

On Some Mathematical Applications

In Artificial intelligence

Research Project

Submitted to the department of (Mathematic) in partial fulfillment

of

the requirements for the degree of BSc. in (forth)

By:

Rekan Ramadan Salim

Supervised by:

Dr. Hogir Mohammed Yaseen

May– 2024

i

Certification of the Supervisors

 I certify that this report was prepared under my supervision at the Department of

Mathematics / College of Education / Salahaddin University-Erbil in partial fulfillment

of the requirements for the degree of Bachelor of philosophy of Science in Mathematics.

 Signature:

 Supervisor: Dr. Hogir Mohammed Yaseen

 Scientific grade: Lecturer

 Date: 2 / 4 / 2024

 In view of the available recommendations, I forward this report for debate by the

examining committee.

 Signature:

 Name: Assistant Prof. Dr. Rashad Rashid Haji

 Scientific grade: Professor

 Chairman of the Mathematics Department

ii

ACKNOWLEDGMENTS

 In the Name of Allah, I must acknowledge my limitless thanks to Allah,

the Ever-Thankful, for His helps and bless. I am totally sure that this work would

have never become truth, without His guidance.

My deepest gratitude goes to my supervisor Dr. Hogir , who’s worked hard with

me from the beginning till the completion of the present research. A special thanks

to Dr. Rashad the head mathematic Department for his continuous help during

this study. I would like to take this opportunity to say warm thanks to all my

friends, who have been so supportive along the way of doing my research,

colleagues for their advice on various topics, and other people who are not

mentioned here. I also would like to express my wholehearted thanks to my family

for their generous support they provided me throughout my entire life and

particularly through the process of pursuing the BSc. degree.

iii

 Abstract

 In this work we study on some mathematical applications in Artificial

intelligence. First, we study mathematical applications in computer

programming and algorithms. We show how mathematical concepts applied

thier, such as algebra, geometry, and calculus, can be used to solve complex

problems and optimize algorithms in various programming languages, with a

focus on C++. In addition, we show how programming languages use

mathematical concepts in their structure. Moreover, we study mathematical

applications in neighbor algorithm, quadratic function, mathematical logic ,

game theory and binary system. At the end, we study mathematical

applications in simple linear regression, k-nearest neighborhood and

newton’s forward interpolation formula. Furthermore, we solve many

examples that illustrate the applications.

iv

Table of Contents

Acknowledgments ... ii

Abstract .. iii

Introduction ... iv

Chapter one : Mathematical applications in computer programming .. 1

1.1History .. 2

 1.2Neighbor Algorithms K-Nearest: ……………………………………………………...………….3

1.3Quadratic functio : ... 10

1.4Mathematical Logic in c++ 1: ... 12

 1.5Game Theory : .. 13

 1.6Binary System : .. 15

Chapter two Simple linear regression and Newton's forward interpolation 16

2.1 Simple Linear Regression : .. 17

 2.2K-Nearest Neighborhood : ... 20

2.3Newton’s Forward Interpolation Formula : ... 24

 ە پوخت.. 28

References ... 27

1

Introduction

 Artificial intelligence (AI) relies heavily on mathematics, which provides the

theoretical framework for many AI methods. Calculus, linear algebra, probability

theory, and statistics are only a few of the math subjects that are essential for

comprehending and creating AI systems. There is a significant relationship

between mathematics and computer science. Math is used by computer scientists

in a variety of professional settings. Mathematics provides the theoretical

foundation for several subfields of computer science, and computer scientists use

specialized mathematical themes to solve specific computing challenges.

In machine learning, calculus is used to optimize functions so that algorithms can

learn from data and get better over time. For manipulating high-dimensional data,

such text and images, as well as for carrying out operations in neural networks

and crucial AI technology linear algebra plays a key role. In AI systems,

probabilistic graphical models and Bayesian inference are two examples of how

probability theory and statistics are used to explain uncertainty and make

judgments. In general, math is the foundation of artificial intelligence (AI),

enabling scientists and engineers to build intelligent systems.

 In this work we study on some mathematical applications in artificial

intelligence and computer science. This work consists of three chapters and is

organized as follows. In chapter one we study mathematical applications in

neighbor algorithm, quadratic function, mathematical logic, game theory and

binary system. In chapter two we study the applications in simple linear

regression and k-nearest neighborhood. Furthermore, we study the applications

of newton’s forward interpolation formula. In addition, we solve many examples

that illustrate the applications.

2

Chapter one

Mathematical applications in computer programming

 At the heart of AI, there exists a mathematical framework that underpins its

every operation. AI algorithms, whether they are used for image recognition,

speech synthesis, or autonomous driving, all rely on mathematical principles. It

is through these principles that AI algorithms speak their unique language:

AI algorithms use mathematical formulas and equations to process data and make

decisions. These formulas can be simple or incredibly complex, depending on the

task at hand. For example, in machine learning, algorithms use mathematical

functions to fit data to models and make predictions.

 Discrete mathematics is the foundation of computer science, and it teaches the

use of algorithms. Furthermore, mathematics gives the analytical skills required

in computer science. Applying math in programming involves using

mathematical concepts to solve problems efficiently. This includes algorithms

that explore neighboring elements, quadratic functions for modeling, logical

reasoning, game theory for strategic decision-making, and binary systems for

representing data in computers.

1.1 History of Artificial Intelligence:

Artificial intelligence's historical evolution from the "Dark Ages" to knowledge

based systems The field of artificial intelligence was established by three

generations of scientists. The following lists some of the most significant

occasions and figures from each generation:

 The ‘Dark Ages’, or the birth of artificial intelligence (1943–1956).

In 1943, Warren McCulloch and Walter Pitts delivered the first piece of work

officially recognized as artificial intelligence (AI). McCulloch, who graduated

from Columbia University with degrees in philosophy and medicine, was

appointed director of the Basic Research Laboratory in the University of Illinois

Department of Psychiatry. His studies on the central nervous system led to the

development of the first significant contribution to artificial intelligence: a brain

3

neuron model In 1943, McCulloch and his colleague Walter Pitts, a young

mathematician, presented a model of artificial neural networks in which every

neuron was assumed to be in a binary state, meaning that it was either on or off.

They proved that the Turing machine was actually equal to their neural network

model. shown that a network of interconnected neurons could calculate any

computable function. McCulloch and Pitts also demonstrated the learning

capabilities of basic network architectures The neural network concept sparked

research into simulating the brain in the lab, both theoretically and

experimentally. But investigations made it abundantly evident that the binary

model of neurons was incorrect. Actually, a Neurons are extremely non-linear

devices and cannot be thought of as simple two state devices. The principles of

neural computing and artificial intelligence (AI) were created by McCulloch, the

second "founding father" of AI after Alan Turing. The field of ANN saw a

resurgence in the late 1980s following a decrease in the 1970s.The great

mathematician John von Neumann, who was born in Hungary, was the third

person to found AI. He began teaching mathematical physics at Princeton

University in 1930. He was Alan Turing's friend and coworker. Von Neumann was

instrumental in the Manhattan Project, which produced the nuclear weapon,

during World War II. Additionally, he joined the University of Pennsylvania's

Electronic Numerical Integrator and Calculator (ENIAC) advisory board and

contributed to the creation of the Electronic Discrete neural networks made

artificially (ANN). The field of ANN saw a resurgence in the late 198Variable

Automatic Computer (EDVAC), a stored program computer, following a slump

in the 1970s. The neural network model developed by McCulloch and Pitts had

an impact on him. Von Neumann sponsored and encouraged two graduate

students in the Princeton mathematics department, Marvin Minsky and Dean

Edmonds, when they constructed the first neural network computer in 1951.

Claude Shannon was another member of the first generation of researchers. In

1941, after earning his degree from Massachusetts Institute of Technology (MIT),

he started working at Bell Telephone Laboratories. Shannon discussed the

4

possibilities of machine intelligence with Alan Turing. He noted that a normal

chess game involved roughly 10120 potential moves in a paper he released in

1950 on chess-playing machines (Shannon, 1950). It would take 3x10106 years for

the new von Neumann-type computer to make its initial move, even if it could

analyze one move each microsecond. Shannon thus illustrated the necessity of

employing heuristics when looking for a solution. Another AI creator, John

McCarthy, attended Princeton University. He persuaded Claude Shannon and

Martin Minsky to plan a summer party (Negnevitsky, 2011)

Mathematics plays a critical role in artificial intelligence. Artificial intelligence

(AI) has evolved as a disruptive technology, changing many parts of our

existence. Mathematics plays a fundamental part in the astounding achievements

and capabilities of artificial intelligence. Mathematics provides a framework for

AI systems to learn, reason, and make intelligent decisions. In this post, we will

look at how mathematics is used in AI and how important it is. Mathematics

serves as the foundation for AI algorithms and models, allowing machines to

process, analyze, and understand massive volumes of data. Machine learning

algorithms require concepts from linear algebra, calculus, probability theory, and

statistics. These algorithms utilize mathematical equations and functions to

recognize patterns, forecast outcomes, and categorize data. Linear algebra, for

example, is crucial in the creation of neural networks. Potential applications and

benefits of integrating mathematics with AI in domains like healthcare, finance,

and robotics include:

• Healthcare: Mathematicians contribute to AI-powered medical imaging

techniques, disease diagnosis models, and personalized treatment

optimization algorithms, leading to improved patient outcomes and more

efficient healthcare delivery.

• Finance: By leveraging mathematical models and AI techniques,

mathematicians contribute to areas such as algorithmic trading, fraud

detection, risk assessment, and portfolio optimization, enhancing financial

decision-making and market efficiency.

5

• Robotics: Mathematicians play a crucial role in developing algorithms for

robot perception, motion planning, and control, enabling robots to navigate

complex environments, perform precise tasks, and effectively collaborate

with humans.

Mathematics has been at the core of AI since its inception, with mathematicians

playing a pivotal role in shaping the field. They have made substantial

advancements in fields like linear algebra, optimization theory, and deep learning.

However, challenges persist, and applied mathematicians have a unique

opportunity to contribute to ongoing advancements in AI.

To truly appreciate the synergy between AI and mathematics, we need to

recognize that mathematics is the language that enables AI to operate efficiently

and effectively. Here are a few key mathematical principles that underpin AI:

Statistics: Statistics is the science of collecting, analyzing, and interpreting data.

In the world of AI, statistical methods are crucial for understanding uncertainty,

estimating probabilities, and making data-driven decisions. Techniques like

regression analysis, classification, and hypothesis testing are statistical tools used

to build AI models and assess their accuracy.

Linear Algebra: Linear algebra deals with vector spaces and linear equations. It

may sound abstract, but in AI, it’s a fundamental tool for representing and

processing data. Matrices and tensors are used to perform operations in neural

networks, image processing, and data transformations.

Calculus: Calculus is the mathematical framework for understanding how things

change. It plays a critical role in optimization tasks, which are central to training

machine learning models. Gradient descent, a calculus-based algorithm, is the

driving force behind adjusting model parameters to minimize errors and improve

predictions.

Artificial intelligence (AI) has evolved as a disruptive technology, changing many

parts of our existence. Mathematics plays a fundamental part in the astounding

achievements and capabilities of artificial intelligence. Mathematics provides a

6

framework for AI systems to learn, reason, and make intelligent decisions. In this

post, we will look at how mathematics is used in AI and how important it is.

The connection between AI and mathematics is not just theoretical; it’s the

practical foundation on which AI systems are built. The algorithms used in AI

are essentially mathematical formulas, and a deep understanding of these

mathematical principles is the key to unlocking AI’s potential. As we move

forward in this exploration of the mathematical underpinnings of AI, we’ll delve

deeper into how these principles are put into practice in various AI applications

and models.

1.2 Neighbor Algorithms K-Nearest:

 The k-nearest neighbors (KNN) algorithm is a non-parametric, supervised

learning classifier, which uses proximity to make classifications or predictions

about the grouping of an individual data point. It is one of the popular and simplest

classification and regression classifiers used in machine learning today.

A. the crisp K-NN Algorithm

Let W=(x1,x2,…,xn) be the set of n labeled samples . the algorithm is as follows

BEGIN

Input y, of unknown classification

Set k , 1 ≤ 𝑘 ≤ 𝑛

Initialize i=1

DO UNTIL (k-nearest neighbor found)

Compute distance from y to xi

IF(𝑖 ≤ 𝑘) THEN

Include xi in the set of K-nearest neighbors

ELSE IF (xi is closer to y than any previous nearest neighbor) then Delete

farthest in the set of k-nearest neighbors.

END IF

Increment i (Keller, 1985)

 C++ software shows how the k-nearest neighbors (KNN) algorithm for

classification can be implemented simply. A dataset of objects with characteristics

(size and color) and associated labels (such as "apple" or "orange") is included in

7

the software. The objective is to categorize a new object in the dataset using its

features and the labels of its k-nearest neighbors.

 Example:1.1:

#include<iostream>

#include<cmath>

Using namespace std;

// define a simple representation of subjects with features (e.g.. size and color)

Struct Object{ Double size; String

color;

};

// define a dataset of objects with corresponding labels

Struct DatasetElement{

 Object object;

String label;

}’

DatasetElement dataset[] = {

{{3.0,”red”},”apple”},

{{4.0,”orange”},”oereng”}, {{2.5,”green”},”grape”},

{{5.0,”orange”},”orange”}, {{3.5,”red”},”apple”},

// additional objects and labels can be added

};

// function to calculate the Euclidean distance between two objects

Doule calculateDistance(const Object& obj1, const Object& obj2){

Double sizeDifference = obj1.size – obj2.size;

Double colorDifertence = (obj1.color==obj2.color) 0.0 : 1.0;// assuming color

dissimilarity as 1.0

Return sqrt (pow(sizeDiference, 2)+ pow(colorDiference, 2))};

// k-nearest neighbors classification

String classifyObject (const Object& newObject , int k){

// calculate distance between the new objects and all objects in the dataset

Pair<double , string > distance [sizeof(datset) / sizeof(dataset[0])]; //

pair : (distance label)

For(int i=0 i<=sieof(dataset) / sizeof(dataset[0]) ; i++){

Double distance = calculateDistance(newObject, datset[i].object);

Distance[i]={distance, dataset[i].label};}

// implement a simple version of the sort function (select sort)

For(int i=0; i<=sizeof(dataset) / sizeof(dataset[0]);i++){ int minIndex = i;

For(int j=i+1;j<sizeof(dataset) /sizeof(dataset[0];++j){

If(distances[j].first < distances[minIndex].first){ minIndex=j;

}}

Swap(distances[i].distances[minIndex]);} // count the votes

 from the k-nearest neighborts

Unordered_map<string , int>>voteCount;

For(int i=0;i<k’i++){

String label = distances[i].second; voteCount[label]++I;

8

}

// find the label from maximum votes

String predictedLabel;

Int maxVotes=0;

For(const auto& entry : voteCount){

If(entry.second > maxVotes){

predictedLabel = entry.first;}} retrun

predictedLabe;} int main(){ //new

object to be classified by robot

Object newObjecr = {3.8,”red”}; / number of nearest neighbors to consider

Int k=3; // classify the object using k-nearest neighbors

String predictedLabl = classifyObject(newObject , k);

//Output the predicted label

Cout<<”predicted Label :”<<predictedLabel<<endl; Retrun 0;

Example 1.2:
This C++ application controls a simple robot by allowing the user to enter

commands to move and rotate the robot. It encapsulates many actions, such as

forward and backward movement and left and right turning, using functions. The

primary function consists of a loop that asks the user for input repeatedly until 'q'

is entered, at which point the user can operate the robot [2].

 #include<iosteam>

Using namespace std;

// function to move robot forward

Void moveForward(){

Cout<<”robot moving forward “<<endl;}

// function to move robot backward Void

moveBackward{

Cout<<”rorbot moving backward”<<endl;

}

Function to turn robot right

Void turnRight(){

Cout<<”robot turning right”<<endl;}

// function turnLeft(){

Cout<<”robot turning left”;}

int main(){

// user input for robot movement

Char userInput;

Cout<<”control the robot (f: forward , b: backward , l:left , r:right, q:quit):”;

//continue taking user input util ‘q’ is entered

Whike(true){

Cin> userInput;

9

// perform the selected operation Switch(userInput){

Case

‘f’:

moveForward();

break; Case ‘b’: movebackward(); break; Case

‘l’: turnLeft(); break; Case ‘r’: turnRight(); break;

case ‘q’:

cout<<existing the robot control program,”<< endl; return

0; default:

cout<<”invalid input, try again “<<endl;} //

prompt for the next user input

Cout<<”control the robot (f: forward , b: backward , l:left , r:right, q:quit):”; }return

0;}

Example 1.2:
Using a class called LoginSystem, this C++ program implements a basic login

system. Private member variables for the right password and username are

contained in the class. The authenticateUser method, which verifies that the

password and username entered match the right credentials, is the primary

functionality. An instance of login system is created in the main function, where

the user is prompted to enter their password and username. The authenticate user

function of the is then called with the entered credentials. login system object,

and the application outputs the success or failure of the login

 #include<iostream>

#include<string>

Using namespace std;

Class LoginSystem{ Private:

Const string correctUsername = “yourUsername”;

Const string correctPassword = “password123”; Public:

// function to check if the provided user name and password are correct bool

autenticateUser(const string&

enteredUsername,const sting enteredPassowrd)}

}; int main(){

// create a login system

LoginSystem myLoginSystem;

// input username and password from the user

String eterdUsername,enterdPassowrd;

Cout<<”enter your username :”;

Cin>>enterdUsername; Cout<<”enter your

password :”

Cin>>enterdPassword;

// authenticate the user using the login system figure2.3

10

If(myLoginSystem.authnticateUser(enterdUsername, enteredPassowrd)){

Cout<<”login successful. Welcome, “<<enterdUsername<<”!”<<endl; }else{ Cout<<”

login failed . incorrect username or password. “<<endl;

}

Return 0;}

Example 1.3:
An explanation of fuzzy logic systems Four primary components make up the

fundamental design of the fuzzy logic system: the fuzzy rule base, fuzzy inference

engine, fuzzifier, and defuzzifier. A set of fuzzy IF-THEN rules make up the fuzzy

rule base. An example of a fuzzy rule that describes the link between a heating

power and a room's temperature trend may be. The temperature will rise quickly

if the heating output is high (Kobersi, 2013)

 FUZZY LOGIC 2.4:

We have a straightforward fuzzy logic system that uses the current temperature

to control heating. The control heating function combines the fuzzy sets "cold,"

"warm," and "hot," which are defined with triangular membership functions, to

calculate the heating amount. Next, a percentage representation of the output is

shown. This is an explanation of the code.

#include<iostream>

 // fuzzy sets for temperature

 Double cold(double temperature)

 {

 If (temperature <=20){

Return 1.0;

 } else if (20 < temperature && temperature <= 25){

 Return (20 – temperature / 5.0)

} else{

return 0.0;

 }

} double warm(double temperature){ if(20 <

temperature && temperature <= 25){ return (temperature

- 20 / 5.0 ;

} else if (25 <temperature && temperature <= 30)

{ return (30 – temperature / 5.0);} else{ return 0.0; }

} double hot(double temperature){ if(temperature <=

11

25){

 return 0.0 ;

} else if (25 < temperature && temperature <= 30

) { return (temperature – 25) / 5.0;

} else {

 Return 1.0;

 }

}

 // fuzzy rules for heating control

 Double control_heating (double temperature){

 Double heating_level=0.0;

 // rule 1 : if it’s cold , increase heating

heating_level=std::max(heating_level,cold(temperature));

 // rule 2 : if it’s warm , maintain heating

 Heating_level=stdmax(heating_level,warm(temperature));

 // rule 3 : if it’s hot ,decrease heating

heatint_level=std::max(heating_level,hot(temperature));

 Return heating_level; }

The heating level is a measurement of how much heating should be adjusted,

taking into consideration "warm" and "hot." The actual rules and fuzzy sets can

be adjusted based on specific heating control requirements. In this example, if the

current temperature is, for example, 22C0, the program determines the heating

level based on the fuzzy rules and presents it as a percentage.

1.3 Quadratic Function : A polynomial function of degree 2 is a quadratic

function, meaning that its highest power term is squared. The quadratic function's

generic form is 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 Here:

• x is the variable .

• a,b and c constant with 𝑎 ≠ 0

• ax2 represents the quadratic term .

• bx represents the linear term .

• c is the constant term .

A quadratic function's graph is a parabola, or U-shaped curve.

The sign of the coefficient a determines whether the parabola will open upward or

downward.

12

 Let's look at a practical illustration of a quadratic function. Suppose you are

working on a physics assignment. Specifically, the following quadratic function can

be used to simulate the motion of a projectile shot vertically:

ℎ(𝑡) = −4.9𝑡2 + 𝑣𝑜𝑡 + ℎ𝑜 where : h(t) is the height of the projectile at t, t is the time in

second. vo is the initial velocity of the projectile . ho is the initial height , now , let’s

create a c++ program to calculate the height of the projectile at a given time , given

specific initial condition :

Example 1.4:

 #include<iostream>

 double projectileHeight (double t , double v0, double h0)

{ Const double gravity = 9.8; // acceleration due gravity in m/s^2 return -4.9 * t * t + v0 * t +

h0 ;
}

Int main(){

 // initial condition for the projectile double initialVelocity = 20.0; //

in m/s double initialHeight = 10.0; // in meters // example : calculate

height at time = 2 seconds double time = 2.0;

 double height = projectileHeight(time , initialVelocity , initialHeight);

 std::cout << “ height of the projectile at t= “ << time << “ seconds : “ <<

height

<< “ meters/n “; return 0;

In this example, the quadratic function is used by the projectile Height function

to determine the projectile's height at a particular time. The application then

shows how to use this, given an initial condition, to find the height at a

particular time. This type of modeling is often used in engineering and physics

to forecast projectile trajectory.

1.4 Mathematical logic in c++ :

the rational process We would like to mention three more basic types of things

when working with boolean values (true or false values). Let A and B be two bool

variables. Statements like "If A and B are both true then this," "While either A or

B is true then this," or "If A and not B are both true then this" will eventually need

to be made. C++ offers a logical and operator (&&), a logical inclusive or operator

(||), and a logical not operator (!) to help in expressing these concepts in code. the

rational process The operators "&&" and "||" act on two operands because they

are binary operators. The '!' operator, on the other hand, acts on a single operand

and is a unary operator. Keep in mind that the operand(s)' truth-value determines

the truth-value of these logical procedures. The truth-values of these logical

operators for various truth combinations of A and B are displayed in the truth

13

tables that follow, where "T" stands for true and "F" for false. The truth table,

logical AND (&&). Observe that an AND operation is true if and only if both of

its operands are true based on the four conceivable combinations.

A B A&&B

T T T

T F F

F T F

F F F

 Table 1.1

Logical OR (||) truth table. Observe from the four possible combinations that

an OR operation is true if and only if at least one of its operands is true.

A B A||B

T T T

T F T

F T T

F F F

 Table 1.2

Logical NOT (!) truth table. The not operator simply negates the truth-value

of a boolean operand -true becomes false when negated and false becomes true

when negated. (Luna, 2017)

A !A

T F

F T

 Table 1.3

14

Chapter two Simple linear regression and Newton's

forward interpolation

Programming to math equations involves using code to implement mathematical

concepts and algorithms. Three commonly used methods for this are simple linear

regression, k-nearest neighbor, and Newton's forward interpolation. These

techniques are used to analyze data, make predictions, and interpolate values

between known data points.

2.1 Simple linear regression :

Simple linear regression lives up to its name: it is a very straightforward simple

linear approach for predicting a quantitative response Y on the basis of a sin-

simple linear regression gle predictor variable X. It assumes that there is

approximately a linear relationship between X and Y. Mathematically, we can

write this linear relationship as

𝑌 ≈ 𝛽0 + 𝛽1𝑋

You might read "~" as "is approximately modeled as". We will sometimes

describe by saying that we are regressing Y on X (or Y onto X) For example, X

may represent TV advertising and Y may represent sales Then we can regress

sales onto TV by fitting the model

𝑠𝑎𝑙𝑒𝑠 ≈ 𝛽0 + 𝛽1 × 𝑇𝑣

In equation, 𝛽0 and 𝛽1 , are two unknown constants that represent the intercept

and slope terms in the linear model. Together, Bo and 3, are known as the model

coefficients or parameters. Once we have used our slope training data to produce

estimates 3o and &, for the model coefficients, we cofficiont can predict future

sales on the basis of a particular value of TV advertising parameter by computing

𝑦 ̂ = 𝛽̂0 + 𝛽̂1𝑥 where y indicates a prediction of Y on the basis of X =2.

Here we use a hat symbol, to denote the estimated value for an

unknown parameter or coefficient, or to denote the predicted value of

the response.

15

Simple linear regression model: There are parameter a0 , a1 and e

such that for any fixed value of the independent variable x through

the dependent variable is a random variable related to x through the

model equation : (James, 2013)

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒 where : 𝑎 1 =
𝑥𝑦̅̅ ̅̅ −𝑥̅×𝑦̅

𝑥2−(𝑥̅)2
 , 𝑎0 = 𝑦̅ − 𝑎1𝑥̅ , 𝑥𝑦̅̅ ̅ =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

𝑛

 𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 𝑦̅ =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 , 𝑥2̅̅ ̅ =

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛

y : dependent variable .

• ao : y intercept .

• a1 : slop coefficeint of x .

• x : independent variable .

• e : random error .

 Example 2.1: let us consider an example where five week’s sales data (in

thousand) in given show table :

Week’s xi Sales(in

thousand) yi

1 1.2

2 1.8

3 2.6

4 3.2

5 3.8

 Table 2.1

16

xi yi xi2 xiyi

1 1.2 1 1.2

2 1.8 4 3.6

3 2.6 9 7.8

4 3.2 16 12.8

5 3.8 25 19

∑ 𝑥𝑖

=

15

∑ 𝑦𝑖

=

12.6

∑ 𝑥𝑖2

= 55

∑ 𝑥𝑖𝑦𝑖

= 44.4

 𝑥̅𝑖
=

3

𝑦̅𝑖 =

2.52

𝑥̅̅2̅𝑖 =

11

𝑥̅𝑖𝑦̅𝑖 =

 88.8

Table 2.2 𝑎1 = 𝑥𝑦̅̅ ̅̅ −𝑥̅×𝑦̅

𝑥2−(𝑥̅)2 = 8.88−3×2.52
11−(3)2 = 0.66 ,𝑎0 = 𝑦 ̅ − 𝑎1𝑥 = 2.52 − 0.66 × 3 = 0.54

 (linear regression) 𝑦 = 𝑎0 + 𝑎1𝑥 = 0.54 + 0.66𝑥 , 𝑎𝑡 𝑥 = 7(7 ,12𝑡ℎ 𝑤𝑒𝑒𝑘) 𝑎𝑛𝑑

𝑥 = 7 𝑦 = 0.54 + 0.66 × 7 = 5.16

 At x=12 ,𝑦 = 0.54 + 0.66 × 12 = 8.46

Here’s c++ program to this example :

Example 2.1:
#iclude<iostream> #include<cmath> using

namespace std;

 int main(){ while(true){

float x[100] , y[100] yx[100],xx[100];

 float sum1=0 , sum2=0,sum3=0; int n; \\ the

number of data cout<<” Enter the number of data

:”<<endl; cin>>n; for(int i=1;i<=n;i++){

cout<<”x{“<<i<<”}=”; cin>>x[i];

cout<<”y{“<<i<<”}=”;

cin>>y[i];

yx[i]=x[i]*y[i]; xx[i]=x[i]*x[i]; }

for(int i=1;i<=n;i++){ cout<<”

yx{“<<i<<”}=”; cout<<yx[i]<<endl; }

for(int i=1;i<=n;i++){ cout<<”x^2{“<<i<<”}=”;

cout<<xx[i]<<endl; } for (int i=1;i<=n;i++){ sum1=sum1+x[i];

sum2=sum2+y[i]; sum3=sum3+yx[i]; sum4=sum4+xx[i]; }

Cout<<”sum of xi :”; Cout<<sum1<<endl;

Cout<<”sum of yi :”; Cout<<sum2<<endl;

17

Cout<<” sum of yi*xi :”;

Cout<<sum3<<endl;

Cout<<”sum of xi^2 :”;

Cout<<sum4<<endl;

Float avg1 , avg2 , avg3 ,

 avg4; avg1=(sum1/n); avg2=(sun2/n);

avg3=(sum3/n); avg4=(sum4/n); cout<<”

avarege of xi :”; cout<<avg1<<endl; cout<<” avatage

of yi :”; cout<<”avg2<<endl; cout<<” average of

xi*yi :”; cout<<” avg3 <<endl; cout<<” average

 of xi^2 :”;

cout<<avg4<<endl; float a1,ao,g,m;

a1=(avg3-(avg1*avg2))/(avg4-(avg1^2)); ao=avg2-a1*avg1; cin>>m; \\ m is week

y=ao+a1*m;cot<<”y=”<<y<<endl; } return 0; }

2.2K-Nearest Neighborhood: The biggest advantage to thinking of

examples as vectors in a high dimensional space is that it allows us to apply

geometric concepts to machine learning. For instance, one of the most basic

things that one can do in a vector space is compute distances. In two-

dimensional space, the distance between ⟨2, 3⟩ and ⟨6, 1⟩ is given by p(2 − 6)2

+ (3 − 1)2 = √18 ≈ 4.24. In general, in D-dimensional space, the Euclidean

distance between vectors a and b is given by Eq (3.1) (see Figure 3.2 for

geometric intuition in three dimensions)

𝑑

Now that you have access to distances between examples, you can start thinking

about what it means to learn again. Consider Fig- ure 3.3. We have a collection

of training data consisting of positive examples and negative examples. There

is a test point marked by a question mark. Your job is to guess the correct label

for that point. Most likely, you decided that the label of this test point is positive.

One reason why you might have thought that is that you believe that the label

for an example should be similar to the label of nearby points. This is an

example of a new form of inductive bias. The nearest neighbor classifier is build

upon this insight. In com- parison to decision trees, the algorithm is ridiculously

simple. At training time, we simply store the entire training set. At test time, we

get a test example xˆ. To predict its label, we find the training ex- ample x that

18

is most similar to xˆ. In particular, we find the training example x that minimizes

d(x, xˆ). Since x is a training example, it has a corresponding label, y. We

predict that the label of xˆ is also y. Despite its simplicity, this nearest neighbor

classifier is incred- ibly effective. (Some might say frustratingly effective.)

However, it is particularly prone to overfitting label noise. Consider the data in

Figure 3.4. You would probably want to label the test point positive.

Unfortunately, it’s nearest neighbor happens to be negative. Since the nearest

neighbor algorithm only looks at the single nearest neighbor, it cannot consider

the “preponderance of evidence” that this point should probably actually be a

positive example. It will make an un- necessary error. A solution to this problem

is to consider more than just the single nearest neighbor when making a

classification decision. We can con- sider the K-nearest neighbors and let them

vote on the correct class for this test point. If you consider the 3-nearest

neighbors of the test point in Figure 3.4, you will see that two of them are

positive and one is negative. Through voting, positive would win. The full

algorithm for K-nearest neighbor classification is given in

Algorithm 3.2. Note that there actually is no “training” phase for K-nearest

neighbors. In this algorithm we have introduced five new conventions:

1-The training data is denoted by D

2-We assume that there are N-many training examples

3-These examples are pairs (x1,y1),(x2,y2),...,(xN,yN). (Warning: do not confuse

xn, the nth training example, with xd, the dth feature for example x.) 4-We

use []to denote an empty list and · to append · to that list.

5-Our prediction on xˆ is called yˆ

The first step in this algorithm is to compute distances from the test point to all

training points (lines 2-4). The data points are then sorted according to distance.

We then apply a clever trick of summing the class labels for each of the K

nearest neighbors (lines 6-10) and using the sign of this sum as our prediction.

19

The big question, of course, is how to choose K. As we’ve seen, with K = 1, we

run the risk of overfitting. On the other hand, if K is large (for instance, K = N),

then KNN-Predict will always predict the majority class. Clearly that is

underfitting. So, K is a hyperparameter of the KNN algorithm that allows us to

trade-off between overfitting (small value of K) and underfitting (large value

of K) (Daumé, 2017)

 Example 2.2: let’s consider a dataset of house with feature “ square footage

“ and “ number of bed room “we want to predict the price of a house based of

these feature

House Sq,ft Bed room price

1 1500 3 $250,000

2 1800 3 $300,000

3 2000 4 350,000

4 1400 2 200,000

 Table 2.3

Let’s say we want to predict the price of a house with (1600 sq,ft , 3 bed room)

Assume k=2

Calculate the distance between target house and each data point By

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

𝑑

𝑑

𝑑

𝑑

20

House Sq,ft Bed room distance

1 1500 3 100

2 1800 3 200

4 2000 4 447,21

4 1400 2 141,42

Table 2.4

Select the two nearest neighbourhoods based on distance

H1 ($250,000) , H2($200,000)

And the calculate the average of price

(250,000 + 200,000) / 2 = $225,000

Then the new house with (1600 sq,ft , 3 bed rooms) the price is ($225,000)

Let’s write a c++ program to this example :

Exampl 2.3:

#include<iostream>

#include<cmath>

#include<vector> struct

House { int sq; int bd; int pr;

}; double calculateDistance(int sq1, int bd1 , int sq2 , int bd2){

return sqrt(power(sqr – sqr2 ,2) + pow(bd1 – bd2 , 2)); }

 Int main() {

 // define the house House

houses[] = {

{1500 , 3 , 250000 }

 {1800 , 3 , 300000}

 {2000, 4 , 350000}

{1400 , 2 200000 }

 };

// house to find the price for

Int targetsq = 1600;

Int targetbd = 3;

// set k value

Int k=2;

// calculate distance and find k-nearest neighbors

 Std::vector<std::pair<int,double>>distances;

 For(int i=0 ; i< sizeof(houses) / sizeof(houses[0]); ++i

21

 {

Double distance = calculateDistance(targetsq , targetbd , houses[i].sq, houses[i]. bd

);

Distance.push_back({i,distance});

}

// sort distances

Std::sort(distances.begin(),distances.end(), [](const auto &a, const auto &b){ return

a.second<b.second;

});

// calculate average price of k-nearest neighbors int

totalprice = 0; for (int i=0 ; i<k ; ++i){ totalprice+=

hoses[distances[i].first].pr;

}

// calculate average

Int averageprice = totalprice / k;

// display the result

Std::cout <<” Estimate price a house with “<< targetsq<<” sq and “ << tergerbd <<” bd

using k-nearest neighbors (k=”<< k << “) is $”<< avarageprice << std:: endl; return 0;

}

2.3 Newton’s forward interpolation formula :

𝒚𝒑 = 𝒚𝟎 + 𝒑∆𝒚𝟎 +
𝒑(𝒑−𝟏)

𝟐!
∆𝟐𝒚𝟎 +

𝒑(𝒑−𝟏)(𝒑−𝟐)

𝟑!
∆𝟑𝒚𝟎 +

⋯
𝒑(𝒑−𝟏)…(𝒑−(𝒏−𝟏))

𝒏!
∆𝒏𝒚𝟎 (Burden, 2010)

Example2.4:

 Suppose you have a dataset of weather temperature reading with missing values

at certain time points , and you want fill in this missing value using interpolation

, the data might look this :

Time(hours) x Temperature(c0) y

0 20

1 22

2 24

3 25

4 26

Table 2.4

22

To fine ∆𝑦 , ∆𝑦2, ∆𝑦3 𝑎𝑛𝑑 ∆∀𝑦4

x y ∆𝑦 ∆𝑦2 ∆𝑦3 ∆𝑦4

0 20 2 0 -1

1 22 2 -1 1 2

2 24 1 0

3 25 1

4 26

 Table 2.5

 We find the temperature the hour (1.5). If 𝑦(1.5) = 23.109357

Let’s write c++ program :

#icnlude<iostream>

Double calculateInterpolation (double x[], double y[] , int n , double target) {

Double result = y[0];

Double u= (target – x[0]) / (x[1] – x[0]); For

(int i=1;i<n;i++){ Double term = 1.0;

For(int j=0;j<i;j++){ term*=(u-j) / (j+1);

} result

+= term * y[i];

 }

 Return result ;

} int

main(){

 / / given data

Double x[] = { 0 ,1 , 2 , 3 , 4 }; Double y[] =

{ 20 , 22 , 24 , 25 , 26 }; int n = sizeof(x)

/ sizeof(x[0]); // target value

Double target = 1.5 ;

// calculate interpolation

Double result = calculateInterpolation (x , y , n , target);

// output the result

Std::cout << “ interpolation value at x = “<< target <<” is :” << result <<std::endl;

Retur 0; }

 2.4 Graph theory applications in computer science

Graphs provide a convenient way to represent various kinds of mathematical

objects. Essentially, any graph is made up of two sets: 1- A set of vertices 2- A set

of edges. Depending on the particular situation, restrictions are imposed on the

type of edges we allow. For some problems directed edges are applied and for

23

other problem undirected edges are applied from one vertex to other. So graphs

give us many techniques and flexibility while defining and solving a real life

problem.

In this section, we study the role of Graph theory in computer science. Computer

scientists use graphs to model problems as diverse as how to detect a deadlock

condition in an operating system and how to plan efficient routings for

transportation networks. Informally, a graph is a bunch of dots and lines where

the lines connect some pairs of dots. The dots are called vertices (or nodes) and

the lines are called edges. Graphs are simple but extremely useful mathematical

objects; they are ubiquitous in practical applications of computer science. For

example:

• In a computer network, we can model how the computers are connected to each

other as a graph. The nodes are the individual computers and the edges are the

network connections. This graph can then be used, for example, to route

messages as quickly as possible.

• In a digitalized map, nodes are cities and edges are roads (or highways).

We may have directed edges (directed gtraph) to capture one-way streets

• On the internet, nodes are web pages, and (directed) edges are links from

one web page to another.

• In a social network, nodes are people, and edges are friendships.

Graphs are used in a wide variety of models. Here we just count some of them

1. Social Networks.

2. Communication Networks (Call Graphs).

3. Information Networks (The Web Graph, Citation Graphs).

4. Software Designe Applications.

5. Transportation Networks.

Graphs are regarded as an excellent modeling tool for representing multiple stages

of interactions between all physical conditions. Several real-world problems can

be depicted using graphs. Here are some key graph applications:

24

Social Networks:

Graphs are unique network conditions that have only one sort of edge between

vertices. Web Graphs: The internet contains a large number of hyperlink

references. In other words, the web is another great source of graph data.

Biological Networks: Space (or biological networks) is a major source of

realworld graphs. Examples include brain networks, protein communication

networks, and nutrition networks.

Information graphs: Geographical information is organized in a graph, and

information A is linked to information B when A represents B in a specific way.

Product recommendations.

2.5 Game theory : is a branch of mathematics that deals with the study

of strategic interaction between rational decision – makers . it is widely applied

in various fields , including economics , political science, biology and computer

science .

 Example 2.5: in c++ to game theory Example:

#include<iostream>

#include<cstdlib>

#include<ctime> using

namespace std; int main(){ cout<<” **************guessing number

game****************\n\n”;

 int Player,computer,times=0; srand (time (0)); computer=(

rand () % 100)+1; \\ a random number from computer cout<<” Enter

your number from 0 to 100\n”; cin>>player; while(player !=

computer){ times++; if (player < computer){ cout<<”

your number is small :\n”; cin>>player ;

 }

 If (player > computer){ cout<<” your number

is big :\n”; cin>>player ;

 } } Cout<<” you are win after (“<< times <<”) times “; return 0; }

Example 2.6: We have an example to create testing calculator in c++ program

use mathematical statement in it :

#include<iostream>

#include<cstdlibe>

Using namespace std;

 Int main(){

25

 While(1){

 Cout<<”****** calculator testing game ****** \n\n”;

 Cout<<”***** choose one of the operation do you want to test *****\n”; Char op;

 Cin>>op;

 Double x,y,x0,x1,z,v;

Srand(time(0)); int n=0;

if(op==’+’){ while(n<=3){

x0=(rand()

% 20)+1; x1=(rand() % 20

)+1; z=x0+x1;

cout<<x0<<”+”<<y<<”=”

; cin>>v; if(v==z){

cout<<”correct \n”; }

if(

v!=z){ cout<<”in

correct\n”; n++;

 }

 }

 Cout<<” you are fail \n”;

 } if(op==’-’){

while(n<=3){ x0=(rand() %

20)+1; x1=(rand() % 20

)+1; z=x0-x1; cout<<x0<<”-“<<y<<”=”;

cin>>v; if(v==z) { cout<<”correct

\n”;

 } if(v!=z){ cout<<”incorrect\n”;

n++;

}

 }

Cout<<” you are fail \n”;

 }

if(op==’*’){ while(n<=3){

x0=(rand()

% 20)+1; x1=(rand() % 20

)+1; z=x0*x1;

cout<<x0<<”*”<<y<<”=”; cin>>v;

if(v==z){ cout<<”correct \n”; } if(v!=z){

cout<<”incorrect\n”; n++; }

}

 Cout<<” you are fail \n”;

} if(op==’/’){ while(n<=3){ x0=(rand()

% 20)+1; x1=(rand() %

20)+1; z=x0/x1;

 cout<<x0<<”/”<<y<<”=”;

cin>>v; if(v==z){

cout<<”correct \n”;

}

26

if(v!=z){ cout<<”incorrect\n”; n++;

 }

}

 Cout<<” you are fail \n”;

 } Cout<<endl; } return 0; }

2.6 Binary system :

Example 2.7: Let's consider an example where binary numbers are used in a

robot's control system to represent sensor data and make decisions. Suppose you

have a robot equipped with a line-following sensor that detects whether it's over

a black line or a white surface. The sensor provides analog readings, and these

readings are converted into binary values for processing.

- Black Line: 1 (binary: 01)

- White Surface: 0 (binary: 00)

The robot's control system continually reads these binary values from the sensor.

Let's say the robot's objective is to follow the line. It might have a simple rule. If

the sensor reads 01 (black line), turn left. If the sensor reads 00 (white surface),

turn right. These rules are implemented in the robot's control algorithm using

binary numbers to represent the sensor states. The robot processes this information

in real-time, making decisions based on the binary-encoded sensor readings to

navigate and follow the line.

 Example 2.8:

C++ program:

#include<iostream>

Const int BLACK_LINE = 0b01; // binary values for line-following sensor

Const int WHITE_SURFACE = 0b00;

Void followinLine(int sensorReading){ // robot control function

 Std::<<” turn left\n”;

 // additional code for left turn action

} else if (sensorReading == WHITE_SURFACE){

Std::cout<<”turn right\n”;

// additional code for right turn action

}else{

 Std::cout<<”unknown sensor reading \n”;

 // additional error handling or default action

} } int main(){ // simulate sensor reading

 Int sensorReading1=BLACK_LINE; Int sensorReading2=WHITE_SURFACE;

// robot makes decisions based on binary-encoded sensor readings return 0; }

27

References

1. Kobersi, I.S., Finaev, V.I., Almasani, S.A. and Abdo, K.W.A., 2013. Control of the

heating system with fuzzy logic. World Applied Sciences Journal, 23(11), pp.14411447.

2. Lentin, J., 2018. Robot Operating System for Absolute Beginners. Apress, Berkeley,

CA.

3. Daumé, H., 2017. A course in machine learning (pp. 149-155). Hal Daumé III. 4.

Keller, J.M., Gray, M.R. and Givens, J.A.,1985. A fuzzy knearest neighbor

algorithm.IEEE transactions on systems, man, and cybernetics, (4), pp. 580-585. 5.

James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An introduction to statistical

learning (Vol. 112, p. 18). New York: springer.

6. Luna, F. (2004). C++ Programming for Games Module I. eInstitute Publishing Inc.

7. Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.). Cengage

Learning.

8. Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems

(2nd ed.). Pearson Education Limited.

9. Sekharan, S. C., et al. (2017) “Application of session login and one-time password

in fund transfer system using RSA algorithm,” April, pp. 1-6. DOI:

10.1109/ICECA.2017.8212763.

28

 پوختە

بوارێکی خێرا و پەرەسەندووە کە زۆر پشت بە بنەما بیرکارییەکان (AI)زیرەکی د ەستکرد

ە توانای ئ ەنجامدانی ئ ەرکەکانی هەیە دەبەستێ ت بۆ دیزاینکردنی سیستە می زیر ەک ک

گۆریتمەکانی ئەل لە هەیە. ڤ مرۆ کی زیرە بە یان پێویست گشتی شێوەیەکی بە کە

بناغەی بیرکاری دەمارییەکان، تۆڕە تا ئامێرەوە بە AIفێربوونی ت پێکدەهێنێ

دابینکردنی چوارچێوە ب ۆ مۆدێلکردنی کێشە ئاڵۆ زەکان، شیکردنەوەی داتاکان و

بڕیاردانی ئاگادارانە. ئەم پێشەکیی ە بەدواداچوون بۆ ئەو چ ەمکە بنەڕەتییە بیرکارییانە

یە، ک ە نیشان دەدا ت کە چۆن بیرکاری ڕۆڵ ێکی گرنگ دەگێڕێ AIدەکا ت ک ە بنەمای

 ت لە داڕشتنی داهاتووی زیرەکی دەستکرد.

