results about vector spaces and inner product that we need 

in our work. Then we study simple Lie algebras and their root systems. At the 

end, we study the classification of irreducible root systems of semi simple Lie 

algebras by using Dynkin Diagrams and Cartan Matrices. 
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   Introduction 

 

    Linear algebra has in recent years become an essential part of the 

mathematical background required by mathematicians and mathematics 

teachers, engineers, computer scientists, physicists, economists, and statisticians, 

among others. This requirement reflects the importance and wide applications of 

the subject matter. Vector spaces play a key role in Lie theory and Lie groups.  

Lie theory has its roots in the work of Sophus Lie, who studied certain 

transformation groups that are now called Lie groups. His work led to the 

discovery of Lie algebras. By now, both Lie groups and Lie algebras have 

become essential to many parts of mathematics and theoretical physics.  

      A root system in mathematics is a configuration of vectors in a Euclidean 

space that meets specific geometrical requirements. The theory of Lie groups 

and Lie algebras, particularly the classification and representation theory of 

semisimple Lie algebras, both depend on the idea. Since Lie groups and Lie 

algebras have grown in significance in many areas of mathematics over the past 

century, the seeming specialness of root systems conceals the breadth of their 

applications. Additionally, the Dynkin diagram classification technique for root 

systems appears in areas of mathematics that don't directly relate to Lie theory. 

(such as singularity theory). In the context of spectral graph theory, root systems 

are also significant in and of themselves [1]. 

       In this work we study root systems and their applications. This work 

consists of three chapters and is organized as follows. In chapter one we give 

basic definitions and results about vector spaces and algebras that we need in 

our work. In Chapter two we study inner product space and Lie algebras.               

At the last chapter, we study simple Lie algebras and their root systems. 

Furthermore, we study the classification of irreducible root systems of semi 

simple Lie algebras by using Dynkin Diagrams and Cartan Matrices. 
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Chapter One 

Preliminary and Background 

 

    In this chapter we state basic definitions and results about ring and vector 

spaces that we need in our work.  We gave many examples about these algebraic 

concepts. 

Definition 1.1[8]: 

 A non-empty set 𝐺 that is closed under a given operation '.' is called a group if 

the following axioms are satisfied. 

1. If a, b, c ∈ 𝐺 then 𝑎(𝑏𝑐)  =  (𝑎𝑏) 𝑐. 

2. There are exists an element 𝑒 in 𝐺 such that  

(a) For any element a in 𝐺, 𝑒𝑎 =  𝑎𝑒 =  𝑎 . 

(b) For any element 𝑎 ∈ 𝐺 there exists an element a-1 in G such that 

 𝑎−1𝑎 =  𝑎𝑎−1  =  𝑒.   

      A group, which contains only a finite number of elements, is called a finite 

group, otherwise it is termed as an infinite group. By the order of a finite group 

we mean the number of elements in the group 

Example 1.2:  

Let Q be the set of rationals. Q\{0} is a group under multiplication. This is an 

infinite group. 

Example 1.3:  

Zp = {0, 1, 2, … , p – 1}, p a prime be the set of integers modulo p. Zp\{0} is a  

finite cyclic group of order p-1 under multiplication modulo p.  

Definition 1.4[2]:  

A non-empty set R is said to be an associative ring if in R are defined two binary 

operations '+' and '.' respectively such that 

1. )R, +) is an additive abelian group and (R, .) is a semigroup . 

2. a . (b + c) = a . b + a . c and (a + b) . c = a . c + b . c  for all a, b, c ∈ R (the 

two distributive laws). 
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Example 1.5:  

Let Z be the set of integers. Then (Z,+,.) is a commutative ring with 1 . 

Example 1.6:  

Let Zn = {0, 1, 2, … , n – 1} be the ring of integers modulo n. Then Zn is a ring 

with unit under modulo addition and multiplication.  

 

Definition 1.7[2]:  

A field is a set F which is closed under two operations + and × such that (F,+) is 

an abelian group, (F − {0},×)  is an abelian group and the distributive law hold. 

Example1.8:  

R, the set of real numbers, and C, the set of complex numbers are both infinite 

fields with usual addition and multiplication. 

 

Definition 1.9[8]:  

Let V be a set on which two operations (vector addition and scalar 

multiplication) are defined. If the listed axioms are satisfied for every u,v and w 

in V and every scalar (real number) c  and d  in F then V is called a vector 

space. First we list the condition for addition : 

1. u+v is in V                           Closure under addition 

2. u+v=v+u                              Commutative property 

3. u+(v+w)=(u+v)+w              Associative property 

4. u + (−1) u = 0                   Additive inverse 

 Scalar Multiplication : 

5. cu is inV                                     Closure under scalar multiplication 

6. c(u+v)=cu+cv                             Distributive property 

7. (c+d)u=cu=du                             Distributive property 

8. c(du)=(cd)u                                 Associative property 

9. 1(u)=u                                         Scalar identity 
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Definition 1.10[8]:  

A nonempty W subset of a vector space  V is called a subspace of V if W is a 

vector space under the operations of addition and scalar multiplication defined 

in V. If W is a nonempty subset of a vector space V then W is a subspace of V if 

and only if  the following closure conditions hold. 

1. If u and v are in w then u+v is in W. 

2. If u is in W and c is any scalar, then cu is in W. 

Example 1.11:  

The set of all ordered -tuples of real numbers Rn with the standard                       

operations is a vector space.  

Example 1.12:  

The set of polynomial K[x] is a vector space over K. 

Example 1.13: 

  Let W be the set of singular matrices of order 2. Then W is not a subspace                 

of M2×2 (R) because W is not closed under addition. To see this,                                        

let A=[
1 0
0 0

]      and    B=[
0 0
0 1

] And then A and  B are both singular 

(noninvertible), but their sum A+B=[
1 0
0 1

]  is nonsingular. 

Definition 1.13[8]:  

A vector 𝑢 ∈  𝑉 is called a linear combination of the vectors u1,u2,….uk in V if 

𝑢 can be written as c1u1+c2u2+. . . +ckuk where c1,c2,. . . ,ck, are scalars. 

Example 1.14: 

 (1,1,1) as a linear combination of vectors in the set S={(1,2,3),(0,1,2),(-1,0,1)} 

Definition 1.15[8]:  

Let A = { v 1, v 2, …, v r } be a collection of vectors from Rn . If r > 2 and at 

least one of the vectors in A can be written as a linear combination of the others, 

then A is said to be linearly dependent. The motivation for this description is 

simple: At least one of the vectors depends (linearly) on the others. On the other 

hand, if no vector in A is said to be a linearly independent set.  
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 Example 1.16:   

The vectors  (2, 5, 3),  (1, 1, 1), and  (4, −2, 0) are linearly independent. 

Definition 1.17 [6](span):   

Let  S ={V1,V2,…,Vk } be a subset of a vector space  V The set S is called a 

spanning set of V  if every vector in V can be written as a linear combination of 

vectors in S. In such cases it is said that S spans V. 

Example 1.18: 

(a) The set S={(1,0,0),(0,1,0),(0,0,1)} spans R3 because any vector 

u=(u1,u2,u3) in R3 can be written as 

u=u1(1,0,0)+u2(0,1,0)+u3(0,0,1)=(u1,u2,u3). 

(b) The set S={1,X, X3} spans P2 because any polynomial function 

P(X)=a+bx+c x2in P2 can be  written as P(X)=a(1)+b(x)+c(x2)  = 

a+bx+cx2 

Definition 1.19[6]:  

A bilinear form on a real vector space V is a function f ∶  V ×  V →  R                   

which assigns a number to each pair of elements of V in such a way that                     

f is linear in each variable. 

 

Theorem 1.20:  

Every bilinear form on Rn has the form < 𝑥, 𝑦 > =  x tAy = ∑ aijxiyji,j                     

for some n ×  n matrix A and we also have aij  = < ei, ej > for all i, j. 

Example 1.21: 

 Let A be an m ×  n matrix and let B : Rm × Rn → R be defined by              

B(x, y) = xTAy for x ∈ Rm, y ∈ Rn . Then B is clearly a bilinear form.                       

In particular, if m =  n, A = In, the identity matrix, then it shows that the 

Euclidean inner product on Rn is a bilinear form. Generally for any inner product 

space V on the set of real numbers R, the function B ∶  V ×  V → R defined by 

B(x, y) = < 𝑥, 𝑦 > is a bilinear form on V. 
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Chapter Two  

Inner Products and Lie Algebras 

 

    In this chapter we study inner product on vector spaces and basic definiens 

and results about Lie algebras. We give many examples to illustrate these 

algebraic concepts. 

Definition 2.1[8]:  

Let u, v, and  w  be vectors in a vector space V, and let c be any scalar.                       

An inner product  on V is a function that associates a real number (u,v) with 

each pair of vectors u and v and satisfies the following axioms. 

1. 〈𝑢, 𝑣〉= 〈𝑣, 𝑢〉 

2. 〈𝑢, 𝑣 + 𝑤〉 = 〈𝑢, 𝑣〉 + 〈𝑢, 𝑤〉  

3. 𝑐〈𝑢, 𝑣〉= 〈𝑐𝑢, 𝑤〉 

4,〈𝑣, 𝑣〉 ≥ 0 and 〈𝑣, 𝑣〉 = 0 iff v=0. 

 

Remark 2,2[8] :  

A vector space with an inner product is called an inner product space.  

Whenever an inner product space is referred to, assume that the set of scalars is 

the set of real numbers. 

Example 2.3:   

In Rn, the dot product of two vectors u=(u1, u2, … un) and  v= (v1, v2, …, vn)  is  

defined by  u ∙ v = u1v1 + u2v2 + … + unvn. It is easy to check that the dot product 

in Rn satisfies the four axioms of an inner product. 

 The Euclidean inner product is not the only inner product that can be defined on 

Rn . Now we define more inner product on  Rn . 

Examples 2.4:  

a) Define 〈𝑢, 𝑣〉:= 𝑢1𝑣1+ 2𝑢2𝑣2 where u = (u1 , u2 ) and v = (v1 , v2) are in R2. 

This function defines an inner product on R2 due to the following properties:  
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1. The product of real numbers is commutative, 

〈𝑢, 𝑣〉 =𝑢1𝑣1+ 2𝑢2𝑣2=𝑢1𝑣1+ 2𝑢2𝑣2= 〈𝑣, 𝑢〉 

2. Let w=(w1,w2) Then 

〈𝑢, 𝑣 + 𝑤〉 = 𝑢1(𝑣1 + 𝑤1) + 2𝑢2(𝑣2 + 𝑤2)  

                      =𝑢1𝑣1+𝑢1𝑤1 + 2𝑢2𝑣2 + 2𝑢2𝑤2 

                      = (𝑢1𝑣1 + 2𝑢2𝑣2) + (𝑢1𝑤1 + 2𝑢2𝑤2) 

3. if c is any scalar, then 

𝑐〈𝑢, 𝑣〉 = 𝑐(𝑢1𝑣1 + 2𝑢2𝑣2)=( 𝑐𝑢1)𝑣1 + 2(𝑐𝑢2)𝑣2=  〈𝑐𝑢, 𝑣〉 

4. The square of a real number is nonnegative, 〈𝑣, 𝑣〉 =  𝑣1
2 + 2𝑣2

2 ≥ 0 

Moreover, this expression is equal to zero if and only if v=0  . 

b) we can be generalized (a)  as follows to get an inner product on Rn: 

〈𝒖, 𝒗〉 =  𝒄𝟏𝒖𝟏𝒗𝟏 + 𝒄𝟐𝒖𝟐𝒗𝟐 + . . . . +𝒄𝒏𝒖𝒏𝒗𝒏     𝒄𝒊 ≥0  

 The positive constants c1, … ,c2 called weights. If any ci is negative or 0, then 

this function does not define an inner product. 

 

Gram-Schmidt Orthogonalizaition Process[8] 

Suppose {𝑣1,𝑣2,…,𝑣𝑛} is a basis of an inner product space V . One can use this 

basis to construct an orthogonal basis {𝑤1,𝑤2,…,𝑤𝑛} of V as follows set 

𝑤1=𝑣1 

𝑤2=𝑣2 - 
〈𝑣2,𝑤1〉

〈𝑤1,𝑤1〉
 𝑤1 

                𝑤3 = 𝑣3- 
〈𝑣3,𝑤1〉

〈𝑤1,𝑤1〉
 𝑤1- 

〈𝑣3,𝑤2〉

〈𝑤2,𝑤2〉
 𝑤2 

𝑤𝑛 = 𝑣𝑛 − 
〈𝑣𝑛, 𝑤1〉

〈𝑤1, 𝑤1〉
 𝑤1 − 

〈𝑣𝑛, 𝑤2〉

〈𝑤2, 𝑤2〉
 𝑤2 − ⋯ − 

〈𝑣𝑛, 𝑤𝑛−1〉

〈𝑤𝑛−1, 𝑤𝑛−1〉
 𝑤𝑛−1 

In other words, for k=2,3,…,n , we define 

𝑤𝑘 = 𝑣𝑘 − 𝑐𝑘1𝑤1 − ⋯ − 𝑐𝑘,𝑘−1𝑤𝑘−1 

Where 𝑐𝑘𝑖 = 〈𝑣𝑘, 𝑤𝑖〉 〈𝑤𝑖 , 𝑤𝑖〉⁄  is component of  𝑣𝑘 along 𝑤𝑖 , thus 𝑤1, 𝑤2, … , 𝑤𝑛 

form an arthogonal basis for V as claimed . Normalizing each 𝑤𝑖 will then yield 

an orthogonal basis for V . 



8 
 

Definition 2.5[4]:  

An algebra over a field F is a vector space A over F together with a bilinear 

map,  A × A → A, (x, y) _→ xy.  We say that xy is the product of x and y. The 

algebra A is said to be associative if  (𝑥𝑦)𝑧 =  𝑥(𝑦𝑧) for all 𝑥, 𝑦, 𝑧 ∈  𝐴                      

and unital if there is an element 1A in A such that 1Ax = x = x1A for all                          

non-zero elements of A. 

Example 2.6:  

The space of n×n-matrices Mn(R) with matrix addition and matrix multiplication 

form a R-algebra and the set of polynomial R[x] is an R-algebra. 

Example 2.7:  gl(V), the vector space of linear transformations of the vector 

space V, has the structure of a unital associative algebra where the product is 

given by the composition of maps. The identity transformation is the identity 

element in gl(V).  

      Usually one studies algebras where the product satisfies some further 

properties, for example, Lie algebras and Jordan algebras. 

Definition 2.8[3]:  

Let F be a field. A Lie algebra over F is an F-vector space L, together with a 

bilinear map, the Lie bracket   𝐿 ×  𝐿 →  𝐿, (𝑥, 𝑦) _ →  [𝑥, 𝑦], 

satisfying the following properties: 

                    [𝑥, 𝑥]  =  0 for all 𝑥 ∈  𝐿,                                                             (L1) 

                    [𝑥, [𝑦, 𝑧]]  + [𝑦, [𝑧, 𝑥]]  + [𝑧, [𝑥, 𝑦]]  =  0 for all 𝑥, 𝑦, 𝑧 ∈  𝐿.    (L2) 

The Lie bracket [x, y] is often referred to as the commutator of x and y. 

Condition (L2) is known as the Jacobi identity. As the Lie bracket [−,−] is 

bilinear, we have 

0 =  [𝑥 +  𝑦, 𝑥 +  𝑦]  =  [𝑥, 𝑥]  + [𝑥, 𝑦]  + [𝑦, 𝑥]  + [𝑦, 𝑦]  =  [𝑥, 𝑦]  + [𝑦, 𝑥]. 

Hence condition  (L1) implies  [𝑥, 𝑦]  =  −[𝑦, 𝑥] for all 𝑥, 𝑦 ∈ 𝐿.          (L1’) 

If the field F does not have characteristic 2, then putting x = y in (L1’) shows 

that (L1’) implies (L1). Unless specifically stated otherwise, all Lie algebras in 

this book should be taken to be finite-dimensional. 
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Example 2.9:  

Let F = R. The vector product (x, y) _→ x ∧ y defines the structure of a Lie 

algebra on R3. We denote this Lie algebra by R3
∧. Explicitly, if 

                         x = (x1, x2, x3) and y = (y1, y2, y3), then 

                 x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1). 

1.    [x,[y,z]]=[(x1,x2,x3),(y2z3 - y3z2 , y3z1 - y1z3 , y1z2 - y2z1)] 

= [ x2(y1z2 - y2z1) - x3 (y3z1 - y1z3),x3(y2z3-y3z2)-x1(y1z2-y2z1),x1(y3z1-y1z3)-

x2(y2z3-y3z2)] 

=((x2y1z1-x2y2z1)-(x3y3z1-x3y1z3),(x3y2z3-x3y3z2)-(x1y1z2-x1y2z1),(x1y3z1-x1y1z3)-

(x2y2z3-x2y3z3)). 

 Now we calculate [(x2y3-x3y2,x3y1-x1y3,x1y2-x2y1),(z1,z2,z3)] 

=[(x3y1-x1y3)z3-(x1y2-x2y1)z2,(x1y2-x2y1)z1-(x2y3-x3y2)z3,(x2y3-x3y2)z2-(x3y1-

x1y3)z1] 

=((x3y1z3-x1y3z3)-(x1y2z2-x2y1z2),(x1y2z1-x2y1z1)-(x2y3z3-x3y2z3),(x2y3z2-x3y2z2)-

(x3y1z1-x1y3z1) 

It is only remain to calculate  

[(y1,y2,y3),(x2z3-x3z2,x3z1-x1y3,x1z2-x2z1)] 

=[y2(x1z2+x2z1)-y3(x3z1-x1y3),y3(x2z3-x3z2)-y1(x1z2-x2z1),y1(x3z1-x1y3)-y2(x2z3-x3z2)].  

We get that this product satisfies the Jacoby identity now we check bilinearity. 

2.     [x+y,z]=[(x1+y1,x2+y2,x3+y3),(z1,z2,z3) 

=[(x2+y2)z3-(x3+y3)z2,(x3+y3)z1-(x1+y1)z3,(x1+y1)z2-(x2+y2)z1] 

=[(x2z3+y2z3)-(x3z2+y3z2),(x3z1+y3z1)-(x1z3+y1z3),(x1z2+y1z2)-(x2z2+y2z1)] 

[(x1,x2,x3),(z1,z2,z3)] =[x2z3-x3z2,x3z1-x1z3,x1z2-y2z1] 

 [(x2z3-x3z2)+(y2z3-y3z2),(x3z1-x1z3)+(y3z1-z3),(x1z2-x2z1)+(y3z1-y1z3),(x1z2-

x2z1)+(y1z2-y3z1)] 

3.   We show that  [rx,z]=r[x,z]. 

[r(x1,x2,x3),(z1,z2,z3)]=[(rx1,rx2,rx3),(z1,z2,z3)]=(rx2z3-rx3z2,rx3z1-rx1z3,rx1z2-rx2z1)  

r[(x1,x2,x3),(z1,z2,z3)] =r(x2z3-x3z2,x3z1-x1z3,x1z2-x2z1) 

=(rx2z3-rx3z2,rx3z1-rx1z3,rx1z2-rx2z1) 

 



10 
 

Chapter Three 

Root Systems 

     

In this chapter we study simple Lie algebras and their root systems. 

Furthermore, we study the classification of irreducible root systems of semi 

simple Lie algebras by using Dynkin Diagrams and Cartan Matrices.  We start 

by the definition of root system. 

Definition 3.1[4]:  

Let E be a finite-dimensional real vector space endowed with an inner product 

written (−,−). Given a non-zero vector v ∈ E, let sv be the reflection in the 

hyperplane normal to v. Thus sv sends v to −v and fixes all elements y such that   

(y, v) = 0. As an easy exercise, the reader may check that 

sv(x) = x − 
2(x,v)

(v,v)
 v           for all x ∈ E and that sv preserves the inner product, 

that is,  (sv(x), sv(y)) = (x, y)    for all x, y ∈ E. 

As it is a very useful convention, we shall write < 𝑥, 𝑣 >: =   
2(𝑥,𝑣)

(𝑣,𝑣)
 , 

noting that the symbol < 𝑥, 𝑣 >  is only linear with respect to its first variable, 

x. with this notation, we can now define root systems. 

Definition 3.2[4]:  

A subset R of a real vector space E is a root system if it satisfies the following: 

(R1) R is finite, it spans E, and it does not contain 0. 

(R2) If α ∈ R, then the only scalar multiples of α in R are ±α. 

(R3) If α ∈ R, then the reflection sα permutes the elements of R. 

(R4) If α, β ∈ R, then  < 𝛼, 𝛽 > ∈  𝒁. 

The elements of R are called roots. 

Examples 3.3:  

1) The root space decomposition gives our main example. Let L be a complex 

semisimple Lie algebra, and suppose that Φ is the set of roots of L with respect 

to some fixed Cartan subalgebra H. Let E denote the real span of Φ. the 
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symmetric bilinear form on E induced by the Killing form (−,−) is an inner 

product. Then Φ is a root system in E, see [1]. 

2) We work in Rl+1, with the Euclidean inner product.  

Let εi be the vector in E with i-th entry 1 and all other entries zero. Then                  

R := {±(εi − εj) : 1 ≤ i < j ≤ l + 1} is a root system in E where  

E = SpanR = { ∑  αiεi : ∑  αi = 0}.  

Proposition 3.4[5]  : 

 Let V be a finite-dimentional inner-product space over R. For any                     

x,y,v ϵ 𝑅𝑛 with v ≠ 0 the reflection 𝑠𝑣 preserves the inner product : That is  

 (𝑠𝑣(𝑥), 𝑠𝑣(𝑦)) = (𝑥, 𝑦). 

Proof : We use that the inner product in a real vector space is bilinear and 

positive definite to expand our expression and get the desired equality.  

(𝑠𝑣(𝑥)), (𝑠𝑣(𝑦))=( 𝑥 − 2
(𝑥,𝑣)

(𝑣,𝑣)
 𝑣, 𝑦 − 2

(𝑦,𝑣)

(𝑣,𝑣)
 𝑣) 

= (𝑥, 𝑦) + (𝑥, −2
(𝑦,𝑣)

(𝑣,𝑣)
 𝑣) + (−2

(𝑥,𝑣)

(𝑣,𝑣)
 𝑣 , 𝑦) + (−2

(𝑥,𝑣)

(𝑣,𝑣)
 𝑣 , −2

(𝑦,𝑣)

(𝑣,𝑣)
 𝑣) 

=(𝑥, 𝑦) − 2
(𝑦,𝑣)

(𝑣,𝑣)
(𝑥, 𝑣) − 2

(𝑥,𝑣)

(𝑣,𝑣)
(𝑣, 𝑦) + 2

(𝑦,𝑣)

(𝑣,𝑣)
 ∙ 2

(𝑥,𝑣)

(𝑣,𝑣)
(𝑣, 𝑣) 

=(𝑥, 𝑦) − 4
(𝑥,𝑣)(𝑦,𝑣)

(𝑣,𝑣)
+ 4

(𝑥,𝑣)(𝑦,𝑣)

(𝑣,𝑣)
= (𝑥, 𝑦). 

Lemma 3.5[4] (Finiteness Lemma): Suppose that R is a root system in the real 

inner-product space E. Let α, β ∈ R with β ≠ ±α. Then  

< 𝛼, 𝛽 >< 𝛽, 𝛼 > ∈  {0, 1, 2, 3}.  The possibilities are as follows: 

 

Given roots α and β, we would like to know when their sum and difference 

lie in R. Our table deduce the following: 
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Proposition 3.6[4]: Let α, β ∈ R. 

(a) If the angle between α and β is strictly obtuse, then α + β ∈ R. 

(b) If the angle between α and β is strictly acute and 

                                (β, β) ≥ (α, α), then α − β ∈ R. 

 

Example 3.7:    

We work on the root system called A2 ={ε1 − ε2, ε2 − ε3, ε1 − ε3, ε3 − ε2} 

on R3 where      ε1 = (1,0,0), ε2 = (0,1,0), ε3 = (0,0,1). Set   

α1 = ε1 − ε2 = (1,0,0) − (0,1,0) = (1, −1,0) 

α2 = ε2 − ε3 = (0,1,0) − (0,0,1) = (0,1, −1) 

< α1, α2 >< α2, α1 >=
2(α1, α2)

(α2, α2)
=

2(α2, α1)

(α1, α1)
 

(α1, α1) = (1, −1,0), (1, −1,0) = 2 

(α2, α2) = (0,1, −1), (0,1, −1) = 2 

(α2, α1) = (0,1, −1), (1, −1,0) = −1 

(α1, α2) = (1, −1,0), (0,1, −1) = −1 

=
2(−1)

2
×

2(−1)

2
= 1 

Definition 3.8[4]:  

The root system R is irreducible if R cannot be expressed as a disjoint union of 

two non-empty subsets R1 ∪R2 such that (α, β) = 0 for α ∈ R1 and β ∈ R2. 

Note that if such a decomposition exists, then R1 and R2 are root systems in their 

respective spans. The next lemma tells us that it will be enough to classify the 

irreducible root systems. 

Lemma 3.9[4]:  

Let R be a root system in the real vector space E. We may write R as a disjoint 

union R = R1 ∪ R2 ∪ . . . ∪ Rk, where each Ri is an irreducible root system         

in the space Ei spanned by Ri, and E is a direct sum of the orthogonal                

subspaces E1,…, Ek. 
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Definition 3.10[4]:  

A subset B of R is a base for the root system R if 

(B1) B is a vector space basis for E, and 

(B2) every β ∈ R can be written as β =∑ 𝑘ααα∈B  with 𝑘α ∈ Z, where all the non-

zero coefficients 𝑘α have the same sign.. 

Theorem 3.11[4]: 

 Every root system has a base. 

Remark 3.12[4]: 

 A root system R will usually have many possible bases. For example, if B is a 

base then so is {−α : α ∈ B}. In particular, the terms “positive” and “negative” 

roots are always taken with reference to a fixed base B. 

The Weyl Group of a Root System : 

 For each root α ∈ R, we have defined a reflection sα which acts as an invertible 

linear map on E. We may therefore consider the group of invertible linear 

transformations of E generated by the reflections sα for α ∈ R. This is known as 

the Weyl group of R and is denoted by W or W(R). 

Lemma 3.13[4]: The Weyl group W associated to R is finite. 

Lemma 3.14[4]: If α ∈ B, then the reflection sα permutes the set of positive 

roots other than α. 

Proposition 3.15[4]: 

 Suppose that β ∈ R. There exists g ∈ W and α ∈ B such that β = g(α). 

Definition 3.16[4]:  

Let R and R_ be root systems in the real inner-product spaces E and E’, 

respectively. We say that R and R’ are isomorphic if there is a vector space. 

isomorphism ϕ : E → E’ such that ϕ(R) = R’, and  for any two roots α, β ∈ R,                       

(α, β) = (ϕ(α), ϕ(β)). 

Recall that if θ is the angle between roots α and β, then 4cos2 θ = (α, β) (β,α), so 

the condition  says that ϕ should preserve angles between root vectors.  
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Definition 3.17:  

Let B= {α1, … , αl} be a base in a root system R . The Cartan matrix of R is 

defined on the l ×  l matrix with ij-th entry A ij =〈 α i , α j 〉 . Since for any root β 

we have A ij =〈 α i , α j 〉. Therefore A=( A ij ) is the Cartan matrix of R with 

respect to B . It follows from Theorem that the Cartan matrix depends only on 

the ordering with our chosen base B and not on the base itself. 

The Cartan matrix A has the following properties. 

( i ) Aii=2 for all i . 

( ii ) Aij∈ { 0, −1, −2, −3 } if i ≠  j . 

( iii ) If Aij=-2 or -3 then A ji =-1 . 

( iv ) Aij = 0 if and only if Aji = 0 . 

Definition 3.18:  

Let A=( Aij ) be the Cartan matrix of R with respect to B= {α1, … , αl}  such that 

Aij=〈 α i , α j 〉 is not positive for i ≠ j . We define the Dynkin diagram of A to be 

the graph on l vertices with labels α 1 , α 2 , .. , α l . Two vertices α i and α j are 

connected by 𝑑α 1α 𝑗 j lines, where 

                                 dij = AijAji=〈 α i , α j 〉 〈 α j , α i 〉 ∈  { 0,1,2,3 } .  

If d ij >1 , which happens whenever α i and α j have different lengths and are not 

orthogonal we draw an arrow pointing from the longer root to the shorter root.  

Dynkin diagram of R is independent of the choice of base. 

Proposition 3.19[4]:  

Let R and R’ be root systems in the real vector spaces E and E’, respectively. If 

the Dynkin diagrams of R and R’ are the same, then the root systems are 

isomorphic. 

Proposition 3.20:  

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root 

system Φ. If Φ is irreducible, then L is simple. 
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Examples 3.21 

1) (A1 root system):  

Consider R2 with the usual inner productgiven by dot product, and standard 

basis e1, e2. Let 

Φ =  {𝑒1 − 𝑒2, 𝑒2 − 𝑒1} 

We can drow this as below . The dotted lines represent the 𝑒1,𝑒2 axes. 

 

Let E be of (1, −1).Then Φ is root system in E . 

〈𝑒1 − 𝑒2〉 =  
2(𝑒1− 𝑒2,𝑒2− 𝑒1)

(𝑒2− 𝑒1,𝑒2− 𝑒1)
 = 

2(−1−1)

(1+1)
 = -2 

This is called the root system of type A1.  

2) (A2 root system). Consider R3 with the usual inner product, given by dot 

product, and standard basis vectors e1, e2, e3. Let 

to each root. To verify the last condition regarding integrality, we just need to do 

some case checking. Let's just do one. 

〈𝑒1 − 𝑒2, 𝑒2 − 𝑒3〉 =  
2(e1− e2,e2− e3)

(e1−e2,e1−e2)
 = -1 

This is called the 𝐴2 𝑟𝑜𝑜𝑡 𝑠𝑦𝑠𝑡𝑒𝑚. 𝑇ℎ𝑒 2 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑎𝑛  

Of Φ. 

3)(A1 ×A1 root system). Consider R2 with the usual inner product (dot prod-

uct), with standard basis e1, e2. We have two copies of the A1 root system, one 

given by 

{𝑒1 − 𝑒2, 𝑒2 − 𝑒1} and the other given by {𝑒1 +  𝑒2, −𝑒1 − 𝑒2}. 

Let Φ = {𝑒1 − 𝑒2, 𝑒2 −  𝑒1, 𝑒1 + 𝑒1, −𝑒1 − 𝑒1} 
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Furthermore, the two copies of 𝐴1 here do not interact , in the sense that dot 

product or (〈, 〉 𝑝𝑟𝑜𝑑𝑢𝑐𝑡) is zero between any vectors coming from different 

copies 𝐴1. 

〈e𝟏 +  𝒆𝟐, −𝒆𝟏 − 𝒆𝟐〉 = 
𝟐(𝒆𝟏+ 𝒆𝟐 ,−𝒆𝟏− 𝒆𝟐)

(−𝒆𝟏− 𝒆𝟐,−𝒆𝟏−𝒆𝟐)
 = 

2(−1−1)

(1+1)
 = -2 

〈𝑒1 + 𝑒2, 𝑒1 − 𝑒1〉 = 
2(𝑒1+ 𝑒2,𝑒1 − 𝑒2)

(𝑒1−𝑒2,𝑒1−𝑒2)
 = 0 

4) (C2 root system): In R2 as before, consider the root system 

 

This is the root system of type C2. 

Now we work on the root system of classical simple Lie algebras and for this 

part we mainly use [4]: 

AL) sl(L + 1, C) 

(1) L = sl(L + 1,C) is the set of matrices of trace zero and size L + 1.  

Φ = {± (εi − εj) : 1 ≤ i < j ≤ l + 1}. 

(2)  the root system Φ has as a base {αi : 1 ≤ i ≤ _}, where αi = εi − εi+1. 

(3) The Dynkin diagram is 

 



17 
 

BL) so(2L + 1,C) C): 

1)Let L = glS(2L + 1,C) = {𝑋 ∈ 𝑔𝑙(2ℓ + 1, 𝐶) ∶  𝑥𝑡  𝑆 −  𝑆𝑥}  where     

S=(
1 0 0
0 0 𝐼ℓ

0 𝐼ℓ 0
) . Then L={(

0 𝑐𝑡 −𝑏𝑡

𝑏 𝑚 𝑝

−𝑐 𝑞 −𝑚𝑡
) ∶ 𝑝 =  −𝑝𝑡  𝑎𝑛𝑑  𝑞 = −𝑞𝑡}. 

 

Let εi ∈ H* be the map sending h to ai,  

 

 Root 𝜀𝑖 −𝜀𝑖 𝜀𝑖 − 𝜀𝑗 𝜀𝑖 + 𝜀𝑗 -(𝜀𝑖 + 𝜀𝑗) 

 

eigenvector 

 

 𝑏𝑖 

 

𝑐𝑖 

 

𝑚𝑖𝑗(𝑖 ≠ 𝑗) 

 

𝑝𝑖𝑗(𝑖 < 𝑗) 

 

𝑞𝑗𝑖(𝑖 < 𝑗) 

 

(2) B = {𝛼𝑖 ∶ 1 ≤ 𝑖 <  ℓ}  ∪  {𝛽ℓ}, is a bases  where 

 𝛼𝑖 =  𝜀𝑖 −  𝜀𝑖+1 𝑎𝑛𝑑 𝛽ℓ = 𝜀ℓ  , 𝑤ℎ𝑒𝑛 1 ≤ 𝑖 < ℓ, 

𝜀𝑖 =  𝛼𝑖 +  𝛼𝑖+1 + ⋯ + 𝛼ℓ−1 + 𝛽ℓ , 

And that when 1 ≤ 𝑖 < 𝑗 ≤  ℓ , 

𝜀𝑖 −  𝜀𝑗 =  𝛼𝑖 +  𝛼𝑖+1 + ⋯ +  𝛼𝑗−1, 

𝜀𝑖 +  𝜀𝑗 =  𝛼𝑖 + ⋯ 𝛼𝑗−1 + 2(𝛼𝑗 +  𝛼𝑗+1 + ⋯ + 𝛼ℓ−1 +  𝛽ℓ). 

3) The Dynkin diagram of Φ is 

 

As the Dynkin diagram is connected, Φ is irreducible and so L is simple. 

The root system of so(2L + 1,C) is said to have type BL. 

CL) so(2L, C) 

1)Let L = glS(2L,C) where  S = (
0 𝐼ℓ

𝐼ℓ 0
) . Then  

L = {(
𝑚 𝑝

𝑞 −𝑚𝑡) ∶ 𝑝 =  −𝑝𝑡 𝑎𝑛𝑑 𝑞 =  −𝑞𝑡} . 
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Root 𝜀𝑖 −  𝜀𝑗 𝜀𝑖 +  𝜀𝑗         -(𝜀𝑖 +  𝜀𝑗) 

eigenvector 𝑚𝑖𝑗  (𝑖 ≠ 𝑗) 𝑝𝑖𝑗  (𝑖 < 𝑗) 𝑞𝑖𝑗  (𝑖 < 𝑗) 

 

(2) B = {𝛼𝐼 ∶   1 ≤ 𝑖 <  ℓ} ∪  {𝛽ℓ}, where 𝛼𝑖 =  𝜀𝑖 −  𝜀𝑖+1  

𝑎𝑛𝑑  𝛽ℓ =  𝜀ℓ−1 +  𝜀ℓ .  𝑤ℎ𝑒𝑛1≤ 𝑖 < 𝑗 < ℓ ,   

𝜀𝑖 −  𝜀𝑗 =  𝛼𝑖 +  𝛼𝑖+1 + ⋯ +  𝛼𝑗−1 , 

𝜀𝑖 +  𝜀𝑗 =  {𝛼𝑖 +  𝛼𝑖+1 + ⋯ +  𝛼ℓ−2}+{𝛼𝑗 +  𝛼𝑗+1 + ⋯ +  𝛼ℓ−1 +  𝛽ℓ}. 

(3) The Dynkin diagram of Φ is 

 

As this diagram is connected, the Lie algebra is simple. When L = 3, the 

DL) sp(2L, C): 

1)Let L = glS(2L,C)= {(
𝑚 𝑝

𝑞 −𝑚𝑡) : 𝑝 =  𝑝𝑡 𝑎𝑛𝑑 𝑞 =  𝑞𝑡}., where S=(
0 𝐼ℓ

𝐼ℓ 0
).  

 

root 𝜀𝑖 − 𝜀𝑗 𝜀𝑖 + 𝜀𝑗 -(𝜀𝑖 + 𝜀𝑗) 2𝜀𝑖 -2𝜀𝑖 

eigenvector 𝑚𝑖𝑗  (𝑖 ≠ 𝑗) 𝑝𝑖𝑗(𝑖 < 𝑗) 𝑞𝑗𝑖(𝑖 < 𝑗) 𝑝𝑖𝑖 𝑞𝑖𝑖 

 

(2) Let αi = εi − εi+1 for 1 ≤ i ≤ L − 1 as before, and let βL = 2εL. We 

claim that {α1, . . . , αL−1, βL} is a base for Φ. We have 

𝜀𝑖 − 𝜀𝑗 =  𝛼𝑖 + 𝛼𝑖+1 + ⋯ + 𝛼𝑗−1, 

𝜀𝑖 + 𝜀𝑗 =  𝛼𝑖 + 𝛼𝑖+1 + ⋯ + 𝛼𝑗−1 + 2(𝛼𝑗 + ⋯ + 𝛼ℓ−1) + 𝛽ℓ, 

2𝜀𝑖 = 2(𝛼𝑖 + 𝛼𝑖+1 + ⋯ + 𝛼ℓ−1) + 𝛽ℓ. 

(3) The Dynkin diagram of Φ is 

 



19 
 

Theorem 3.25[4]:  

 

Given an irreducible root system R, the diagram associated to R is either a 

member of one of the four families or one of the following five exceptional 

diagrams. 
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 ەپوخت

 

 تاەرەس  ن،ەیکەد  یکان ەنانێکارهەو ب  گڕە   یکانەمەستیس  ەل  ەوەنیلۆکێل  داەکار  مەل

پر  یرەکتڤێ  یزا ە ف  ەیربارەد  کانیەکەرەس  ەناسێپ  یباس و    ۆییناوخ   یکتەد ۆو  

ج   مان،ەکەکار  ەل  ەستمانی وێپ  ەک  نەیکەد  انیکانەنجامەئە ل  ێندەه  ەبرەپاشان 

س  یل  یکانەساد ل  نینێخوەد   انیکانەگڕە  ەمەستیو  ل   داەیکیەتاۆک  ە،   ەباس 

  ن ەی کەد   یل  ەیکراوەمنەک  ەیساد  ەبر ەج   ەمچ ین   ەگڕە  ەمەستی س  ینکردنیلۆپ

 . یکارتان یکسیو  ماتر  ینگ ینک ید یگرامیەدا ینان ێه کارەب ەیگێرەل



b 
 

  

                    ەرچوونەد ىەژڕۆپ

 

یکانە نانێکارهەو ب گڕە یکانەمەستیس  

ى نانێستهەدەب  یكان یەستیداوێپلە  كێش ە ب كەو ، ەكراو كی ماتمات یشە ب ە ب شە شك ێ پ 

كیماتمات یزانست ە ل سیۆرۆ كالەب  ەیوانامڕب  

: نیەل ەل ەكراو ەئاماد     

ز یلشكر عز هانی شر  

:  یرشت ەرپ ەسەب    

نی اسی  محمد  گر ۆ ه  د  .

  ٢٠٢٣ -نیسان    

    


