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Abstract 
 

      In this work we study associative algebras with idempotent elements. First 

we write basic definitions and results about vector spaces and algebras that we 

need in our work. Then we study Lie algebras and  Algebras with idempotent 

elements and  some properties of these kind of algebras. Moreover, we  study 

classification of associative algebras and we study pierce decomposition of 

associative algebras. 
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Introduction 
 

              Algebra is an algebraic structure consisting of a set together with operations 

of multiplication and addition and scalar multiplication by elements of a field and 

satisfying the axioms implied by "vector space" and "bilinear". Algebraic 

multiplication may or may not be an associative operation, giving rise to the concepts 

of associative algebras and non-associative algebras. The spaces of n by n-matrices 

with coefficients in some field K and the standard matrix operations are examples of 

associative algebras that are already present in elementary linear algebra. 

Polynomials over a particular field offer another illustration, but there are plenty 

others. A ring that also doubles as a vector space over a field K, in general, is what is 

meant by an associative algebra 𝐴 when scalars commute with all of its members. 

        In this work we study associative algebras with idempotent elements.   This 

work consists of three chapters and  is organized as follows. In chapter one we give 

basic definitions and results about vector spaces and algebras that we need in our 

work. We illustrate these definitions and results by many examples. In chapter two 

we study Algebras and special type of it which is called Lie algebras.  Then we study 

some properties of Algebras and Lie algebras and the derivation of these algebras. In 

the last chapter we study the classification of associative algebras and pierce 

decomposition of them. 
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Chapter One 

Preliminary and Background 

    In this chapter we state basic definitions and results about ring and vector spaces 

that we need in our work.  We gave many examples about these algebraic concepts. 

Definition of group 1.1: [1]  

A set G that is closed under a given operation '.' is called a group if the following 

axioms are satisfied. 

1. The set G is non-empty. 

2. If a, b, c ∈ G then a(bc) = (ab) c. 

3. There are exists  an element e  in G such that 

(a) For any element a in G, e a = a e = a. 

(b) For any element a in G there exists an element a-1 in G such that aa-1 = a-1 a= e.  

 

      A group, which contains only a finite number of elements, is called a finite group, 

otherwise it is termed as an infinite group. By the order of a finite group we mean the 

number of elements in the group 

Example 1.2:  

1) Let Q be the set of rational numbers.Then Q\{0} is a group under multiplication 

which is an infinite group. 

2) Let p be a prime number and  Zp = {0, 1, 2, … , p – 1} be the set of integers 

modulo p. Then Zp\{0} is a group under multiplication modulo p which is a finite 

cyclic group of order p-1.                                                                             

 

Definition 1.3: [2] 

 We start by recalling the definition of a ring: A ring is a non-empty set R together 

with an addition+ : R×R → R, (r, s) →r+s and a  multiplication · : R×R →R, (r, s) → 

r · s such that the following axioms are satisfied for all r, s, t ∈ R 

R1- (Associativity of +) r + (s + t) = (r + s) + t . 

R2-(Zero element) There exists an element 0R ∈ R such that r+0R = r = 0R +r. 
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R3- (Additive inverses) For every r ∈ R there is an element −r ∈ R such that 

r + (−r) = 0R. 

R4- (Commutativity of +) r + s = s + r. 

R5- (Distributivity) r . (s + t) = r . s + r . t and (r + s) .t = r . t + s . t . 

R6- (Associativity of .) r . (s . t) = (r . s) · t . 

R7- (Identity element) There is an element 1R ∈ R \ {0} such that 1R · r = r = r · 1R. 

    Moreover, a ring R is called commutative if r · s = s · r for all r, s ∈ R. As usual, 

the multiplication in a ring is often just written as rs instead of r · s; we will follow 

this convention from now on. Note that axioms (R1)–(R4) say that (R,+) is an abelian 

group. We assume by Axiom (R7) that all rings have an identity element; usually we 

will just write 1 for 1R. Axiom (R7) also implies that 1R is not the zero element.            

Now we list some common examples of rings. 

Example 1.4: 

(1) The integers Z form a ring. Every field is also a ring, such as the rational numbers 

Q, the real numbers R, the complex numbers C, or the residue classes Zp of integers 

modulo p where p is a prime number. 

(2)  The set of integers Z is a commutative ring with 1. 

3) Let Zn = {0, 1, 2, … , n – 1) be the ring of integers modulo n. Zn is a ring under 

modulo addition and multiplication. Zn is a commutative ring with unit. 

4) The n × n-matrices Mn(K), with entries in a field K, form a ring with respect to 

matrix addition and matrix multiplication. 

5) The ring K[X] of polynomials over a field K where X is a variable. Similarly, the 

ring of polynomials in two or more variables, such as  K[X, Y ].  

   Note that examples (4) and (5) are not just rings but also vector spaces. There are 

many more rings which are vector spaces, and this has led to the definition of a vector 

space. 

 Definition 1.5: [2]    

(V, +) is called is a vector space over a field K, if satisfies the following conditions,    

for all  u, v, w ∈ V  and c, d ∈ K : 

1)u + v                             Is a vector in the plane closure under addition 
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2) u + v= v + u                  Commutative property of addition 

3) (u + v) + w = u + (v + w) Associate property of addition 

4) (u + 0) = u                       Additive identity 

5) u + (−1) u = 0                   Additive inverse 

6) c u                       is a vector in the plane closure under scalar multiplication 

7) c (u + v) = c u + c v            Distributive property of scalar mult.  

8) (c + d) u = c u + d u           Distributive property of scalar mult. 

9) c (d u) = (c d) u                    Associate property of scalar mult.  

10) 1(u) = u                    Multiplicative identity property 

We call elements of V vectors and call elements of K scalars. 

 

Example 1.6:  

1) The set of polynomial K[x] is a vector space over the field K. 

2) The set of n by n Matrices Mn×n (R) is a vector space over R. for example if n=2, 

M2×2(𝑅) = {( x        y
z        w

)  | x, y, z, w ∈ R}  is a vector space of 2 by 2 Matrices over set of 

real numbers R and "+" and "." are defined in this way: 

( a1        b1
c1        d1

) + ( a2        b2
c2        d2

) = ( a1+a2        b1+b2
c1+c2        d1+d2

)     and 𝑟( a1        b1
c1        d1

) = ( ra1        rb1
rc1        rd1

) 

Now we show that  M2×2(R) is a vector space over the field R: 

1-let A,B, C ∈ M2×2(R) where A=( a1        b1
c1        d1

),  B=( a2        b2
c2        d2

),  and C=( a3        b3
c3        d3

).  

A+(B+C)= ( a1        b1
c1        d1

) + (( a2        b2
c2        d2

) +( a3        b3
c3        d3

)) 

=( a1        b1
c1        d1

) + (( a2+a3             b2+b3
c2+c3              d2+d3

))=( a1+(a2+a3)       b1+(b2+b3)
c1+(c2+c3)       d1+(d2+d3)

) 

=(
( a1+a2)+a3       ( b1+b2)+b3
(c1+c2)+c3       ( d1+d2)+d3

)=( a1+a2        b1+b2
c1+c2        d1+d2

)+( a3        b3
c3        d3

) 

=(( a1        b1
c1        d1

)+( a2        b2
c2        d2

))+ ( a3        b3
c3        d3

)=(A+B)+C 

2- We show that  A+0=0+A. Let A=( a        b
c        d

) and  0 = ( 0        0
0        0

) . Then 

A+0=( a        b
c        d

)+( 0        0
0        0

)=( a+0       b+0
c+0        d+0

)=( a        b
c        d

)=A 

3-  Let A=( a        b
c        d

), -A=(− a     − b
−c      − d

). Then 

A+(-A)= ( a        b
c        d

)+(− a     − b
−c      − d

) =( a+(−a)      b+(−b)
c+(−c)       d+(−d)

) = ( 0        0
0        0

)  
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4-  Let A=( 𝑎1        𝑏1 
𝑐1         𝑑1 

) and   B=( 𝑎2        𝑏2 
𝑐2         𝑑2 

)Then  

A+B=( 𝑎1        𝑏1 
𝑐1         𝑑1 

) + ( 𝑎2        𝑏2 
𝑐2         𝑑2 

) = (  𝑎1+ 𝑎2       𝑏1+ 𝑏2
 𝑐2+𝑐2          𝑑1+𝑑2 

) =B+A 

5-   k(A+B)=k(  𝑎1+ 𝑎2       𝑏1+ 𝑏2
 𝑐2+𝑐2          𝑑1+𝑑2 

) 

=( k(𝑎1+ 𝑎2)     k(  𝑏1+ 𝑏2)
k( 𝑐2+𝑐2)      k(  𝑑1+𝑑2) 

) 

=( k 𝑎1+k 𝑎2      k 𝑏1+k 𝑏2
 𝑘𝑐2+𝑘𝑐2          𝑘𝑑1+𝑘𝑑2 

)  

= (k 𝑎1        k𝑏1 
𝑘𝑐1        k 𝑑1 

) + ( 𝑘𝑎2        k𝑏2 
𝑘𝑐2        k 𝑑2 

)= 

 k( 𝑎1        𝑏1 
𝑐1         𝑑1 

) + k ( 𝑎2        𝑏2 
𝑐2         𝑑2 

)=kA+kB 

6- (k+r).A=(k+r). ( a         b
c         d

) =((k+r) a      (k+r)  b
(k+r)c        (k+r)d

)=( ka+ra      kb+rb
kc+rc        kd+rd

) 

== ( ka         kb
kc        k d

) + ( ra         rb
rc         rd

) = k( a         b
c         d

) + r( a         b
c         d

) =k.A+r.A 

7-  k(r.A)= k(r( a        b
c        d

))=k((r a       r b
rc       r d

)= (k(r a)      k( r b)
k(rc)      k(r d)

)=((kr) a     ( k r) b
(kr)c     ( kr) d)

)=kr ( a        b
c        d

) 

8- 1. ( a        b
c        d

)=(1.a       1.b
1.c       1.d

)=( a        b
c        d

)=A 

 

Definition 1.7: [3]   

A nonempty W subset of a vector space  V is called a subspace of V if W is a vector 

space under the operations of addition and scalar multiplication defined in V.  If W is 

a nonempty subset of a vector space V then W is a subspace of V if and only if the 

following closure conditions hold. 

1. If u and v are in w then u+v is in W  

2. If u is in W and c is any scalar, then cu is in W. 

Example 1.8:  

Let  W be the set of singular matrices of order 2. Show that W is not a subspace of  

M2×2 (C) with the standard operations. Because W is not closed under addition. To 

see this, let A  and  B be  A=[
1 0
0 0

]      and    B=[
0 0
0 1

] and then A and  B are both 

singular (noninvertible), but their sum A+B=[
1 0
0 1

]  is nonsingular. Thus W is not 

closed under addition, and we get it is not a subspace of  M2×2 (R). 
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Definition 1.9: [3]   

A vector u in a vector space V is called a linear combination of the vectors          

u1,u2,….uk in V if v can be written in the form V=c1u1+c2u2+. . . +ckuk                               

where c1,c2,. . . ,ck, are scalars. 

Example 1.10:  

(1,1,1) is a linear combination of vectors in the set S={(1,2,3),(0,1,2),(-1,0,1)} 

  

Definition 1.11: [3]  

 Let  S ={V1,V2,…,Vk }be a subset of a vector space  V. The set S is called a 

spanning set of V  if every vector in V can be written as a linear combination of 

vectors in S In such cases it is said that S spans V. 

Example 1.12 : 

(a) The set S={(1,0,0),(0,1,0),(0,0,1)} spans R3 because any vector u=(u1,u2,u3) in R3 

can be written as u=u1(1,0,0)+u2(0,1,0)+u3(0,0,1)=(u1,u2,u3) 

(b) The set S={1,X, X3} spans P2 because any polynomial function P(X)=a+bx+c x2in 

P2 can be  written as P(X)=a(1)+b(x)+c(x2) =a+bx+cx2 

  Now we review  linear Dependent and linear Independent: 

 

Definition 1.13: [3]   

A set of vectors S={V1,V2,…,VK} in a vector space V is called linearly independent 

if the vector equation  c1v1+c2v2+…..+ckvk=0  has only the trivial solution 

c1=0,c2=0,…..ck=0, If there are also nontrivial solutions, then S is called linearly 

dependent. 

Example 1.14: 

 (a) The set S={(1,2),(2,4)} in   R2 is linearly dependent because  -2(1,0)+(2,4)=(0,0)  

(b) The set S={(1,0),(0,1),(-2,5)}  in R2 is linearly dependent because 

2(1,0)-5(0,1)+(-2,5)=(0,0) 

(c) The set S={(0,0),(1,2)} in R2is linearly dependent because 1(0,0)+0(1,2)=(0,0) 

(d) S={(1,2,3),(0,1,2),(-2,0,1)} is linearly independent or linearly dependent inR3.   
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Definition 1.15: [3]  

A set of vectors V={v1,v2,v3} in a vector space V is called a basis for V if the 

following conditions are true. 

1. S spans V.              2. S is linearly independent.: 

Example 1.16:  

S={(1,0,0),(0,1,0),(0,0,1)} is a basis for R3 and generally e1=(1,0 . . . .,0), e2=(0,1,. . . 

.,0), …,  en=(0,0,. . . . ,1) form a basis for Rn called the standard basis for Rn 

 

Definition 1.17: [3]   

If a vector space  V has a basis consisting of vectors, then the number n is called the 

dimension of V denoted by dim(V)=n. If  V consists of the zero vector alone, the 

dimension of V is defined as zero . 

Example 1.18: 

(a) W={(d,c-d,c): c and d are real number } is a two dimensional subspace of R3 

(b) W={(2b,b,0): b is a real number} is a one dimensional subspace of R3. 
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Chapter two 

Algebras and Lie algebras 

      In this chapter we study algebras with idempotent elements and the main 

properties of them. First we study Algebras and a special type of it which is called 

Lie algebras.  Then we study some properties of Algebras and Lie algebras and the 

derivation of their algebras. Moreover we gave many examples about these algebraic 

structures. 

Definition 2.1: [2]    

 Algebra over a field F is a vector space A over F together with a bilinear map, 

A×A→A, (x,y) → xy. We say that xy is the product of x and y.  

 

       Usually one study algebras where the product satisfies some further properties. 

The algebra A is said to be associative if (xy)z  =x(yz)  for all x, y, z ∈ A and until if 

there is an element 1A in A such that 1Ax = x = x 1A for all non-zero elements of  A.  

Example 2.2:  

1) The set of polynomial K[x] is a K-algebra. 

2) The space of n×n-matrices Mn(K) with matrix addition and matrix multiplication 

form a K-algebra. It has dimension n2; the matrix units Eij  for 1 ≤ i, j ≤ n form a 

K-basis. Here Eij  is the matrix which has entry 1 at position (i, j ), and all other 

entries are 0. This algebra is not commutative for n ≥ 2. For example we have 

E11E12 = E12 but E12E11 = 0. 

 4) H(R) = {a+bi+cj+dk ;a, b, c, d ∈ R} are four dimensional algebra and it is called 

quaternion algebra (Historically, it is one of the first examples of algebra. 

5) If V is a vector space over the field K, then the linear transformations 

Of the space V form also algebra E (V). This algebra is finite dimensional 

 6) Consider the n-dimensional vector space of all n-tuples (α1, α2, … , αn), α1 ∈

k with  coordinate wise addition and Scala multiplication. By defining the 

multiplication Coordinate wise   

(α1, α2, … , αn)(β1, β2, … , βn) = ( α1β1, α2β2, … αnβn), 
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We obtain an algebra over the field K which will be denoted by  Kn. 

5) Let A1, A2, … , An be algebra over the field K consider their Cartesian product 

A.i.e. the set all sequences ( a1, a2, … , an), ai ∈ Ai and define the operations 

Coordinate wise: (a1, a2, … , an) + (b1, b2, … , bn) = (a1 + b1, a2 + b2, … , an + bn),              

α(a1, a2, … , an) = (αa1, αa2, … , αan),and(a1, a2, … , an)( b1, b2, … , an)(a1b1, a2b2, … , anbn) 

Clearly, in this way A becomes algebra over K which is called the direct product of 

the algebra  A1, A2, … , An and is denoted by A1 × A2 × … × An, Or ∏ Ai
n
i=1 .The 

algebra A1, A2, … , Anare said to be direct factors of the algebrae. 

(7) The field K is a commutative K-algebra, of dimension 1. 

(8) The field C is also an algebra over R, of dimension 2, with R-vector space basis 

{1, i}, where i2 = −1. More generally, if K is a subfield of a larger field L, then 

L is an algebra over K where addition and (scalar) multiplication are given by the 

addition and multiplication in the field L. 

 

Remark 2.3: 

(1) The condition relating scalar multiplication and ring multiplication roughly says 

that scalars commute with everything. Due to A is a vector space over K we have  for 

all a, b ∈ A and λ,μ ∈ K : 

(i) λ · (a + b) = λ · a + λ · b; 

(ii) (λ + μ) · a = λ · a + μ · a; 

(iii) (λμ) · a = λ · (μ · a); 

(iv) 1K · a = a. 

(2)  Since A is a vector space, and 1A is a non-zero vector, it follows that the map 

λ →λ · 1A from K to A is injective. We use this map to identify K as a subset of A. 

Similar to the convention for ring multiplication, for scalar multiplication we will 

usually also just write λa instead of λ · a. 

(3) The dimension of a K-algebra A is the dimension of A as a K-vector space. 

The K-algebra A is finite-dimensional if A is finite-dimensional as a K-vector space. 

(4) The algebra is commutative if it is commutative as a ring y, z ∈ L. 
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Jordan algebra 2.4: [9] 

  Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies 

the following axioms: 

1. xy=yx (commutative law) 

2. (xy)(xx)=x(y(xx)) (Jordan identity). 

The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, 

particularly to avoid confusion with the product of a related associative algebra. 

Example 2.5:  

The set of self-adjoint real, complex, or quaternionic matrices with multiplication   

xy+yx

2
  form a special Jordan algebra. 

 

Definition 2.6: [6] 

A vector space L over a field F, with an operation L× L→    L, denoted  

(x, y) →  [xy] and called the bracket or commutator of r and y, is called a Lie algebra 

over F if the following axioms are satisfies: 

(LI) The bracket operation is bilinear  

(L2)  [xxl = 0 for all x in L . 

(L3) [x[yz]]+[y[zx]]+[z[xy]] = 0 (x, y, z  ∈ L). 

Axiom (L3) is called the Jacobi identity. Notice that (LI) and (L2), applied 

to [x+y, x+y], imply anticommutativity: (L2') [xy] = - [yx]. Conversely , 

if char F + 2, it is clear that (L2') will imply (L2 

We say that two Lie algebras L, L' over F are isomorphic if there exists a vector space 

isomorphism : L→ L' satisfying ∅[x] = [(∅(x)( ∅(y)] for all x, y in L (and then ∅ is 

called an isomorphism of Lie algebras). Similarly, it is obvious how to define the 

notion of (Lie) subalgebra of L: A subspace K of L is called a subalgebra if [xy] ∈  K 

whenever x, y K; in particular, K is a Lie algebra in its own right relative to the 

inherited operations. Note that any nonzero element x ∈  L defines a one dimensional 

subalgebra Fx, with trivial multiplication, because of L2 

 

https://en.wikipedia.org/wiki/Nonassociative_algebra
https://en.wikipedia.org/wiki/Algebra_over_a_field
https://en.wikipedia.org/wiki/Product_(mathematics)
https://en.wikipedia.org/wiki/Commutative
https://en.wikipedia.org/wiki/Associative_algebra
https://en.wikipedia.org/wiki/Self-adjoint
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Quaternionic
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Proposition 2.7:[10] 

Let L be a Lie algebra, and let v ∈ L. Then  [v, 0] = [0, v] = 0. 

 Proof. By bilinearity of the bracket,  

[v, 0] = [v, v − v] = [v, v] − [v, v] = 0 

 [0, v] = [v − v, v] = [v, v] − [v, v] = 0 

(ii) Suppose that x, y ∈ L satisfy [x, y] ≠ 0. Show that x and y are 

linearly independent over F. 

Lemma 2.8:  

Let L be a Lie algebra over F. Let x, y ∈ L and a ∈ F.  

Then a[x, y] = [ax, y] = [x, ay]. 

  Examples 2.9:[6] 

(1) Let F = R. The vector product (x, y) → x ∧ y defines the structure of 

a Lie algebra on R3. We denote this Lie algebra by R3  Explicitly, if 

x = (x1, x2, x3) and y = (y1, y2, y3), then 

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1). 

Example 2.10: 

 Convince yourself that ∧ is bilinear. Then check that the Jacobi identity 

holds. Hint: If x · y denotes the dot product of the vectors x, y ∈ , R3 

then x ∧ (y ∧ z) = (x · z)y − (x · y)z for all x, y, z ∈.R3 

Lemma 2.11: [10] 

Let  u, v, w ∈ R 3 . Then   u×(v×w) = (u·w)v −(u·v)w. 

Proof.  u×(v×w) = u×(v2w3 −v3w2 , v3w1 − v1w3 , v1w2 − v2w1 ) 

=(u2(v1w2-v2w1) - u3(v3w1-v1w3), 

u3(v2w3-v3w2) - u1(v1w2-v2w1), 

u1(v3w1-v1w3) - u2(v2w3-v3w2)) 

=(v1u2w2-v2u2w1-v3u3w1+v1u3w3, 

v2u3w3-v3u3w2-u1v1w2+v2u1w1, 

v3u1w1-v1u1w3-u2v2w3+v3u2w2) 

= u2v1w2-v2u2w1-v3u3w1+v1u3w3+u1v1w1-u1v1w1 

,v2u3w3 –v3u3w2-v1u1w2 +u1v2w1 +v2u2w2  - v2u2w1 
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, v3u1w1 -v1u1w3 -v2u2w3 +v3u2w2+v3u3w3 -v3u3w3  

=( v1(u1w + u2w2 + u3w3) − w1(u1v1 + u2v2 + u3v3 ),  

v2(u1w1+u2w2+ u3w3) − w2(u1v1 + u2v2+ u3v3 ), 

 v3(u1w1+ u2w2+u3w3 ) − w3(u1v1 + u2 v2 + u3v3 ) 

  =(v1(u.w),v2(u.w),v3(u.w))-(w1(u.v),w2(u.w),w3(u.w)) =(u.w)v-(u.v)w 

(2) Any vector space V has a Lie bracket defined by [x, y] = 0 for all x, y ∈ V . 

This is the abelian Lie algebra structure on V . In particular, the field F 

may be regarded as a 1-dimensional abelian Lie algebra. 

Proposition 2.12 : [10] 

The Jacobi identity holds for the cross product of vectors in R3 . 

 Proof.  Using the above proposition, 

 [x, [y, z]] + [y, [z, x]] + [z, [x, y]] 

 = (x · z)y − (x · y)z + (y · x)z − (y · z)x + (z · y)x − (z · x)y 

 = (x · z)y − (z · x)y + (y · x)z − (x · y)z + (z · y)x − (y · z)x 

 = 0 + 0 + 0  = 0 

 (3) Suppose that V is a finite-dimensional vector space over F. Write gl(V ) for the 

set of all linear maps from V to V . This is again a vector space over F, and it 

becomes a Lie algebra, known as the general linear algebra, if we define the Lie 

bracket [−,−] by [x, y] := x ◦ y − y ◦ x for x, y ∈ gl(V ), where ◦ denotes the 

composition of maps. 

Proposition 2.13 :[10] 

 Let V be a finite-dimensional vector space over F and let gl(V ) be the set of all 

linear maps from V to V . We define a Lie bracket on this space by 

 [x, y] = x ◦ y − y ◦ x where ◦ denotes map composition. We claim that the Jacobi 

identity holds for this bracket operator 

Proof.  

 [x, [y, z]] + [y, [z, x]] + [z, [x, y]] 

 = (x ◦ y ◦ z − z ◦ y ◦ x) + (y ◦ z ◦ x − x ◦ z ◦ y) + (z ◦ x ◦ y − y ◦ x ◦ z) 

 = (x ◦ y ◦ z − x ◦ z ◦ y) + (y ◦ z ◦ x − y ◦ x ◦ z) + (z ◦ x ◦ y − z ◦ y ◦ x)  

= x ◦ [y, z] + y ◦ [z, x] + z ◦ [x, y] [x, [y, z]] + [y, [z, x]] + [z, [x, y]] 
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 = (x ◦ y ◦ z − y ◦ x ◦ z) + (z ◦ x ◦ y − x ◦ z ◦ y) + (y ◦ z ◦ x − z ◦ y ◦ x) 

 = [x, y] ◦ z + [z, x] ◦ y + [y, z] ◦ x 

 Thus we reach x ◦ [y, z] + y ◦ [z, x] + z ◦ [x, y] 

 = [x, y] ◦ z + [z, x] ◦ y + [y, z] ◦ x  Now we can subtract to have one side equal zero, 

 0 = x ◦ [y, z] − [y, z] ◦ x + y ◦ [z, x] − [z, x] ◦ y + z ◦ [x, y] − [x, y] ◦ z 

 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] which is precisely the Jacobi identity 

 

  Now we show that the associative algebra with (A,+,.) with (A,+,[ ])                             

where  [x,y]=xy-yx  become lie algebra: 

1- [x,x]=x.x-x.x=x2-x2=0 

2-[x,[y,z]]=[[x,y],z]+[y,[x,z]] 

 RHS=[x,[y,z]=[x,(yz-zy)] =x(yz-zy)-(yz-zy)x 

=x(yz)-x(zy)-(yz)x+(zy)x 

LHS[[x,y],z]+[y,[x,z] =[(xy-yx),z]+[y,(xz-zx)]  

=(xy-yx).z-z(xy-yx)+y(xz-zx)-(xz-zx)y 

=(xy)z-(yx)z-z(xy)+z(yx)+y(xz)-y(zx)-(xz)y+(zx)y 

=(xy)z+z(yx)-y(zx)-(xz)y 

Thus [x,[y,z]]=[[x,y],z]+[y,[x,z]].                                                                ∎ 

 

Remark 2.14: [10] 

Let L be a Lie algebra. Show that the Lie bracket is associative, that is, 

[x, [y, z]] = [[x, y], z] for all x, y, z ∈ L, if and only if for all a, b ∈ L the 

commutator [a, b] lies in Z(L). 

If A is an associative algebra over F, then we define a new bilinear operation 

[−,−] on A by [a, b] = ab − ba for all a, b ∈ A. 

Then A together with [−,−] is a Lie algebra; this is not hard to prove. The 

Lie algebras gl(V ) and gl(n, F) are special cases of this construction.  

 

 Quotient Algebras 2.15:[8] 
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 If I is an ideal of the Lie algebra L, then I is in particular a subspace of L, and so we 

may consider the cosets z + I = {z + x : x ∈ I} for z ∈ L and the quotient vector space 

L/I = {z + I : z ∈ L}. 

Now we define  that a Lie bracket on L/I by [w + I, z + I] = [w, z] + I for w, z ∈ L. 

Here the bracket on the right-hand side is the Lie bracket in L. To be sure 

that the Lie bracket on L/I is well-defined, we must check that 

 [w, z] + I depends only on the cosets containing w and z and not on the particular 

coset representatives w and z. Suppose w + I = w' + I and z + I = z' + I. Then 

w – w' ∈ I and z – z' ∈ I. By bilinearity of the Lie bracket in L, 

[w', z'] = [w' + (w – w'), z' + (z – z')] 

= [w, z] + [w – w', z'] + [w', z – z'] + [w – w', z – z'], 

where the final three summands all belong to I.  

Therefore [w' + I, z' + I] =[w, z] + I, as we needed. It now follows from part (i) of the 

exercise below that L/I is a Lie algebra. It is called the quotient or factor algebra of L 

by I. 

Proposition 2.16: [10] 

Let L be a Lie algebra over F, and let I be an ideal of L. The the bracket on L/I 

satisfies the Jacobi identity. 

 Proof. Let u + I, v + I, w + I ∈ L/I. Then  

[u + I, [v + I, w + I]] + [v + I, [w + I, u + I]] + [w + I, [u + I, v + I]] = [u + I, [v, w] + 

I] + [v + I, [w, u] + I] + [w + I, [u, v] + I] =([u,[v,w]]+I)+([v,[w,u]]+I)+([w,[u,v]]+I) 

=([u,[v,w]]+[v,[w,u]]+[w,[u,v]])+I =0+I Where 0+I is the additive identity of L/I. ∎ 

 

        Now we show that  that  the linear transformation π : L → L/I which takes an 

element z ∈ L to its coset z + I is a homomorphism of Lie algebras. 

Proposition 2.17:[10]  

Let I be an ideal of Lie algebra L over F. Define π : L → L/I by π(z) = z + I. Then                      

π is a Lie algebra homomorphism.  

Proof. First we show that π is a linear map. Let a ∈ F and u, v ∈ L 
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 π(au + v) = (au + v) + I = (au + I) + (v + I) = a(u + I) + (v + I) = aπ(u) + π(v)                             

so π is linear. Now we show that π preserves the bracket. 

 π([u, v]) = [u, v] + I = [u + I, v + I] = [π(u), π(v)].                                  ∎ 

 Thus π is a Lie algebra homomorphism. 

 Definition 2.18: [2]  

 A K-algebra A is called semisimple if A is semisimple as an A module. We have 

already seen some semisimple algebras or it is a direct some of simple algebras. 

 

Example 2.19: 

 Every matrix algebra Mn(K) is a semisimple algebra.  

Definition 2.20: [7] 

An idempotent element or simply idempotent of a ring is an element a such 

that a2 = a.[1] That is, the element is idempotent under the ring's 

multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... 

= an for any positive integer n. For example, an idempotent element of a matrix 

ring is precisely an idempotent matrix. 

We can check this for the integers mod 6, R = Z/6Z. Since 6 has two prime factors (2 

and 3) it should have 22 idempotents. 

02 ≡ 0 ≡ 0 (mod 6), 12 ≡ 1 ≡ 1 (mod 6) and 22 ≡ 4 ≡ 4 (mod 6) 

32 ≡ 9 ≡ 3 (mod 6),  42 ≡ 16 ≡ 4 (mod 6) and 52 ≡ 25 ≡ 1 (mod 6) 

From these computations, 0, 1, 3, and 4 are idempotents of this ring, while 2 and 5 

are not. This also demonstrates the decomposition properties described below: 

because 3 + 4 = 1 (mod 6), there is a ring decomposition 3Z/6Z ⊕ 4Z/6Z. In 

3Z/6Z the identity is 3+6Z and in 4Z/6Z the identity is 4+6Z 

 

Definition 2.21: [8]  

If L1 and L2 are Lie algebras over a field F, then we say that a map ϕ : L1 → L2 is a 

homomorphism if ϕ is a linear map and ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1. 

Notice that in this equation the first Lie bracket is taken in L1 and the second 

Lie bracket is taken in L2. We say that ϕ is an isomorphism if ϕ is also bijective. 

https://en.m.wikipedia.org/wiki/Ring_(mathematics)
https://en.m.wikipedia.org/wiki/Idempotent_(ring_theory)#cite_note-1
https://en.m.wikipedia.org/wiki/Idempotent
https://en.m.wikipedia.org/wiki/Mathematical_induction
https://en.m.wikipedia.org/wiki/Integer
https://en.m.wikipedia.org/wiki/Matrix_ring
https://en.m.wikipedia.org/wiki/Matrix_ring
https://en.m.wikipedia.org/wiki/Idempotent_matrix
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An extremely important homomorphism is the adjoint homomorphism . If L 

is a Lie algebra, we define ad : L → gl(L) 

by (ad x)(y) := [x, y] for x, y ∈ L. It follows from the bilinearity of the Lie 

bracket that the map ad x is linear for each x ∈ L. For the same reason, the 

map x _→ ad x is itself linear. So to show that ad is a homomorphism, all we 

need to check is that ad([x, y]) = ad x ◦ ad y − ad y ◦ ad x for all x, y ∈ L 

this turns out to be equivalent to the Jacobi identity. The kernel of ad is the 

centre of L. 

Example 2.22: [10]  

Show that if ϕ : L1 → L2 is a homomorphism, then the kernel of ϕ, 

ker ϕ, is an ideal of L1, and the image of ϕ, imϕ, is a Lie subalgebra of L2. 

 

Proposition 2.23: [10] 

Let L1, L2 be Lie algebras and let φ : L1 → L2 be a homomorphism.  

Then ker φ is an ideal of L1.  

Proof: We need to show that for x ∈ L1, y ∈ ker φ = {v ∈ L1 : φ(v) = 0}, 

 we have [x, y] ∈ ker φ.  Let x ∈ L1, y ∈ ker φ. Then 

 φ([x, y])  = [φ(x), φ(y)] = [φ(x), 0]  = 0.                                                            ∎ 

 

Proposition 2.24: [10]  

Let L be a Lie algebra such that the bracket is associative. Then for x, y ∈ L,  

[x, y] ∈ Z(L). 

 Proof. Let x, y, z ∈ L. We need to show that [[x, y], z] = 0. 

 Using anti-communitivity, linearity, and associativity we get 

 [z, [x, y]] = −[[x, y], z] = −[−[y, x], z] = [[y, x], z] 

 = [y, [x, z]] = [y, −[z, x]]  = −[y, [z, x]]  

Then using the Jacobi identity and substituting −[y, [z, x]] for [z, [x, y]] [x, [y, z]] + 

[y, [z, x]] + [z, [x, y]]  = 0 [x, [y, z]] + [y, [z, x]] − [y, [z, x]] = 0 

 [x, [y, z]]=0 and  [[x, y], z] = 0.                                                                               ∎ 

 



17 
 

Theorem 2.25:(Isomorphism theorems) :[8] 

(a) Let ϕ : L1 → L2 be a homomorphism of Lie algebras. Then kerϕ is an 

ideal of L1 and im ϕ is a subalgebra of L2, and 

L1/ ker ϕ≅im ϕ. 

(b) If I and J are ideals of a Lie algebra, then (I + J)/J≅I/(I ∩ J). 

(c) Suppose that I and J are ideals of a Lie algebra L such that I ⊆ J. 

Then J/I is an ideal of L/I and (L/I)/(J/I) ≅ L/J. 

 

 Definition2.26 : [2] 

 Let A and B be K-algebras. A map φ : A → B is a K-algebra 

homomorphism (or homomorphism of K-algebras) if 

(i) φ is a K-linear map of vector spaces, 

(ii) φ(ab) = φ(a)φ(b) for all a, b ∈ A, 

(iii) φ(1A) = 1B. 

The map φ : A → B is a K-algebra isomorphism if it is a K-algebra 

homomorphism and is in addition bijective. If so, then the K-algebras A and B are 

said to be isomorphic, and one writes A≅B. Note that the inverse of an algebra 

isomorphism is also an algebra isomorphism. 

Remark 2.27: 

(1) To check condition (ii) of Definition 1.22, it suffices to take for a, b any two 

elements in some fixed basis. Then it follows for arbitrary elements of A as long as φ 

is K-linear. 

(2) Note that the definition of an algebra homomorphism requires more than just 

being a homomorphism of the underlying rings. Indeed, a ring homomorphism 

between K-algebras is in general not a K-algebra homomorphism. 

 

Definition 2.28: [8] 

Let A be an algebra over a field F. A derivation of A is an F-linear map 

D : A → A such that D(ab) = aD(b) + D(a)b for all a, b ∈ A. 
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Remark 2.29: 

Let DerA be the set of derivations of A. This set is closed under addition 

and scalar multiplication and contains the zero map. Hence DerA is a vector 

subspace of gl(A). Moreover, DerA is a Lie subalgebra of gl(A), for by part (i) 

of the following exercise, if D and E are derivations then so is [D,E]. 

Theorem: [10] 

 Let D and E be derivations of an algebra A. Then 

 [D,E] = D ◦ E − E ◦ D is also a derivation of  A 

Proof. We need to show that 

 [D, E](xy) = x[D, E](y) + [D, E](x)y. First we compute 

 D ◦ E(xy) and E ◦ D(xy). D ◦ E(xy) 

 = D(xE(y) + E(x)y) = D(xE(y)) + D(E(x)y) 

 = xD ◦ E(y) + D(x)E(y) + D ◦ E(x)y + E(x)D(y) E ◦ D(xy)  

= xE ◦ D(y) + E(x)D(y) + D(x)E(y) + E ◦ D(x)y  

Now that we’ve done that we can easily compute 

 [D, E](xy). [D, E](xy)  = (D ◦ E − E ◦ D)(xy)  

= D ◦ E(xy) − E ◦ D(xy)  

= xD ◦ E(y) + D ◦ E(x)y − xE ◦ D(y) − E ◦ D(x)y  

= x(D ◦ E(y) − E ◦ D(y)) + (D ◦ E(x) − E ◦ D(x))y 

 = x[D, E](y) − [D, E](x)y.                                                                    ∎ 

 

Example 2.31 :[8] 

(1) Let A =R∞ R be the vector space of all infinitely differentiable functions 

R → R. For f, g ∈ A, we define the product fg by pointwise multiplication: 

(fg)(x) = f(x)g(x). With this definition, A is an associative algebra. The 

usual derivative, Df = f', is a derivation of A since by the product rule 

D(fg) = (fg)' = f'g + fg' = (Df)g + f(Dg). 

(2) Let L be a Lie algebra and let x ∈ L. The map adx : L → L is a derivation 

of L since by the Jacobi identity. Then 

(ad x)[y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]]  = [(adx)y, z] + [y, (ad x)z] 
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Peirce decomposition:  

For an Algebra A containing an idempotent e there exist left, right and two-sided 

Peirce decompositions, which are defined by  

A=Ae + A (1−e) and A=eA + (1−e) A  

A=e Ae + eA (1−e)  +  (1−e) Ae + (1−e) A(1−e) 

Respectively. If has no identity, then one puts, by definition, 

A (1−e) = { x − x e: x ∈ A}and (1−e)Ae { x − x e: x ∈ A}, 

(1−e) A (1−e) = { x − e x − x e +e x e: x ∈ A}. 

The sets (1−e) A and eA (1−e) are defined analogously. Therefore, in a two-sided 

Peirce decomposition an element  x ∈ A can be represented as 

  x=ee + (e x − e xe) + (e x − e x e) + ( x −e x − x e + e x e), 

  In a left decomposition as   x= xe + (x − xe) 

And in right decomposition as x=ex+ (x − xe) 

There is also Peirce decomposition with respect to an orthogonal system of 

idempotent {e1 … en}where ∑ ei = 1:i   A=∑ Aj
ij

 e ei. 
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Chapter Three 

Classification of associative algebras 

  

  In this chapter we review and highlight the main theorems about the classification     

of  associative algebra. We show that every simple K -algebra is isomorphic to an 

algebra of the form Mn(D), where D is a division algebra and every semisimple 

algebra is isomorphic to a direct product of matrix algebras over division algebras.  

We illustrate this algebraic concepts  by solving some examples about them. 

Definition 3.1:  

A right module over a K-algebra A, or a right A-module, is a vector space M over the 

field K whose elements can be multiplied by the elements of the algebra, i. e. to every 

pair (m, a), m ∈M, a ∈ A, there corresponds a uniquely determined element ma ∈ M 

such that the following axioms are satisfied: 

1) (ml + m2)a = mla + m2a; 

2) m(al + a2) = mal + ma2; 

3) (am)a = m(aa) = a(ma) where a ∈K; 

4) m(ab) = (ma)b; 

5) m1 = m. 

 

  Example 3.2:  R2 is M2×2(R)- module via the action 

                                                         (
𝑎 𝑏
𝑐 𝑑

) (
𝑣
𝑤

) = (
𝑎𝑣 + 𝑏𝑤
𝑐𝑣 + 𝑑𝑤

).  

It is not hard to check that this action satisfies the above five conditions .                      

We can  generalize this action and we get that   Rn is Mn×n(R)-module. 

 

Proposition 3.3:[10]  

Let M be a module over an algebra A = A1 × A2 ×… × As and 1 = el + e2 + ... + es    

be the corresponding central decomposition of the  identity of A. Then                                        

M =  𝑀𝑒1 ⊕ … ⊕ 𝑀𝑒𝑠, where 𝑀𝑒𝑖are modules over Ai. 
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Remark 3.4: [11] 

There is a bijective correspondence between the decompositions of an A-module M 

into a direct sum of sub modules and the decompositions of the identity of the algebra 

E =EA (M).We have already attached to every decomposition of the module M a 

decomposition of the identity of the algebra E. Now, let 1 = el + e2 + ... + es be a 

decomposition of the identity of the algebra E. Put Mi = Im ei. Then, for every element 

m∈ M, m = (el + e2 + ... + es)m = elm + e2m + ... + esm, where eim ∈  Mi.                                    

If m = ml + m2 + ... + ms is a decomposition of the element m in the form of the sum 

of the elements mi  ∈ Mi , then mi = eixi for some xi  ∈ M. Then, eim=∑ 𝑒𝑖𝑚𝑗 =s
j=1 mi 

 

Remark 3.5:[11]  

A module M is indecomposable if and only if there are no non-trivial (i. e. different 

from 0 and 1) idempotents in the algebra EA (M). If e is a non-trivial idempotent, then 

f = 1 - e is also a non-trivial idempotent which is orthogonal to e, and thus 1 = e + f is 

a decomposition of the identity.  

 

Theorem 3.6: [11] 

There is a bijective correspondence between 

1) the decompositions of the algebra A into a direct product of algebras; 

2) the decompositions of A into a direct sum of ideals. 

 

Remark 3.7: [11] 

There is a bijective correspondence between the direct product decompositions of the 

algebra A and those ei of decomposition of the identity 1 = el + e2 + ... + es because   

ei Ae j = 0 for i ≠ j.  

 

Theorem 3.8 (Schur): [11] 

If U and V are simple A-modules, then every nonzero homomorphism f : U →V is an 

isomorphism. 
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Definition 3.9: [11] 

A module M is called semisimple if it is isomorphic to a direct sum of simple 

modules.  

 

Proposition 3.10:[11] 

 The following conditions are equivalent: 

1) the module M is semisimple 

2)M=∑ Mim
i=1 where Mi are simple submodules of M. 

3) every submodule N⊂M has a complement. 

4) every simple submodule  N⊂M has a complement 

Corollary 3.11: [11] 

Every submodule and every factor module of a semisimple module is semisimple. 

 

Lemma 3.12 (Brauer): [11] 

 If I is a minimal right ideal of an algebra A, then either I2 = 0, or I = eA,                              

where e is an idempotent 

Theorem 3.13: [11]  The following conditions for an algebra A are equivalent: 

1) A is semisimple; 

2) every right ideal of A is of the form eA, where e is an idempotent; 

3) every non-zero ideal of A contains a non-zero idempotent; 

4) A has no non-zero nilpotent ideals; 

5) A has no non-zero nilpotent right ideals. 

 

Theorem 3.14: [11] 

1) A commutative algebra is semisimple if and only if it contains no nilpotent elements  

2) The center of a semisimple algebra is semisimple. 

3) Every vector space over a division algebra D is isomorphic to nD (direct sum of n 

copies of the regular module). The number n is determined uniquely. 

4) The module V over the algebra A = Mn(D) is simple and the algebra Mn(D) is 

semisimple. 



23 
 

Proposition 3.15: [11]  

1) Every module over the algebra A = Mn(D) is semisimple.  

2) Every simple A-module is isomorphic to V, and the regular A-module is 

isomorphic to nV. 

 

Theorem 3.16: [11]    

1) A commutative semisimple algebra is isomorphic to a direct product of fields. 

Conversely, a direct product of fields is a semisimple algebra. 

2) If K is algebraically closed, then every commutative semi simple K -algebra is 

isomorphic to kn. 

Theorem 3.17: [11] (Wedderburn-Artin). 

Every semisimple algebra is isomorphic to a direct product of matrix algebras over 

division algebras. Moreover, a direct product of matrix algebras over division 

algebras is a semisimple algebra. 

Theorem 3.18: [11] (Molien).  

If K is algebraically closed, then every semisimpie K -algebra is isomorphic to the 

algebra of the form Mn1(K)  × Mn2(K) ×… ×Mns(K). 

Theorem  3.19: [11]   

1)Every simple K -algebra is isomorphic to an algebra of the form Mn(D), where D is 

a division algebra. 

2) Every simple algebra over an algebraically closed field K is isomorphic to Mn (K) 

for some n. 

Proposition 3.20: [2]   

 Let K be a field. Then we have the following: 

(a) Every 1-dimensional K-algebra is isomorphic to K. 

(b) Every 2-dimensional K-algebra is commutative. 

(c) Up to isomorphism, there are precisely three 2-dimensional algebras over R. Any 

2-dimensional algebra over R is isomorphic to precisely one of 

R[X]/(X2) or  R[X]/(X2 − 1) and  R[X]/(X2 + 1). 



24 
 

 
References 

1-Kandasamy, WB Vasantha. Smarandache rings. Infinite Study, 2002. 

Pierce, Richard S. Associative algebras. Vol. 88. Springer Science & Business Media, 2012. 

2-Erdmann, Karin, and Thorsten Holm. Algebras and representation theory. Berlin: Springer, 2018. 

3-Larson, Ron. Elementary linear algebra. Cengage Learning, 2016. 

4-Lipschutz, Seymour. Linear Algebra 4th ed. McGraw-Hill, 2009. 

5- Pierce, Richard S. Associative algebras. Vol. 88. Springer Science & Business Media, 2012. 

6- Humphreys, James E. Introduction to Lie algebras and representation theory. Vol. 9. Springer Science & 

Business Media, 2012. 

7- Hazewinkel, Michiel, Nadiya Gubareni, and Vladimir V. Kirichenko. Algebras, Rings and Modules: Volume 

1. Vol. 575. springer science & Business Media, 2006. 

8- Erdmann, Karin, and Mark J. Wildon. Introduction to Lie algebras. Vol. 122. London: Springer, 2006. 

9- McCrimmon, Kevin. A taste of Jordan algebras. Vol. 1. New York: Springer, 2004. 

10-Joshua Ruiter (2016), Semisimple Complex Lie Algebras 

11- Drozd, Yurj A., and Vladimir V. Kirichenko. Finite dimensional algebras. Springer Science & Business 

Media, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

 

 

 

 

 

یە داێت  انینتێ تۆمپێدیئا ەیدان ەک ستنەکتربیە یبرەج  
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 بڕوانامەی بەكالۆریۆس لە زانستی ماتماتیك

 

:لەلایەن ئامادەکراوە  

برایم  لوقمان هێلین   

 

 

: بەسەرپەرشتی  

یاسین   محمد هۆگر.د  

 

 

 

 

 ٢٠٢٣-نيسان
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 پوختە

 

 ان یستنەکترب یە  یتیەخاسەک   نینەکەد  ەانی براێ لج ەو ئ  ەل  ەوەنی لۆکێل   داەژۆپر  مەل

و     براو ێ لج ەئ   روەکت ڤێ  یزا ە ف یباس  تاەرە س ەل   ،یەدا ێت  انیزێ هێب   ەیو دان   ەیەه

  ەل  ەستمانیو ێپ  ەک  نەیکەباس د  انەینجامانەئ  وەناس ێپ  وەئ  نەی کەد  براێلج ەئ  یل

ئەکەوەن یل ۆکێل پاشان    یت ە فیس   ەک  نەیکەد  نێ لۆپ  ەنیبرا ێ لج ە ئ  وە. 

 .نەیکەپاس د رسێ پ یندە بەپلەو و ەیە ه انیستنەکترب یە

 

 

 


