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Abstract 

 

      In this work we study semi-simple Lie algebras. First we write basic 

definitions and results about vector spaces, algebras and Lie algebras that we 

need in our work. Then we study semi-simple Lie algebras and  killing form. We 

determine whether the Lie algebras are semi-simple  by using the Killing form 

and Cartan's Criterion. Moreover we solve some examples to illustrate the reults. 
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Introduction 

 

Algebra is an algebraic structure consisting of a set together with operations of 

multiplication and addition and scalar multiplication by elements of a field and 

satisfying the axioms implied by "vector space" and "bilinear". The multiplication 

operation in algebra may or may not be associative, leading to the notions of 

associative algebras and non-associative algebras.  The set of square matrices with 

entries in the field F is an associative algebra.  A Lie algebra  L over a  field F is a 

vector space L over a  field F , with a bilinear  operation [ , ] : L × L → L such that 

[x, x] = 0 for all x in L and  [x, [y, z]]+[y, [z, x]] + [z,[x, y]]=0 for all x, y, z ∈ L. 

Lie algebras were introduced by Marius Sophus Lie in the 1870s and they have 

applications in physics, differential geometry, Riemann geometry and Quantum 

mechanics. Many mathematicians around the world have made great achievements 

over Lie algebras. The Lie algebra L is simple if it has no ideals other than {0} and L 

and it is not abelian. A Lie algebra is called semisimple if it is a direct sum of simple 

Lie algebras.  

              In this work we study semi-simple Lie algebras. This work consists of three 

chapters. In chapter one we write basic definitions and results about vector spaces, 

algebras and Lie algebras that we need in our work. In chapter two we study basic 

definitions and results about semi-simple Lie algebras.  At the last chapter we study 

Killing form and Cartan's Criterion and we use them to determine whether Lie 

algebras are semi-simple. In all the chapters we solve some examples to illustrate the 

concepts and results.  



2 
 

Chapter One 

Preliminary and Background 

    In this chapter we provide the fundamental definitions and findings concerning 

ring, vector spaces and algebras that we need for our work and  we gave many 

examples about these concepts. 

Definition 1.1: (Lewis, 2017: 46) 

A set G that is closed under a given operation '.' is called a group if the following 

axioms are satisfied. 

1. The set G is non-empty. 

2. If a, b, c ∈ G then a(bc) = (ab) c. 

3. There  exists an element e in G such that 

(a) For any element a in G, e a = a e = a. 

(b) For any element a in G there exists an element a-1 in G such that aa-1 = a-1 a= e.  

 

      A group, which contains only a finite number of elements, is called a finite group, 

otherwise it is termed as an infinite group. By the order of a finite group we mean the 

number of elements in the group.  

 

Definition 1.2: (LARSON, et al 2009:34) 

   We start by recalling the definition of a ring: A ring is a non-empty set R together 

with an addition + : R×R → R, (r + s) → r + s and a multiplication · : R×R → R, (r, 

s) → r · s such that the following axioms are satisfied for all r, s, t ∈ R: 

1- (Associativity of +) r  + ( s + t) = ( r + s) + t.  

2- (Zero element) There exists an element 0R ∈ R such that r +0R = r = 0R +  r  

3- (Additive inverses) for every r ∈ R there is an element −r ∈ R such that 

r + (−r) = 0R. 

4- (Commutativity of +) r + s = s + r. 

5- (Distributivity) r ( s + t) = s. r + r. t and ( r + s) t= r. t + s. t. 

6- (Associativity of ·) r ( s. t) = (rs) t.        
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Definition1.3: (LARSON, et al 2009 :38) 

1)  The ring R is commutative if the multiplication is commutative and the ring R is 

said to have an identity 1 if a×1=1× a = a for all a R.  

2) A ring R with identity 1, where 1≠0 is called a division ring (or skew field) if 

every none zero element a R has a multiplicative inverse, i.e. there is bR such 

that a b = b a =1.    

 

Examples 1.4: 

1) The ring of integers ℤ  under usual addition and multiplicative is a commutative 

ring with identity (Note that ℤ -{0}under multiplication is not a group). Similarly the 

rational numbers ℚ , the real numbers ℝ and the complex numbers are commutative 

rings with identity (In fact they are fields).  

2) The quotient group ℤ /n ℤ is a commutative ring with identity under the operations 

of addition and multiplication modulo n. 

3) : Zp = {0, 1, 2, … , p – 1}, p a prime be the set of integers modulo p. Zp\{0} is a 

group under multiplication modulo p. This is a finite cyclic group of order p-1.         

 

 

Definition 1.5 : (Coder 2017: 29) 

(V, +) is called is a vector space over a field F, if satisfies the following conditions,    

for all  u, v, w ∈ V  andc, d ∈ F : 

1)u + v                             Is a vector in the plane closure under addition 

2) u + v= v + u                  Commutative property of addition 

3) (u + v) + w = u + (v + w) Associate property of addition 

4) (u + 0) = u                       Additive identity 

5) u + (−1) u = 0                   Additive inverse 

6) c u                       is a vector in the plane closure under scalar multiplication 

7) c (u + v) = c u + c v            Distributive property of scalar mult.  

8) (c + d) u = c u + d u           Distributive property of scalar mult. 
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9) c (d u) = (c d) u                    Associate property of scalar mult.  

10) 1(u) = u                    Multiplicative identity property  

We call elements of V vectors and call elements of F scalars.  

 

Examples 1.6:  

1)Let F=R and V= R2. The operations of addition and multiplication are define as 

follows                            ( x1 , y1 ) +( x2 , y2 ) =( x 1 + x 2 , y1 + y2 ) 

                               a( x1 , y1 ) =( a x1 ,a y1 ) , 

for all ( x1 , y1 ) ,( x2 , y2 ) ∈ R2 and a ∈ F . Then R2 is a vector space over R . 

2) p = {(
x
y
z

)| x + y + z = 0 and x, y, z ∈ R}  is a vector space over set of real 

numbers R and "+" and "." are defined in this way 

(

x1

y1

z1

) + (

x2

y2

z2

) = (

x1 +  x2

y1 +   y2

z1 +   z2

) and  r (
x
y
z

) = (
rx
ry
rz

). 

 

 Definition 1.7:  

A nonempty W subset of a vector space  V over the ground field F is called a 

subspace of V if W is a vector space over F. 

 

Theorem 1.8: (Coder 2017:37) 

If W is a nonempty subset of a vector space V then W is a subspace of V if and only 

if the following closure conditions hold. 

1. If u and v are in w then u+v is in W   

2. If u is in W and c is any scalar, then cu is in W.   

 

Definition 1.9:   

A vector u in a vector space V is called a linear combination of the vectors     

u1,u2,….uk in V if v can be written in the form V=c1u1+c2u2+. . . +ckuk                                    

where c1,c2,. . . ,ck, are scalars. 
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Definition 1.10: 

 Let  S ={V1,V2,…,Vk }be a subset of a vector space  V The set S is called a spanning 

set of V  if every vector in V can be written as a linear combination of vectors in S In 

such cases it is said that S spans V. 

 

Examples 1.11:  (Coder 2017:39) 

 (a) The set S={(1,0,0),(0,1,0),(0,0,1)} spans because any vector u=(u1,u2,u3) in can 

be written as u=u1(1,0,0)+u2(0,1,0)+u3(0,0,1)=(u1,u2,u3). 

(b) The set S={1,X), spans P2 because any polynomial function P(X)=a+bx+c in P2 

can be  written as P(X)=a(1)+b(x)+c  = a+bx+c. 

 

Definition 1.12 :  

A set of vectors V={v1,v2,v3} in a vector space V is called a basis for V if the 

following conditions are true.  

1. S spans V.               

2. S is linearly independent.: 

Example1.13:  

The vectors 𝑒1=(1,0 . . . .,0), 𝑒2=(0,1,. . . .,0)  and  𝑒𝑛=(0,0,. . . . ,1) form a basis 

for 𝑅𝑛 called the standard basis for 𝑅𝑛 

  Definition 1.14: (Chaim, et al 2012 :67) 

 Algebra over a field F is a vector space A over F together with a bilinear map,  

A×A→A, (x,y) → xy. The algebra A is said to be associative if (xy)z  =x(yz)  for all 

x, y, z ∈ A and until if there is an element 1A in A such that 1Ax = x = x 1A for all 

non-zero elements of  A.  

Examples 1.15:   

1)The set of polynomial K[x] is a K-algebra where K is a field. 

 2) The set of n by n matrices Mn×n (R) is an R-algebra over R.  

3)  Let H be the collection of elements of the form a + bi + cj + dk where a, b, c, k 

R are real numbers. Define addition component wise by  



6 
 

(a + bi + cj + dk) + (a1+b1 i+c1 j+d1k) = ((a +a1)+(b+b1 ) i+(c+c1 )j+(d+d1) k) and 

multiplication is defined by expanding (a + bi + cj + dk)  (a + b1i + c1j + d1k) and 

using the distributive law and simplifying using the relation  i2= j2= k2=-1 , ij=-j i = k 

, j k =- k j =i , ki =-i k =j,  (1+i+2j)( j + k)=1(j + k)+ i (j+ k) +2j (j + k) =j+ k +ij+i k 

+2j2+2j k =-2+2i+2 k. It is not hard to check that H is an R-algebra which is called 

the real Hamilton Quaternion algebra. The Hamilton Quaternion’s are non-

commutative algebra with identity 1=1+0i+0j+0 k. The inverse of non-zero elements 

are given by  (a + bi + cj + dk)−1=( a + bi + cj + dk) / (a 2+ b2 +c2 +2d) 

 

Definition 1.16: (Coder 2017: 42) 

A Lie algebra L over a field F is a vector space L over a field F , with an operation [ , 

] :L × L → L that satisfiy the following conditions: 

( L1 ) [ , ] is bilinear. 

( L2 ) [ x,x ] =0 for all x in L . 

( L3 ) [ x,[ y,z ] ] +[ y,[ z,x ] ] +[ z,[ x,y ] ] =0 for all x,y,z ∈ L . 

 

Proposition1.17:    

Let I, J be ideals of a Lie algebra L. Then  

I + J := {x + y : x ∈ I, y ∈ J} is an ideal of L. 

Proof.  We need to show that I + J is a vector subspace of L and that                             

for a ∈ L, b ∈ I + J, we have [a, b] ∈ I + J. 

Let v, w ∈ I + J. Then v = v1 + v2 and w = w1 + w2 where v1, w1 ∈ I and v2 , w2 ∈ J. 

Then v + w = v1 + w2 + w1 + w2 =(v1 + w1 )+(v2 + + w2 ) ∈ I + J because  I, J are 

vector subspaces.  

Let λ ∈ F . Then λv = λ(v1 + v2 ) = λv1 + λv2 . Since I, J are vector subspaces, λv1 ∈ I 

and λv2 ∈ J. Thus λv ∈ I + J. 

Let a ∈ L, b ∈ I + J. Then b = bi + bj so 

[a, b] = [a, b1 + b2 ] = [a, b1] + [a, b2 ] 

Since I, J are ideals of L, [a, b1] ∈ I and [a, b2 ]∈ J. Thus [a, b] ∈ I + J. ∎ 
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Definition1.18:  

Let I, J be ideals of a Lie algebra L. Then we define 

                                  [I, J] := Span{[x, y]: x ∈ I, y ∈ J} 

Proposition 1.19:  

 sl(2, C)′ =[ sl(2, C), sl(2, C)] = sl(2, C) 

 

Proposition 1.20:  

Let L be a Lie algebra. Then L/Z(L) is isomorphic to a subalgebra of gl(L). 

 

Proposition 1.21: (Drozd, et al 1994) 

 Let L be a Lie algebra over F , and let I be an ideal of L. We define a bracket on L/I 

by [w + I, z + I] = [w, z] + I . Then this bracket is bilinear. 

Proof.  Let λ1, λ2 ∈ F and v1, v2, w ∈ L. Then 

[λ1(v1 + I) + λ2(v2 + I), w + I]  

= [(λ1v1 + I) + (λ2v2 + I), w + I] 

= [(λ1v1 + λ2v2) + I, w + I]  

= [λ1v1 + λ2v2, w] + I 

= ([λ1v1, w] + [λ2v2, w]) + I 

= ([λ1v1w] + I) + ([λ2v2, w] + I) 

= (λ1[v1, w] + I) + (λ2[v2, w] + I).  

Therefore, the first component in the bracket is linear. Now we test the second 

component. 

[w + I, λ1(v1 + I) + λ2(v2 + I)]  

= [w + I, (λ1v1 + λ2v2) + I] 

= [w, λ1v1 + λ2v2] + I  

= ([w, λ1v1] + [w, λ2v2]) + I 

= ([w, λ1v1] + I) + ([w, λ2v2] + I)  

= (λ1[w, v1] + I) + (λ2[w, v2] + I). 

Therefore, the second component is linear.  Hence this bracket is bilinear on  L/I. ∎ 
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Proposition 1.22.  

Let L be a Lie algebra over F and let I be an ideal of L. Then the bracket on L/I 

satisfies [x, x] = 0, for x ∈ L/I. 

Proof.  Let v ∈ L, so v + I ∈ L/I. Then [v + I, v + I] = [v, v] + I = 0 + I 

where 0 + I is the identity for L/I. ∎ 

 

Proposition 1.23: (Edwin, et al 2007 :51) 

Let L be a Lie algebra over F , and let I be an ideal of L. The  bracket on L/I satisfies 

the Jacobi identity. 

Proof.  Let u + I, v + I, w + I ∈ L/I. Then 

[u + I, [v + I, w + I]] + [v + I, [w + I, u + I]] + [w + I, [u + I, v + I]] 

= [u + I, [v, w] + I] + [v + I, [w, u] + I] + [w + I, [u, v] + I] 

= ([u, [v, w]] + I) + ([v, [w, u]] + I) + ([w, [u, v]] + I) 

= ([u, [v, w]] + [v, [w, u]] + [w, [u, v]]) + I  

= 0 + I  where 0 + I is the additive identity of L/I. ∎ 

Proposition 1.24.  

Let I be an ideal of Lie algebra L over F . Define π : L → L/I by π(z) = z + I.  

Then π is a Lie algebra homomorphism. 

Proof First we show that π is a linear map. Let a ∈ F and u, v ∈ L 

π(au + v) = (au + v) + I = (au + I) + (v + I) = a(u + I) + (v + I) = aπ(u) + π(v) 

so π is linear. Now we show that π preserves the bracket. 

π([u, v]) = [u, v] + I = [u + I, v + I] = [π(u), π(v)] 

Thus π is a Lie algebra homomorphism  ∎ 
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                                                                                 Chapter Two 

Semi-Simple Lie Algebra 

 

   A Lie algebra  L over a  field F is a vector space L over a  field F , with                        

a bilinear  operation [ , ] : L × L → L such that [x, x] = 0 for all x in L and                    

[x, [y, z]]+[y, [z, x]] + [z,[x, y]]=0 for all x, y, z ∈ L. Lie algebras were introduced         

by Marius Sophus Lie in the 1870s and they have applications in physics,     

differential geometry, Riemann geometry and Quantum mechanics.                                  

Many mathematicians around the world have made great achievements over Lie 

algebras. The Lie algebra L is simple if it has no ideals other than {0} and L and                    

it is not abelian. A Lie algebra is called semisimple if it is a direct sum of simple Lie 

algebras. The semisimple Lie algebras over the complex numbers were                           

first classified by Wilhelm Killing (1888–90), though his proof lacked rigor.                     

His proof was made rigorous by Élie Cartan (1894) in his Ph.D. thesis,                                               

who also classified semisimple real Lie algebras. (Erdmann, et al 2018 : 72) 

 

Example 2.1:  

The set of matrices of trace zero over a field F is  simple lie algebra so it is a 

semisimple and denoted by Sln(F). 

 

Definition 2.2: (LARSON, et al 2009 : 68) 

An associative algebra A over a field K is defined to be a vector space over K 

together with a K-bilinear multiplication A x A → A (where the image of (x,y) is 

written as xy) such that the associativity law holds: 

▪ (x y) z = x (y z) for all x, y and z in A. 

The bilinearity of the multiplication can be expressed as 

▪ (x + y) z = x z + y z    for all x, y, z in A, 

▪ x (y + z) = x y + x z    for all x, y, z in A, 

▪ a (x y) = (a x) y = x (a y)    for all x, y in A and a in K. 
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      If A contains an identity element, i.e. an element 1 such that 1x = x1 = x                          

for all x in A, then we call A an associative algebra with one or a unitary (or unital) 

associative algebra. Now we construct a Lie algebra from the associative algebra. 

Theorem 2.3:  

 Let (A,+,∗) be an associative algebra over a field F.  Define [x, y] = x ∗ y − y ∗ x as 

the commutator where x, y ∈ A, then (A,+, [·, ·]) is a Lie algebra over a field F. 

Proof: We need to show that an associative algebra satisfies the properties of a Lie 

algebra under the above multiplication. First we show [·, ·])  is abilinear map.  

 Let x, y, z ∈ A, a, b ∈ F. Then  

[ax + by, z] = (ax + by) ∗ z − z ∗ (ax + by) 

= (ax) ∗ z + (by) ∗ z − z ∗ (ax) − z ∗ (by) 

= a(x ∗ z) − a(z ∗ x) + b(y ∗ z) − b(z ∗ y) 

= a(x ∗ z − z ∗ x) + b(y ∗ z − z ∗ y)  

= a[x, z] + b[y, z].  

Similarly it can be shown that, [z, ax + by] = a[z, x] + b[z, y]. 

Next, we show skew symmetry. With x, y ∈ A, 

[x, x] = x ∗ x − x ∗ x = 0 and [x, y] = x ∗ y − y ∗ x= −y ∗ x + x ∗ y=  −[y, x]. 

Finally, we show the Jacobi identity hold. With x, y, z ∈ A. 

[x, [y, z]]+[z, [x, y]] + [y, [z, x]]  

=[x, y ∗ z − z ∗ y] + [z, x ∗ y − y ∗ x] + [y, z ∗ x − x ∗ z] 

=x ∗ (y ∗ z − z ∗ y) − (y ∗ z − z ∗ y) ∗ x + z ∗ (x ∗ y − y ∗ x)− 

− (x ∗ y − y ∗ x) ∗ z + y ∗ (z ∗ x − x ∗ z) − (z ∗ x − x ∗ z) ∗ y 

=x ∗ y ∗ z − x ∗ z ∗ y − y ∗ z ∗ x + z ∗ y ∗ x + z ∗ x ∗ y − z ∗ y ∗ x− 

− x ∗ y ∗ z + y ∗ x ∗ z + y ∗ z ∗ x − y ∗ x ∗ z − z ∗ x ∗ y + x ∗ z ∗ y 

=x ∗ y ∗ z − x ∗ y ∗ z + z ∗ y ∗ x − z ∗ y ∗ x + z ∗ x ∗ y − z ∗ x ∗ y+ 

+ y ∗ x ∗ z − y ∗ x ∗ z + y ∗ z ∗ x − y ∗ z ∗ x + x ∗ z ∗ y − x ∗ z ∗ y =0 

Therefore  (A,+, [·, ·]) is a Lie algebra over a field F.                           ∎ 
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Theorem 2.4: 

Let L be a complex Lie algebra. Then L is semisimple if and only if there are 

simple ideals L1, . . . , Lr of L such that L = L1 ⊕ L2 ⊕ . . . ⊕ Lr . 

 

Theorem 2.5: 

If L is a semisimple Lie algebra and I is an ideal of L, then L/I is semisimple. 

 

Definition 2.6: (Lewis, 2017: 55) 

Let A be an algebra over a field F. A derivation of A is an F-linear map 

D : A → A such that D(ab) = aD(b) + D(a)b for all a, b ∈ A. 

 

Remark 2.7:  

Let DerA be the set of derivations of A. This set is closed under 

addition and scalar multiplication and contains the zero map. Hence 

DerA is a vector subspace of gl(A). Moreover, DerA is a Lie 

subalgebra of gl(A). If L is a finite-dimensional complex 

semisimple Lie algebra, then ad L = Der L. 

 

Theorem 2.8: 

 Suppose that L is a finite dimensional semisimple Lie algebra over any 

subfield F ⊆ C. Then L can be expressed uniquely as a product of simple ideals. 

   

Example 2.9; 

Let L=n(3,R)={(
0       𝑋12             𝑋13

 0          0                 𝑋23

0          0                    0  

);X12, 𝑋13, 𝑋23,ϵR}be the set of strictly upper 

triangular matrices and  I={(
0         0            𝑋13

 0          0             0        
0          0                0          

): 𝑋13 ϵR}. We show that I is ideal 
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of L. let  x=(
0       0             𝑋13

 0          0                0
0         0                    0  

) and  y=(
0       0             𝑦13

 0          0                0
0         0                    0  

)ϵI and                                   

i =(
0      𝑖             𝑖2

 0          0                𝑖3

0         0                    0  

)ϵ L.  Then 

x+y=(
0              0             𝑋13 +  𝑦13

 0              0                               0
0         0                    0  

) ϵI and  rx=(
0       0             𝑟𝑋13

 0          0                0
0         0                    0  

) ϵI 

[x,i]=- [i,x]=xi-ix 

=(
0         0            𝑋13

 0          0             0        
0          0                0          

) (
0          𝑖12          𝑖13

 0          0               𝑖23

0         0                    0  
)- (

0         0            𝑋13

 0          0             0        
0          0                0          

) (
0          𝑖12          𝑖13

 0          0               𝑖23

0         0                    0  
) 

= (
0          0          0

 0          0               0
0         0                    0  

)-(
0          0        0

 0              0            0
0         0                    0  

)=(
0          0        0

 0          0               0
0         0                    0  

) ϵI 

Then I is ideal of L In fact [L,L]=Z(L). 

 

Theorem 2.10:   

1) 0 and L always ideal in L  

2) If L is abelian then every subspace is ideal in L. 

3)The kernal of a homomophism of Lie algebras is an ideal in a domain. 

4)z(L)=(XϵL; [x,y]=0 for all yϵL)is ideal in L  

 

Theorem 2.11; 

If L = L1 ⊕ L2 ⊕ . . . ⊕ Lr is a semisimple lie algebra Then [L,L]=L where Li 

simple ideals of L.  

Corollary 2.12:  

If L is a simple Lie algebra then [ L,L] =L.  

Theorem 2.13: 

SL2 (R) =  (
𝑎1 𝑏1

𝑐1 −𝑎1
);a,b,cϵR is an ideal of gL2  (R) = (

𝑎 𝑏
𝑐 𝑑

)a,b,c,d ϵ R  

Proof: Let x= (
𝑎1 𝑏1

𝑐1 −𝑎1
)and y=(

𝑎2 𝑏2

𝑐2 −𝑎2
) ϵ SL2(R) i=(

𝑖1 𝑖2

𝑖3 𝑖4
) ϵ gl2 (R)  

x+y = = (
𝑎1 + 𝑏1 𝑎2 + 𝑏2

𝑐1 + 𝑐2 −(𝑎1 + 𝑎2 )
) ϵ SL2 (R) 
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rx== (
𝑟𝑎1 𝑟𝑏1

𝑟𝑐1 −𝑟𝑎1
) 𝜖 𝑠𝐿2 (𝑅) and  

[x,i]= 𝑥𝑖 − 𝑖𝑥 = (
𝑎1 𝑏1

𝑐1 −𝑎1
) (

𝑖1 𝑖2

𝑖3 𝑖4
) − (

𝑖1 𝑖2

𝑖3 𝑖4
) (

𝑎1 𝑏1

𝑐1 −𝑎1
) 

=(
𝑎1𝑖1 + 𝑏1𝑖3 𝑎1𝑖2+𝑏1𝑖4

𝑐1𝑖1 − 𝑎1𝑖3 𝑐1𝑖2 − 𝑐1𝑖4
) − (

𝑖1 𝑎1 + 𝑖2𝑐1 𝑖3  𝑎1 + 𝑖4   𝑐1

𝑖3𝑎1 + 𝑖1𝑐1 𝑖3𝑏1 − 𝑖4𝑎1
) ϵ SL2 (R). 

Then SL2 (R) is an ideal of gl2 (R)   

  We can genialize the above result as follows: 

Example 2.14: (MAURICE 1946) 

𝑠𝑙𝑛  (R) is an ideal of g𝑙𝑛 (R) where g𝑙𝑛 (R)   is the set of all square matrices of size n. 

 

Example 2.15: 

I = (
a 0
0 a

) ; a, cϵR]and L = (
a b
0 c

);a,b,c ϵ F.  We calim that I is a subalgebra of L 

ut it is not ideal. Let x,y  ϵ I where    x = (
a1 0
0 c1

) and y = (
a2 0
0 c2

). 

x − y = (
a1 0
0 c1

) − (
a2 0
0 c2

) x = (
a1   − a2   0         

0   c1   − c2       
) ϵ I 

rx=r(
a1 0
0 c1

)=(
ra1 0
0 rc1

)  ϵ I 

[x,y]=xy-yx =(
a1 0
0 c1

) (
a2 0
0 c2

) − (
a2 0
0 c2

) (
a1 0
0 c1

) 

=(
a1a2 0

0 c1c2

)-(
a2  a1  0

0 c2c1
)=(

a1a2 − a2  a1 0
0 c1  c2 − c2c1

)=(
0 0
0 0

)  ϵ I 

 

Then I is a sub algebra of L , so it is only remain to show that I is not ideal of L.  

Let xϵ Iand i ϵ I.  where x=(
a 0
0 c

) and i=(
x y
0 z

). Then 

[x,i]=xi-ix=(
a 0
0 c

) (
x y
0 z

) − (
x y
0 z

) (
a 0
0 c

) 

=(
xa ay
0 cz

)-(
xa yc
0 cz

)=(
0 ay − yc
0 0

)  ∉  I.   
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Chapter three 

                     The Killing form and Cartan’s Criteria 

 

        The Killing Form is a symmetric bilinear form, which will be used in Cartan’s 

criteria as a tool to help us assess solvability and semisimplicity of Lie Algebras. It is 

defined as follows: K(x, y) := tr(ad x ad y) for x, y ∈L. (Quarrington 2019:87). 

In this chapter we study the criteria about semisimplicity of Lie Algebras by using    

the Killing form and we solve some examples to illustrate the method.   

 

Definition 3.1: (Erdmann,et al 2006:45) 

The killing form k;L*L →F is defined by  K(x,y)=Tr (adX adY) 

the killing form is clearly symmetric, i.e  K(X,Y)=K(Y,X)  

 

Definition 3.2: (Erdmann,et al 2006:28)  

The Lie algebra L is said to be solvable if for some m ≥ 1 we have L(m) = 0 where  

L(1) = [L,L] and  L(k) = [L(k−1), L(k−1) ] for k ≥ 2. 

Theorem (Cartan’s First Criterion) 3.3  : (Erdmann,et al 2006:80) 

The complex Lie algebra, L, is solvable if and only if κ(x, y) = 0 for all x ∈ L and   

y ∈ [L,L] 

Theorem (Cartan’s Second Criterion) 3.4: (Erdmann,et al 2006:82) 

The complex Lie algebra, L, is semisimple if and only if the Killing form                      

κ of L is non-degenerate 

Example 3.5:  

Let L = sl(2, R). This has basis X=(
0  1
0   0

) ,  y=(
0   0
1   0

) , 𝑎𝑛𝑑 h=(
1  0
0   0

). Then 

ad𝑥𝑥=(
0  0
0   0

)=0x+0y+0h 

ad𝑥𝑦==(
0  1
0   0

) (
0   0
1   0

) − (
0   0
1   0

) (
0  1
0   0

)=0x+0y+h 
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ad𝑥ℎ=(
0  1
0   0

) (
1  0
0   0

) − (
1  0
0   0

) (
0  1
0   0

)=-2x+0y+0h 

adx=(
0  0 − 2
0   0    0
0    1    0

) 

ad𝑦𝑥=(
0   0
1   0

) (
0  1
0   0

)-(
0  1
0   0

) (
0   0
1   0

)  = (
−1   0
1   1

)=0x+0y-h 

ad𝑦𝑦=(
0   0
1   0

) (
0   0
1   0

) − (
0   0
1   0

) (
0   0
1   0

) = 0𝑥 + 0𝑦 + 0ℎ 

ad𝑦ℎ=(
0   0
1   0

) (
1  0
0   0

) − (
1  0
0   0

) (
0   0
1   0

)=0x+2y+0h 

Thus we get ady=(
0   0   0
0   0   2

−1   0   0
) 

adℎ𝑥=(
1  0
0   0

) (
0  1
0   0

) − (
0  1
0   0

) (
1  0
0   0

)=2x+0y+0h 

 

adℎ𝑦=(
1  0
0   0

) (
0   0
1   0

) − (
0   0
1   0

) (
1  0
0   0

)=0x-2y+0h 

adℎℎ=(
1  0
0   0

) (
1  0
0   0

) − (
1  0
0   0

) (
1  0
0   0

) = 0𝑥 + 0𝑦 + 0ℎ 

Then  adh=(
2 0  0

0 − 2  0
0   0  0

) 

k(x,x)=(
0        0 − 2
0        0       0
0         1      0

) (
0        0 − 2
0       0       0
0         1      0

)=(
0 − 2  0
0    0  6
0   0  0

)=0 

k(x,Y)= (
0        0 − 2
0       0       0
0         1      0

) (
0        0      0
0       0      2

−1         0      0
)=(

2        0    0
0       0       0
0         0      2

)=4 

k(x,h)= (
0        0 − 2
0       0       0
0         1      0

) (
2        0      0

0      − 2      0
0         0      0

)=0 

k(y,x)=(
0        0      0
0       0      2

−1         0      0
) (

0        0 − 2
0       0       0
0         1      0

)=4 

k(y,y)= (
0        0      0
0       0      2

−1         0      0
) (

0        0      0
0       0      2

−1         0      0
) = 0 
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k(y,h)= (
0        0      0
0       0      2

−1         0      0
) (

2        0      0
0      − 2      0
0         0      0

) = 0 

k(h,x)= (
2        0      0

0      − 2      0
0         0      0

) (
0        0 − 2
0       0       0
0         1      0

) = 0 

k(h,y)=  (
2        0      0

0      − 2      0
0         0      0

) (
0        0      0
0       0      2

−1         0      0
)=0 

k(h,h)= (
2        0      0

0      − 2      0
0         0      0

) (
2        0      0

0      − 2      0
0         0      0

) = 8 

Example 3.6;  

Let a= (
 1 0
0 0

)    b=(
 0 1
0 0

)    c=(
 0 0
1 0

)    and d=(
 0 0
0 1

)  . Then   

ad𝑎𝑎=(
 1 0
0 0

) (
 1 0
0 0

) − (
 1 0
0 0

) (
 1 0
0 0

) = (
 0 0
0 0

)=0x+0y+0z+0h 

ad𝑎𝑏=(
 1 0
0 0

) (
 0 1
0 0

) − (
 0 1
0 0

) (
 1 0
0 0

) = (
0 1
0 0

)=0x+y+0h+0z 

ad𝑎𝑐=(
 1 0
0 0

) (
 0 0
1 0

) − (
 0 0
1 0

) (
 1 0
0 0

) = (
 0 0
1 0

)=0x+0y+h+0z 

ad𝑎𝑑=(
 1 0
0 0

) (
 0 0
0 1

) − (
 0 0
0 1

) (
 1 0
0 0

) = (
 0 0
0 1

)=0x+0y+0h+z 

Then ada=(

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

). 

ad𝑏𝑎=(
 0 1
0 0

) (
 1 0
0 0

)-(
 1 0
0 0

) (
 0 1
0 0

)=(
 0 1
0 1

)=0x+y+0h+z 

ad𝑏𝑏=(
 0 1
0 0

) (
 0 1
0 0

) − (
 0 1
0 0

) (
 0 1
0 0

) = (
 0 0
0 0

)=0x+0y+0h+0z 

ad𝑏𝑐=(
 0 1
0 0

) (
 0 0
1 0

) − (
 0 0
1 0

) (
 0 1
0 0

)=(
 1 0

0 − 1
)=x+0y+0h-z 

ad𝑏𝑑=(
 0 1
0 0

) (
 0 0
0 1

) − (
 0 0
0 1

) (
 0 1
0 0

) = (
 0 1

0 − 1
)=0x+y+0h-z 

Thus we get adb=(

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

). 



17 
 

ad𝑐𝑎=(
 0 0
1 0

) (
 1 0
0 0

) − (
 1 0
0 0

) (
 0 0
1 0

) = (
−1 0
1 0

)=-x+0y+h+0z 

ad𝑐𝑏=(
 0 0
1 0

) (
 0 1
0 0

) − (
 0 1
0 0

) (
 0 0
1 0

) = (
 0 − 1
0    `1

)=0x-y+0h+z 

ad𝑐𝑐=(
 0 0
1 0

) (
 0 0
1 0

) − (
 0 0
1 0

) (
 0 0
1 0

) = (
 0 0
0 0

)=0x+0y+0h+0z 

ad𝑐𝑑=(
 0 0
1 0

) (
 0 0
0 1

) − (
 0 0
0 1

) (
 0 0
1 0

) = (
 0 0

−1 1
)=0x+0y-h+z 

Then adc=(

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) 

ad𝑑𝑎=(
 0 0
0 1

) (
 1 0
0 0

) − (
 1 0
0 0

) (
 0 0
0 1

) = (
 0 − 1
1   0

)=0x-y+h+0z 

ad𝑑𝑏=(
 0 0
0 1

) (
 0 1
0 0

) − (
 0 1
0 0

) (
 0 0
0 1

) = (
 0 − 1
0    0

)=0x+0y+h-z 

ad𝑑𝑐=(
 0 0
0 1

) (
 0 0
1 0

) − (
 0 0
1 0

) (
 0 0
0 1

) = (
 0 0

1 − 1
)=0x+0y+h-z 

ad𝑑𝑑=(
 0 0
0 1

) (
 0 0
0 1

) − (
 0 0
0 1

) (
 0 0
0 1

) = (
 0 0
0 0

)=0x+0y+0z+0h 

We get add=(

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

). 

k(a,a)= (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) =2 

k(a,b)=(

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

)=0 

k(a,c)=  (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

)=0 

k(a,d)= (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

)=-2 
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k(b,a)=(

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

)  (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

)=0 

k(b,b)= (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) =0 

k(b,c)= (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) =4 

k(b,d)= (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) = 0 

 

k(c,a)= (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) =0 

k(c,b)= (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) =4 

k(c,c)= (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) =0 

k(c,d)= (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) = 0 

k(d,a)= (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) (

0  0 0 0
0 1  0 0
0 0  1 0
0 0  0 1

) =-2 



19 
 

k(d.b)= (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) (

0  0 1 0
1 0  0 1
0 0  0 0

1 0 − 1 − 1

) =0 

k(d,c)= (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) (

−1  0 0 0
0 − 1  0 0
1 0  0 − 1
0 1  0   1

) =0 

k(d,d)= (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) (

0  0  0    0
−1   0  0 0
1    1  1  0

0 − 1 − 1  0

) =2 

k(gl(2,c)= (

2  0 0 − 2
0   0  4 0
0 4  0  0

−2 0  0   2

)=4≠ 0 we get this algebra is semisimple   (Ruiter, 2016:64). 

Example 3.7 (Spiege , et al 2010: 77) 

Let’s look at the Lie algebra sl(3), of trace free 3×3 real matrices with the following 

multiplication table  

  

 

 

 

  

 

 

 

 

 

 

 

then the adjoint representation of the basis elements are calculated to be 

[
0 0    0    0   0    0      0 0
0 0    0    0   0    0      0 0
0 0    0    0   0    0      0 0 

]  and it is degenerate.  

20 

sl(3) 

e1 e2 e3 e4 e5 e6 e7 e8 

e1 0 0 e3 2e4 -e5 e6 -2e7 -e8 

e2 0 0 -e3 e4 e5 2e6 -e7 -2e8 

e3 -e3 e3 0 0 e1-e2 e4 -e8 0 

e4 -2e4 -e4 0 0 -e6 0 e1 e3 

e5 e5 -e5 -e1+e2 e6 0 0 0 -e7 

e6 -e6 -2e6 -e4 0 0 0 e5 e2 

e7 2e7 e7 e8 -e1 0 -e5 0 0 

e8 e8 2e8 0 -e3 e7 -e2 0 0 
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 :ثوختة

و    کانەساد  ەمچی ن  یەل  ەبرەج   ەل  ەوەنیلۆکێل   داەژۆپر  مەل

ونەیکە د  یکانەتیەخاس  ەیکەیەساد  ەمچین  رمۆف  نیلیک  ەیگێرەلە. 

نەیکەد یارید  


