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Abstract

In this work we study Root Systems and their applications. First we write
basic definitions and results about vector spaces and inner product that we need
in our work. Then we study simple Lie algebras and their root systems. At the
end, we study the classification of irreducible root systems of semi simple Lie

algebras by using Dynkin Diagrams and Cartan Matrices.
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Introduction

Linear algebra has in recent years become an essential part of the
mathematical background required by mathematicians and mathematics
teachers, engineers, computer scientists, physicists, economists, and statisticians,
among others. This requirement reflects the importance and wide applications of
the subject matter. Vector spaces play a key role in Lie theory and Lie groups.
Lie theory has its roots in the work of Sophus Lie, who studied certain
transformation groups that are now called Lie groups. His work led to the
discovery of Lie algebras. By now, both Lie groups and Lie algebras have
become essential to many parts of mathematics and theoretical physics.

A root system in mathematics is a configuration of vectors in a Euclidean
space that meets specific geometrical requirements. The theory of Lie groups
and Lie algebras, particularly the classification and representation theory of
semisimple Lie algebras, both depend on the idea. Since Lie groups and Lie
algebras have grown in significance in many areas of mathematics over the past
century, the seeming specialness of root systems conceals the breadth of their
applications. Additionally, the Dynkin diagram classification technique for root
systems appears in areas of mathematics that don't directly relate to Lie theory.
(such as singularity theory). In the context of spectral graph theory, root systems
are also significant in and of themselves [1].

In this work we study root systems and their applications. This work
consists of three chapters and is organized as follows. In chapter one we give
basic definitions and results about vector spaces and algebras that we need in
our work. In Chapter two we study inner product space and Lie algebras.
At the last chapter, we study simple Lie algebras and their root systems.
Furthermore, we study the classification of irreducible root systems of semi

simple Lie algebras by using Dynkin Diagrams and Cartan Matrices.



Chapter One

Preliminary and Background

In this chapter we state basic definitions and results about ring and vector
spaces that we need in our work. We gave many examples about these algebraic
concepts.

Definition 1.1[8]:
A non-empty set G that is closed under a given operation "." is called a group if
the following axioms are satisfied.

1. Ifa,b,ce Gthena(bc) = (ab)c.

2. There are exists an element e in G such that
(@) Forany elementain G,ea = ae = a.

(b) For any element a € G there exists an element a* in G such that
ala = aa™l! = e.

A group, which contains only a finite number of elements, is called a finite
group, otherwise it is termed as an infinite group. By the order of a finite group
we mean the number of elements in the group
Example 1.2:

Let Q be the set of rationals. Q\{0} is a group under multiplication. This is an
infinite group.

Example 1.3:

Z,=10,1,2,...,p— 1}, p aprime be the set of integers modulo p. Zp\{0} is a
finite cyclic group of order p-1 under multiplication modulo p.

Definition 1.4[2]:

A non-empty set R is said to be an associative ring if in R are defined two binary
operations '+'and "' respectively such that

1. (R, +) is an additive abelian group and (R, .) is a semigroup.

2. a.(b+c)=a.b+a.cand(@a+b).c=a.c+b.c foralla, b, ceR (the

two distributive laws).



Example 1.5:

Let Z be the set of integers. Then (Z,+,.) is a commutative ring with 1.
Example 1.6:

Let Z,={0, 1,2, ..., n— 1} be the ring of integers modulo n. Then Z, is a ring

with unit under modulo addition and multiplication.

Definition 1.7[2]:

A field is a set F which is closed under two operations + and x such that (F,+) is
an abelian group, (F — {0},x) is an abelian group and the distributive law hold.
Examplel.8:

R, the set of real numbers, and C, the set of complex numbers are both infinite

fields with usual addition and multiplication.

Definition 1.9[8]:

Let V be a set on which two operations (vector addition and scalar
multiplication) are defined. If the listed axioms are satisfied for every u,v and w
in V and every scalar (real number) ¢ and d in F then V is called a vector

space. First we list the condition for addition:

1. utvisinV Closure under addition
2. Utv=v+u Commutative property
3. ut(v+w)=(u+v)+w Associative property
4, u+ (-1)u=0 Additive inverse
Scalar Multiplication:
5. cuisinV Closure under scalar multiplication
6. c(ut+v)=cu+cv Distributive property
7. (c+d)u=cu=du Distributive property
8. c(du)=(cd)u Associative property
9. 1(u)=u Scalar identity



Definition 1.10[8]:
A nonempty W subset of a vector space V is called a subspace of V if W is a
vector space under the operations of addition and scalar multiplication defined
in V. If W is a nonempty subset of a vector space V then W is a subspace of V if
and only if the following closure conditions hold.
1. Ifuand v are in w then u+v is in W.
2. If uisin W and c is any scalar, then cu is in W.
Example 1.11:
The set of all ordered -tuples of real numbers R" with the standard
operations is a vector space.
Example 1.12:
The set of polynomial K[x] is a vector space over K.
Example 1.13:

Let W be the set of singular matrices of order 2. Then W is not a subspace

of My (R) because W is not closed under addition. To see this,

_[1 0 _[0 O :
let A—[O 0] and B—[O 1] And then A and B are both singular

(noninvertible), but their sum A+B:[(1) (1)] is nonsingular.

Definition 1.13[8]:

A vector u € V is called a linear combination of the vectors uy,Us,....ux in V if
u can be written as c;u;+CaUp+. . . +CkUx Where C1,Ca,. . . ,Ck, are scalars,

Example 1.14:

(1,1,1) as a linear combination of vectors in the set S={(1,2,3),(0,1,2),(-1,0,1)}
Definition 1.15[8]:

Let A= {vi,Vy ...,V } be a collection of vectors fromR". Ifr> 2 and at
least one of the vectors in A can be written as a linear combination of the others,
then A is said to be linearly dependent. The motivation for this description is
simple: At least one of the vectors depends (linearly) on the others. On the other

hand, if no vector in A is said to be a linearly independent set.

4



Example 1.16:

The vectors (2,5, 3), (1,1, 1),and (4,2, 0) are linearly independent.
Definition 1.17 [6](span):

Let S ={V1,V,,...,Vk } be a subset of a vector space V The set S is called a
spanning set of VV if every vector in V can be written as a linear combination of

vectors in S. In such cases it is said that S spans V.

Example 1.18:
(@) The set S$={(1,0,0),(0,1,0),(0,0,1)} spansR3® because any vector
u=(uz,Uz,us) inR3 can be written as

u=u;(1,0,0)+u»(0,1,0)+u3(0,0,1)=(u1,uz,us).

(b)The set S={1,X,X3 spans P2 because any polynomial function
P(X)=a+bx+c x%in P2 can be written as P(X)=a(1)+b(x)+c(x?) =
a+bx+cx?

Definition 1.19[6]:
A Dbilinear form on a real vector space V is a function f: V. x V - R
which assigns a number to each pair of elements of V in such a way that

fis linear in each variable.

Theorem 1.20:

Every bilinear form on R" has the form <x,y >= x'Ay = ¥;;a;x;y;
for some n X n matrix A and we also have a;; = < e;, e; > for all i, j.

Example 1.21:

Let A be an m X n matrix and let B : R™ x R" — R be defined by
B(x,y) = xTAy for x € R™ y € R" . Then B is clearly a bilinear form.
In particular, if m = n, A = I,, the identity matrix, then it shows that the
Euclidean inner product on R" is a bilinear form. Generally for any inner product
space V on the set of real numbers R, the function B: V X V — R defined by

B(x,y) = < x,y > is abilinear formon V.



Chapter Two

Inner Products and Lie Algebras

In this chapter we study inner product on vector spaces and basic definiens
and results about Lie algebras. We give many examples to illustrate these
algebraic concepts.

Definition 2.1[8]:

Let u, v, and w be vectors in a vector space V, and let ¢ be any scalar.
An inner product on V is a function that associates a real number (u,v) with
each pair of vectors u and v and satisfies the following axioms.

1. (u, v)=(v,u)

2.{(u,v+w)=(u,v)+ (uw)

3. c{u, v)={(cu,w)

4,(v,v) = 0and (v, v) = 0 iff v=0.

Remark 2,2[8] :

A vector space with an inner product is called an inner product space.
Whenever an inner product space is referred to, assume that the set of scalars is
the set of real numbers.

Example 2.3:

In R, the dot product of two vectors u=(us, Uy, ... uy) and v= (vy Vo,
defined by u-v =uvi+ Uvo+ ... +unV,. It is easy to check that the dot product
in R"satisfies the four axioms of an inner product.

The Euclidean inner product is not the only inner product that can be defined on
R". Now we define more inner product on R".

Examples 2.4:
a) Define (u, v):= uyv,+ 2u,v, where u = (u; Uz ) and v = (v1, V) are in R

This function defines an inner product on R? due to the following properties:
6



1e product of real numbers is commutative,
(U, V) =u v+ 2uyv,=u v+ 2uyv,= (U, U)
2. Let w=(w;,w,) Then
(u,v+w) =u;(v; + wy) + 2u,(v, + w,)
=u vy tu Wy + 2u,v, + 2u,w,
= (uyv1 + 2uyv;) + (W wy + 2Uwy)
3. if cis any scalar, then
c(u, v) = c(uyvy + 2u,v,)=( cuy)vy + 2(cuy)v,= (cu, v)
4. The square of a real number is nonnegative, (v, v) = v? + 2v% >0

Moreover, this expression is equal to zero if and only if v=0 .

b) we can be generalized (a) as follows to get an inner product on R"™:
(W, v) = cquqvy + UV, + . ... +C UV,  €; =0
The positive constants c, ... ,c called weights. If any c; is negative or 0, then

this function does not define an inner product.

Gram-Schmidt Orthogonalizaition Process[8]

Suppose {v,,v,,...,v, } is a basis of an inner product space V . One can use this
basis to construct an orthogonal basis {w, ,w,,...,w, } of V as follows set

W1:v1
(v,wq)
Wy_Vy = —
2="2 (wy,wy) 1
(v3lwl> (v3IW2)
Wq = VUq- W, - w
3 3 (wi,wy) 1 (wa,w3) 2
W = (Un, Wy) W (Un, W) W (Vn, Wn—1) W
- AN s 2 T -1
" " (wy, wy) (Wo, wy) (Wpn_1, Wp_1) "

In other words, for k=2.3,...,n, we define
Wi = Vg — CpaW1 — " — Crrk-1Wk-1

Where c; = (vg, w;)/{w;, w;) is component of v, along w; , thus wy, w,, ..., w,
form an arthogonal basis for V as claimed . Normalizing each w; will then yield
an orthogonal basis for V .



Definition 2.5[4]:
An algebra over a field F is a vector space A over F together with a bilinear
map, Ax A — A, (X,y) — xy. We say that xy is the product of x and y. The
algebra A is said to be associative if (xy)z = x(yz) for all x,y,z € A
and unital if there is an element 14 in A such that 1ax = x = x1a for all
non-zero elements of A.
Example 2.6:
The space of nxn-matrices M,(R) with matrix addition and matrix multiplication
form a R-algebra and the set of polynomial R[Xx] is an R-algebra.
Example 2.7: gl(V), the vector space of linear transformations of the vector
space V, has the structure of a unital associative algebra where the product is
given by the composition of maps. The identity transformation is the identity
element in gl(V).
Usually one studies algebras where the product satisfies some further
properties, for example, Lie algebras and Jordan algebras.
Definition 2.8[3]:
Let F be a field. A Lie algebra over F is an F-vector space L, together with a
bilinear map, the Lie bracket L X L = L,(x,y) _— [x,¥],
satisfying the following properties:
[x,x] = Oforallx € L, (L1)
[x,[v,z]] + [v.[z x]] + [z, [x,y]] = Oforallx,y,z € L. (L2)
The Lie bracket [x, y] is often referred to as the commutator of x and vy.
Condition (L2) is known as the Jacobi identity. As the Lie bracket [—,—] is
bilinear, we have
0=1[x+yx+y]=1[kx]+[xy]+yx]+ [yl =[xyl + ]
Hence condition (L1) implies [x,y] = —[y,x] forall x,y € L. (L1)
If the field F does not have characteristic 2, then putting x =y in (L1’) shows
that (L1’) implies (L1). Unless specifically stated otherwise, all Lie algebras in
this book should be taken to be finite-dimensional.

8



Example 2.9:

Let F = R. The vector product (X, y) — X Ay defines the structure of a Lie
algebra on R®. We denote this Lie algebra by R3,. Explicitly, if

X = (X1, X2, X3) and y = (Y1, Y2, V3), then
X AY = (X2Y3 — XaY2, Xay1 — X1Y3, X1Y2 — XaY1).

L xly.zll=[(xuX2X3),(Y225 - YaZz, Y3z - YiZs , Y122 - Y2Z1)]
= [ X2(Y1z2 - Yaz1) - X3 (YaZ1 - Y1Z3),Xa(Y2Z3-Y3Z2)-X1(Y1Z2-Y2Z1),X1(Y3Z1-Y1Z3)-
Xa(Y2Z3-Y322)]
=((XoY121-X2Y221)~(X3Y3Z1-X3Y1Z3), (X3Y2Z5-X3Y3Z2) - (X1Y122-X1Y2Z1),(X1Y3Z1-X1Y1Z3)-
(X2Y2Z3-X2Y3Z3)).

Now we calculate [(X2Y3-Xay2,Xay1-X1Ya,X1Y2-X2Y1),(Z1,22,23)]
=[(X3y1-X1Y3)Z3-(X1Y2-X2Y1)Z2, (X1Y2-X2Y1)Z1-(X2Y3-X3Y2) Z3,(X2Y 3-X3Y 2) Z2-(X3Y1-
X1y3)z1]
=((X3Y1Z3-X1Y3Z3)~(X1Y2Z2-X2Y122), (X1Y2Z1-X2Y121) - (X2Y3Z3-X3Y2Z3),(X2Y 3Z2-X3Y 2Z2)-
(X3y1Z1-X1Y3Z1)

It is only remain to calculate
[(Y1,Y2,Y3),(XaZ5-X3Z2,X3Z1-X1Y3,X122-X2Z1) ]
=[y2(X1zZ2+X221)-Y3(X3Z1-X1Y3),Y3(X2Z3-X3Z2)-Y1(X1Z2-X221),Y1(X3Z1-X1Y3)-Y2(X2Z3-X3Z2)].
We get that this product satisfies the Jacoby identity now we check bilinearity.
2. [x+y,z]=[(Xaty1,XatY2,XstYs),(21,22,23)
=[(X2ty2)z3-(XatYs)Zz, (XatYs)Za-(Xa+Y1) Zs, (Xa Y1) Zo-(X2+Y2) Z4]
=[(X2z3+Y223)-(X3Z2+Y3Z2),(X3Z1+Y3Z1)-(X1Z3+Y123),(X1Z21Y122)-(X2Z2+Y271) ]
[(X1,X2,X3),(Z1,22,23)] =[X2Z3-X3Z2,X3Z1-X1Z3,X1Z2-Y~Z1]

[(X2Z3-X3Z2)+(Y2Z3-Y3Z2),(X3Z1-X1Z3)+(Y3Z1-Z3),(X1Z2-X2Z1) +(Y3Z1-Y1Z3), (X1Z2-
X221)+(Y1Z2-Y371)]

3. We show that [rx,z]=r[x,z].

[r(X1,X2,X3),(21,22,23) |=[(rX1,IX2,X3),(21,22,23) |=(rX2Z3-r X322, X3Z1-F X123, X1Z2-1X2Z1)
r[(X1,X2,X3),(Z1,22,23) ] =r(X2Z3-X3Z2,X3Z1-X1Z3,X1Z2-X2Z1)

=(rXoZ3-IX3Z2,IX3Z1-rX1Z3,IX1Z2-IX2Z1)



Chapter Three
Root Systems

In this chapter we study simple Lie algebras and their root systems.
Furthermore, we study the classification of irreducible root systems of semi
simple Lie algebras by using Dynkin Diagrams and Cartan Matrices. We start
by the definition of root system.

Definition 3.1[4]:

Let E be a finite-dimensional real vector space endowed with an inner product
written (—,—). Given a non-zero vector v € E, let s, be the reflection in the
hyperplane normal to v. Thus s, sends v to —v and fixes all elements y such that

(y, v) = 0. As an easy exercise, the reader may check that

2(x,v)
(AY)

thatis, (sv(X), sv(y)) =(x,y) forallx,y€E.

sv(X) = X — Y% for all x € E and that sv preserves the inner product,

2(xv)

wv) '’

noting that the symbol < x, v > is only linear with respect to its first variable,

As it is a very useful convention, we shall write < x, v >: =

X. with this notation, we can now define root systems.

Definition 3.2[4]:

A subset R of a real vector space E is a root system if it satisfies the following:
(R1) R is finite, it spans E, and it does not contain 0.

(R2) If a € R, then the only scalar multiples of a in R are *a.

(R3) If a € R, then the reflection so permutes the elements of R.
(R4)Ifa,pEeR,then < a,p >€ Z.

The elements of R are called roots.

Examples 3.3:

1) The root space decomposition gives our main example. Let L be a complex
semisimple Lie algebra, and suppose that @ is the set of roots of L with respect

to some fixed Cartan subalgebra H. Let E denote the real span of ®. the
10



symmetric bilinear form on E induced by the Killing form (—,—) is an inner
product. Then @ is a root system in E, see [1].
2) We work in R'**, with the Euclidean inner product.

Let & be the vector in E with i-th entry 1 and all other entries zero. Then
R:={x(ei—¢):1<i<j<I|+1}isarootsystem in E where
E=SpanR ={) aisi: ) ai=0}.

Proposition 3.4[5] :

Let V be a finite-dimentional inner-product space over R. For any

X,y,v € R™ with v # 0 the reflection s, preserves the inner product : That is

(550, 5,(¥)) = (x, ).
Proof : We use that the inner product in a real vector space is bilinear and

positive definite to expand our expression and get the desired equality.

() (-2 vy 22

w V)
(y v) (x,v) (x,v) (yv)
=(x,y) + (x —2 )+ (—2 o) v,y) + (—2 o) v,—2 o2) v)
_ 5w 5 xw) v @)
_(x) }’) 2 (U,U) (x) v) 2 (U,U) (v) y) + 2 (‘U,U) 2 (U,U) (v; v)
_ ) (xv)(yv)
_(x’ y) 4 (U,U) + 4 (U U) (x y)

Lemma 3.5[4] (Finiteness Lemma): Suppose that R is a root system in the real
inner-product space E. Let a, p € R with  # +a. Then

<apf ><p,a>¢€ {0,1,2,3}. The possibilities are as follows:

(3.5)
(v, «v)

undetermined

(v, (3) (3, ) e

0]
1
—1
1
—1
1
—1

Qo
A

~

W]

00 A s W W I

WwW N e e
=
S
WWw NN e e

Given roots a and g, we would like to know when their sum and difference

lie in R. Our table deduce the following:
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Proposition 3.6[4]: Let o, p € R.
(a) If the angle between a and B is strictly obtuse, then a + 3 € R.

(b) If the angle between a and B is strictly acute and
(B, B) > (0, o), then o — B € R.

Example 3.7:
We work on the root system called Az ={e; — ,,&, — €3,8; — €5,83 — £, }
on R®where ¢ = (1,0,0),¢, = (0,1,0),e5 = (0,0,1). Set
o, =g —¢&, =(1,0,0) — (0,1,0) = (1,—1,0)
a, =¢, —¢&3 =(0,1,0) — (0,0,1) = (0,1,—-1)
2(aq, o) _ 2(az, aq)
(0, az) (g, 01)
(ay, 1) = (1,-1,0),(1,—-1,0) = 2
(ay,0a,) =(0,1,—-1),(0,1,-1) =2
(ay,0,) =(0,1,-1),(1,-1,0) = -1
(ag, a5) = (1,-1,0),(0,1,—-1) = -1

_2(=1) 2(=1)
=— X 7=

< o, 0 >< o5, 0q >=

1

Definition 3.8[4]:

The root system R is irreducible if R cannot be expressed as a disjoint union of
two non-empty subsets R; UR; such that (a, f) =0 for a € R; and B € Ra.

Note that if such a decomposition exists, then R; and R; are root systems in their
respective spans. The next lemma tells us that it will be enough to classify the
irreducible root systems.

Lemma 3.9[4]:

Let R be a root system in the real vector space E. We may write R as a disjoint
union R = R; U R, U . . . U Ry, where each R; is an irreducible root system
in the space E; spanned by Ri, and E is a direct sum of the orthogonal

subspaces Eg,..., Ex.

12



Definition 3.10[4]:
A subset B of R is a base for the root system R if

(B1) B is a vector space basis for E, and

(B2) every B € R can be written as B =), g ko With k, € Z, where all the non-
zero coefficients k, have the same sign..
Theorem 3.11[4]:

Every root system has a base.

Remark 3.12[4]:

A root system R will usually have many possible bases. For example, if B is a
base then so is {—a : a € B}. In particular, the terms “positive” and “negative”
roots are always taken with reference to a fixed base B.

The Weyl Group of a Root System :

For each root a € R, we have defined a reflection sa which acts as an invertible
linear map on E. We may therefore consider the group of invertible linear
transformations of E generated by the reflections sa for o € R. This is known as
the Weyl group of R and is denoted by W or W(R).

Lemma 3.13[4]: The Weyl group W associated to R is finite.

Lemma 3.14[4]: If o € B, then the reflection s, permutes the set of positive
roots other than a.

Proposition 3.15[4]:

Suppose that f € R. There exists g € W and a € B such that = g(a).
Definition 3.16[4]:

Let R and R_ be root systems in the real inner-product spaces E and E’,
respectively. We say that R and R’ are isomorphic if there is a vector space.
isomorphism ¢ : E — E’ such that ¢(R) = R’, and for any two roots a, p € R,
(o, B) = (¢(a), $(B))-

Recall that if 0 is the angle between roots a and [, then 4cos2 6 = (a, B) (B,a), SO

the condition says that ¢ should preserve angles between root vectors.

13



Definition 3.17:
Let B= {ay, ..., oy} be a base in a root system R . The Cartan matrix of R is
defined on the I x 1 matrix with ij-th entry A jj =( a i, aj) . Since for any root 3
we have A jj =( a i, aj ). Therefore A=( A j ) is the Cartan matrix of R with
respect to B . It follows from Theorem that the Cartan matrix depends only on
the ordering with our chosen base B and not on the base itself.
The Cartan matrix A has the following properties.
(1)A;=2foralli.
(ii)A;€{0,—1,-2,-3}ifi # j.
(iii) If Ajj=-2 or-3then A ji=-1.
(iv)A; =0ifandonlyifA;; =0.
Definition 3.18:
Let A=( A;; ) be the Cartan matrix of R with respect to B= {a, ..., a;} such that
Ajj=(ai,aj)isnot positive for i #j . We define the Dynkin diagram of A to be
the graph on | vertices with labels a1, a2, .., a . Two vertices aj and o j are
connected by Ao yo J lines, where

dij = AjAi=(ai,0j)(aj,ai)€ {0,1,2,3}.
If d ij >1 , which happens whenever a ; and a j have different lengths and are not
orthogonal we draw an arrow pointing from the longer root to the shorter root.
Dynkin diagram of R is independent of the choice of base.
Proposition 3.19[4]:
Let R and R’ be root systems in the real vector spaces E and E’, respectively. If
the Dynkin diagrams of R and R’ are the same, then the root systems are
isomorphic.
Proposition 3.20:
Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root

system ®. If @ is irreducible, then L is simple.

14



Examples 3.21
1) (A1 root system):

Consider R? with the usual inner productgiven by dot product, and standard
basis ey, ;. Let
D = {e; — ey, — e}

We can drow this as below . The dotted lines represent the e, ,e, axes.

£a — &)

o) (5]

Let E be of (1,—1).Then & is root system in E .

2(e;—epep—eq) _ 2(-1-1) _
(ex—eq,e2—eq) (1+1)

ey —ep) =
This is called the root system of type A;.
2) (A2 root system). Consider R® with the usual inner product, given by dot

product, and standard basis vectors e, e, es. Let
to each root. To verify the last condition regarding integrality, we just need to do

some case checking. Let's just do one.

2(e;—ezez—e3) _ 1

<€1 T e 63) - (e1—eze1—ey)

This is called the A, root system.The 2 refers to the dimension of span
Of @.
3)(A1 XAz root system). Consider R? with the usual inner product (dot prod-

uct), with standard basis e1, e,. We have two copies of the A; root system, one
given by
{e, — e,, e, — e,} and the other given by {e; + e,,—e; — e,}.

Leth = {el - 82,82 - 81,81 + el, —81 - 81}

15



€3 — £y ] + ea

—e) — ¢ ey — €4

Furthermore, the two copies of A; here do not interact , in the sense that dot
product or ((,) product) is zero between any vectors coming from different
copies A4;.

2(e1+ez,—ej—ez) _ 2(-1-1) _
(—e1—ez,—e1—ez) (1+1)

-2

(g + e;,—e; — ey) =

_2(esteze; —ey) _
(81 + 2,61~ 81> B (e1—ez.e1—€3) =0

4) (Cz root system): In R? as before, consider the root system

$ = {:l:?el,:lzgel.l,:l:el + EQ}

This is the root system of type C,.

Now we work on the root system of classical simple Lie algebras and for this
part we mainly use [4]:

AL sl(L +1,C)

(1) L =sl(L + 1,C) is the set of matrices of trace zero and size L + 1.
O={x(ci—¢g):1<i<j<I+1}.

(2) the root system @ has as a base {ai : 1 <i<_}, where ai = g — gj41.

(3) The Dynkin diagram is

23] a3z Qg1 Qg
O e o o




BL) sO(2L + 1,C) C):

DietL=gls@L+1,C)={X € gl(2¢ +1,C) : x* S— S, } where

1 0 O 0 ¢t —bt
S=<0 0 Ig).Then I=<{ b m p |:p= —ptand q=—-q";.

0 Ig 0 —C (q _mt

Let &i € H* be the map sending h to ai,

Root & —&;

& — & ‘ & + & ‘ -(Ei + SJ)

eigenvectOI’ bl C; mu(l ¢]) pl](l <]) qjl(L <])

2B={a;:1 <i < ¥} U {B,},isabases where
ai= & — € and By =¢€p ,when1 <i <4,
& = a+ Q1+t a1+ By,
Andthatwhenl1l<i <j < ¢,
E— &= it QAjypq1 T+ aj_q,
g+ &= +aiq+2(a+ aq + o+ apg + Bo)
3) The Dynkin diagram of @ is

o o Qy_a  Qy_q Be

o O O

As the Dynkin diagram is connected, @ is irreducible and so L is simple.

The root system of so(2L + 1,C) is said to have type By.
Cvo) so(2L, C)

1)Let L = gls(2L,C) where S = (IO Ié) . Then
Y

_((m PN, _ ¢ _ _t

L_{(q —mt)‘p_ pandq = q}.

17



Root ‘ E — Ej ‘ & + Ej ‘ -(Ei + 8])

eigenvector | my; (i # J) | pi; (i <)) | qij (i <)

@QB={a;: 1<i < #}U {B,},wherea; = & — €41
and fp = €p_1+ & . whenl<i <j <7¥,
E— &= it Qjyq + 0+ aj_q,
g+ &= {a;+ appr+ -+ ap_Haj + ajq + o+ ap_g + Bol
(3) The Dynkin diagram of @ is

¥g—1]

As this diagram is connected, the Lie algebra is simple. When L = 3, the
Dp) sp(2L, C):

m p 0 I
1)Let L = gls(2L,C)= {(q —mt> p = pt and q = qt}., where S:<I£ 5)

root ‘ & — Ej ‘ & + Ej ‘ -(Sl- + 81) ‘ 281' ‘ '2€i

eigenvector ‘ my; (i # J) ‘ pi;j (i <J) ‘ q;; (i <)) ‘ Dii ‘ qii

(2) Letai = el —ei+l for 1 <i <L — 1 as before, and let B = 2g,.. We
claim that {os, . . ., o1, pL} IS a base for . We have
E— &= a;+ Ajyq + 0+ @y,
g+ &=+ ay++ i+ 2(a+ -+ ap_q) + P
2e; =2(a; + ajpq -+ ap_1) + Py
(3) The Dynkin diagram of @ is

23] ) Qg o ﬂg—l/ By
O O & N G ©

18



Theorem 3.25[4]:

Ay fort>1: o0—o0— v+ ——0—0

Byfort>2. o0—o0—— - —Oi):D
Cefore >3 o—o— - —oz@o

Dyforé>4:. o—o0—

Given an irreducible root system R, the diagram associated to R is either a

member of one of the four families or one of the following five exceptional

diagrams.
o
Fs: © O O O 0
o
E: © O O O O O
o)
Fs: © O G O O O O
Fy: o—0—>o0o—o0
Ga: C$TJ

19



References

1.Erdmann, Karin. Introducion to Lie Algebras. London: Springer-Verlag, 2006.

2.Frank Ayres, Lloyd R .Jaisingh. Abstruct Algebra. Second Edition. Newyork: Mcgraw-Hill,
2004.

3.Humphreys, James E . Indoduction to lie Algebras and Representation theory. Third Edition.
Newyork: Springer verlag, 1972.

4. Karin Erdmann,Thorsten Holm. Algebras and Representation Theory . UK: Springer, 2018.

5.Larson, Ron. Elementary Linear Algebra 6th Edition. New York: Houghton Mifflin Harcourt
PublishingCompany, Richard Stratton, 2009.

6.Pierce, Richard S. Assosiative Algebras . Berlian: Springer-Verlag, 1982.
7.Ruiter, Joshua. "Semisimple Complex Lie Algebras." Research, Mathematic, 2016.

8.Seymour Lipschutz,Marc Lars Cipson. Linear Algebra. Fourth Edition. Newyork: Mcgraw ltill
comanies, 2009.

20



!h' .
ﬁ
“~

Lo pes ¢ pSon ASasliin ISy 5 Koy AShadiunnns 41 o Al 31 1o IS pal
9 3l SSea5 g AT (o) b (ol ped lSASe s Anlihy by
oy il (ledSo S Al ailein sl AS Sen ClolSaalaiial gaia
A Gl ISl 4l ¢ iigen GLiSeEs ) At 5 JlSels
ORSe  ( (so sl SaiedS (soalis o yra daar 4Se ) At 3 Sl g

(PSS il 5 (SaSAn (el Ry Jiliia 1Sy (48 )



s94a - (padataw 55l
Salahaddin University-Erbil

(Sl Jlsdy 9 Koy SSdadini

43993 yod (583 0

(Hligiuedy  AlSding glapy 4l Sliddy Sl 5 o5l S Eliilaile iy 40 (MSAG
lilala Sl yal Gu iy sllSa L;M\_'\\j)vg

: u‘\-\\)f‘d oJ\JSoJLou
e S el



