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Abstract

In this work we study associative algebras with idempotent elements. First
we write basic definitions and results about vector spaces and algebras that we
need in our work. Then we study Lie algebras and Algebras with idempotent
elements and some properties of these kind of algebras. Moreover, we study
classification of associative algebras and we study pierce decomposition of

associative algebras.
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Introduction

Algebra is an algebraic structure consisting of a set together with operations
of multiplication and addition and scalar multiplication by elements of a field and
satisfying the axioms implied by "vector space" and “bilinear". Algebraic
multiplication may or may not be an associative operation, giving rise to the concepts
of associative algebras and non-associative algebras. The spaces of n by n-matrices
with coefficients in some field K and the standard matrix operations are examples of
associative algebras that are already present in elementary linear algebra.
Polynomials over a particular field offer another illustration, but there are plenty
others. A ring that also doubles as a vector space over a field K, in general, is what is

meant by an associative algebra A when scalars commute with all of its members.

In this work we study associative algebras with idempotent elements.  This
work consists of three chapters and is organized as follows. In chapter one we give
basic definitions and results about vector spaces and algebras that we need in our
work. We illustrate these definitions and results by many examples. In chapter two
we study Algebras and special type of it which is called Lie algebras. Then we study
some properties of Algebras and Lie algebras and the derivation of these algebras. In
the last chapter we study the classification of associative algebras and pierce

decomposition of them.



Chapter One
Preliminary and Background

In this chapter we state basic definitions and results about ring and vector spaces

that we need in our work. We gave many examples about these algebraic concepts.

Definition of group 1.1: [1]

A set G that is closed under a given operation "' is called a group if the following
axioms are satisfied.

1. The set G is non-empty.

2. 1fa, b, c € G then a(bc) = (ab) c.

3. There are exists an element e in G such that

(@) Forany elementainG,ea=ae=a.

(b) For any element a in G there exists an element a* in G such that aa® = a* a=e.

A group, which contains only a finite number of elements, is called a finite group,
otherwise it is termed as an infinite group. By the order of a finite group we mean the
number of elements in the group
Example 1.2:

1) Let Q be the set of rational numbers.Then Q\{0} is a group under multiplication
which is an infinite group.

2) Let p be a prime number and Z, = {0, 1, 2, ... , p — 1} be the set of integers
modulo p. Then Z,\{0} is a group under multiplication modulo p which is a finite

cyclic group of order p-1.

Definition 1.3: [2]

We start by recalling the definition of a ring: A ring is a non-empty set R together
with an addition+ : RXxR — R, (r, s) —r+s and a multiplication - : RxR —R, (r, s) —
r - s such that the following axioms are satisfied for all r,s,t € R

R1- (Associativity of +) r+ (s+t) =(r+s) +t.

R2-(Zero element) There exists an element Og € R such that r+0g = r = O +r.
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R3- (Additive inverses) For every r € R there is an element —r € R such that

r+ (—r) = Or.

R4- (Commutativity of +) r+s=s+r.

R5- (Distributivity) r. (s+t)=r.s+r.tand(r+s) .t=r.t+s.t.

R6- (Associativity of )r.(s.t)=(r.s) - t.

R7- (Identity element) There is an element 1r € R\ {0} suchthat 1r - r=r=r- 1g.

Moreover, a ring R is called commutative if r - s=s - rforall r, s € R. As usual,
the multiplication in a ring is often just written as rs instead of r - s; we will follow
this convention from now on. Note that axioms (R1)—(R4) say that (R,+) is an abelian
group. We assume by Axiom (R7) that all rings have an identity element; usually we
will just write 1 for 1g. Axiom (R7) also implies that 1g is not the zero element.
Now we list some common examples of rings.

Example 1.4:

(1) The integers Z form a ring. Every field is also a ring, such as the rational numbers
Q, the real numbers R, the complex numbers C, or the residue classes Z, of integers
modulo p where p is a prime number.

(2) The set of integers Z is a commutative ring with 1.

3) Let Z,= {0, 1, 2, ... , n — 1) be the ring of integers modulo n. Z, is a ring under
modulo addition and multiplication. Z, is a commutative ring with unit.

4) The n x n-matrices Mp(K), with entries in a field K, form a ring with respect to
matrix addition and matrix multiplication.

5) The ring K[X] of polynomials over a field K where X is a variable. Similarly, the
ring of polynomials in two or more variables, such as K[X, Y ].

Note that examples (4) and (5) are not just rings but also vector spaces. There are
many more rings which are vector spaces, and this has led to the definition of a vector
space.

Definition 1.5: [2]
(V, +) is called is a vector space over a field K, if satisfies the following conditions,
forall u,vyvweV andc,d € K:

Du+v Is a vector in the plane closure under addition
3



2)u+v=v+u Commutative property of addition

3) (u+v) +w=u+ (v+ w) Associate property of addition

H@u+0)=u Additive identity

55u+(-1)u=0 Additive inverse

6) cu Is a vector in the plane closure under scalar multiplication
Ncu+v)=cu+cv Distributive property of scalar mult.
8)(c+d)u=cu+du Distributive property of scalar mult.
9)c(du)=(cd)u Associate property of scalar mult.

10) 1(u) =u Multiplicative identity property

We call elements of V vectors and call elements of K scalars.

Example 1.6:
1) The set of polynomial K[x] is a vector space over the field K.
2) The set of n by n Matrices Mnx, (R) is a vector space over R. for example if n=2,

Maxa(R) ={(* ) |xy,zw € R} is a vector space of 2 by 2 Matrices over set of

real numbers R and "+" and "." are defined in this way:

(& +(E &)=CHE o) oG D=0a o

Now we show that M, (R) is a vector space over the field R:

1-let AB, C € Myyp(R) where A=(21 21), B=(22 22) andC=(% %)
— 1 b1 2 b2 3 b3

A+B+C)= (3 o)+ UE &) +HE &)

=(a1 b1)+((a2+a3 b2+b3))= al+(a2+a3) bi1+(b2+b3)
cl1 di c2+c3 d2+d3 c1+(c2+c3) di1+(d2+d3)

:((a1+az)+a3 (b1+b2)+b3)_(a1+a2 b1+b2)+(a3 b3
c3

(c1+c2)+c3  (d1+d2)+d3 /) \c1+c2 di+d2 d3

(& DHE (S @)FABrC

2- We show that A+0=0+A. LetA=(2 Xand 0=(2 ). Then
A0=(3 ) 0)=( aro)=(C a)=A

3- LetA=(2 2),-A=(C2 D). Then

AR (2 2 2D aEe) =6 0)
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4- LetA=(;“11 )and B= (az sz)Then

A+B=(a1 b1)+(a2 bz)z(a1+a2 b1+b2)=B+A

Cq1 dl Cy d2 C2+C2 d1+d2

5- k(A+|3)=k( a+a, b+ bz)

C2+C2 d1+d2

=(k(a1+ az) k( byt bz))
k(ca+c)  k( dq+dy)

ka1+k a, kb1+k bz
kC2+kC2 kd1+kd2

k aq kb1 kaz kbz —
kC1 k dl kCz k dz

(
G B 3y

1 C2

— a by _((k+r)a (k+r) b\_/ka+ra kb+rb
6- (k+n).A=(k+n). (2 ) _((k+r)c (k+r)d)_ ketre  kd+rd

= (e D)+ D)=k DR P =kAHA
kAT G D= (6 )R (a)Te @ D)

k(rc) k(rd) (kr)c (kr)d) d
8-1.(0 =G 1= A

Definition 1.7: [3]

A nonempty W subset of a vector space V is called a subspace of V if W is a vector
space under the operations of addition and scalar multiplication defined in V. If W is
a nonempty subset of a vector space V then W is a subspace of V if and only if the
following closure conditions hold.

1. Ifuand v are in w then u+v is in W

2. Ifuisin W and c is any scalar, then cu is in W.

Example 1.8:

Let W be the set of singular matrices of order 2. Show that W is not a subspace of

Max, (C) with the standard operations. Because W is not closed under addition. To

see this, let A and B be A=[(1) 8 and B=[8 (1)] and then A and B are both

singular (noninvertible), but their sum A+B=[(1) (1) Is nonsingular. Thus W is not

closed under addition, and we get it is not a subspace of Max2 (R).
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Definition 1.9: [3]

A vector u in a vector space V is called a linear combination of the vectors
UyUy,....ux in V if v can be written in the form V=ciu;+Cou,+. . . +CkUk
where €;,Cy,. . . ,Ck, are scalars.

Example 1.10:

(1,1,1) is a linear combination of vectors in the set S={(1,2,3),(0,1,2),(-1,0,1)}

Definition 1.11: [3]

Let S ={V1,V,,....Vk }be a subset of a vector space V. The set S is called a

spanning set of VV if every vector in VV can be written as a linear combination of

vectors in S In such cases it is said that S spans V.

Example 1.12 :

(a) The set S={(1,0,0),(0,1,0),(0,0,1)} spans R3 because any vector u=(u,u,,us) in R3
can be written as u=u;(1,0,0)+u,(0,1,0)+u3(0,0,1)=(u1,uUz,us)

(b) The set S={1,X, X3} spans P, because any polynomial function P(X)=a+bx+c x2in
P, can be written as P(X)=a(1)+b(x)+c(x?) =a+bx+cx?

Now we review linear Dependent and linear Independent:

Definition 1.13: [3]

A set of vectors S={V1,V,,...,Vk} in a vector space V is called linearly independent
if the vector equation civi+Cavot.....+ckvk=0 has only the trivial solution
€1=0,c,=0,.....ck=0, If there are also nontrivial solutions, then S is called linearly
dependent.

Example 1.14:

(@) The set S={(1,2),(2,4)} in R? is linearly dependent because -2(1,0)+(2,4)=(0,0)
(b) The set S={(1,0),(0,1),(-2,5)} in R? is linearly dependent because
2(1,0)-5(0,1)+(-2,5)=(0,0)

(c) The set S={(0,0),(1,2)} in R?is linearly dependent because 1(0,0)+0(1,2)=(0,0)

(d) $={(1,2,3),(0,1,2),(-2,0,1)} is linearly independent or linearly dependent inR3.



Definition 1.15: [3]

A set of vectors V={v;,v2,v3} in a vector space V is called a basis for V if the
following conditions are true.

1. Sspans V. 2. S is linearly independent.:

Example 1.16:

S$={(1,0,0),(0,1,0),(0,0,1)} is a basis for R and generally e;=(1,0.. .. .,0), e,=(0,1,. ..
,0), ..., e,=(0,0,....,1) form a basis for R" called the standard basis for R"

Definition 1.17: [3]

If a vector space V has a basis consisting of vectors, then the number n is called the
dimension of V denoted by dim(V)=n. If V consists of the zero vector alone, the
dimension of V is defined as zero .

Example 1.18:

(a) W={(d,c-d,c): ¢ and d are real number } is a two dimensional subspace of R3

(b) W={(2b,b,0): b is a real number} is a one dimensional subspace of R3.



Chapter two
Algebras and Lie algebras

In this chapter we study algebras with idempotent elements and the main
properties of them. First we study Algebras and a special type of it which is called
Lie algebras. Then we study some properties of Algebras and Lie algebras and the
derivation of their algebras. Moreover we gave many examples about these algebraic

structures.
Definition 2.1: [2]

Algebra over a field F is a vector space A over F together with a bilinear map,

AxXA—A, (x,y) = xy. We say that xy is the product of x and y.

Usually one study algebras where the product satisfies some further properties.
The algebra A is said to be associative if (xy)z =x(yz) for all x,y,z € A and until if
there is an element 1, in A such that 1ax = x = x 1 for all non-zero elements of A.
Example 2.2:

1) The set of polynomial K[x] is a K-algebra.

2) The space of nxn-matrices M,(K) with matrix addition and matrix multiplication
form a K-algebra. It has dimension n?; the matrix units Ej; for 1 <i, j <n form a
K-basis. Here Ej; is the matrix which has entry 1 at position (i, j ), and all other
entries are 0. This algebra is not commutative for n > 2. For example we have
E11E12 = E1o but E1oE11 = 0.

4) H(R) = {a+bi+cj+dk ;a,b,c,d € R} are four dimensional algebra and it is called

quaternion algebra (Historically, it is one of the first examples of algebra.

5) If V is a vector space over the field K, then the linear transformations
Of the space V form also algebra E (V). This algebra is finite dimensional

6) Consider the n-dimensional vector space of all n-tuples (o, ay, ..., o), oy €

k with coordinate wise addition and Scala multiplication. By defining the

multiplication Coordinate wise

(0(1; Ay ooy an)(Bli BZJ e Bn) = ( alBl' aZBZ! O(an),
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We obtain an algebra over the field K which will be denoted by K".

5) Let Ay, A,, ..., A, be algebra over the field K consider their Cartesian product
A.i.e. the set all sequences ( a;,a,,..,a,),a; € A; and define the operations
Coordinate wise: (aq,ay, ...,a,) + (by, by, ...,by) = (a; + by, a, + by, ...,a, + by),
a(ay, ay, ...,a,) = (aaq, aa,, ..., 0a,),and(a,, a,, ...,a,)( by, by, ...,a)(a; by, a3b,, ...,a,by)
Clearly, in this way A becomes algebra over K which is called the direct product of
the algebra A4, A,, ...,A, and is denoted by A; X A, X ...xX A,, Or [[iL;A;.The
algebra A, A,, ..., A,are said to be direct factors of the algebrae.

(7) The field K is a commutative K-algebra, of dimension 1.

(8) The field C is also an algebra over R, of dimension 2, with R-vector space basis
{1, i}, where i2 = —1. More generally, if K is a subfield of a larger field L, then

L is an algebra over K where addition and (scalar) multiplication are given by the

addition and multiplication in the field L.

Remark 2.3:

(1) The condition relating scalar multiplication and ring multiplication roughly says
that scalars commute with everything. Due to A is a vector space over K we have for
alla,be Aand L,peK:

MAr-(@+tb)y=A-a+Ar-Db;

()(A+p-a=A-a+pu-a;

(i) () -a =2 - (- @);

(iv) 1x -a=a.

(2) Since A is a vector space, and 14 is a non-zero vector, it follows that the map

A —) - 15 from K to A is injective. We use this map to identify K as a subset of A.
Similar to the convention for ring multiplication, for scalar multiplication we will
usually also just write Aa instead of A - a.

(3) The dimension of a K-algebra A is the dimension of A as a K-vector space.

The K-algebra A is finite-dimensional if A is finite-dimensional as a K-vector space.

(4) The algebra is commutative if it is commutative asaringy, z € L.



Jordan algebra 2.4: [9]
Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies

the following axioms:

1. Xy=yx (commutative law)

2. (Xy)(xx)=x(y(xx)) (Jordan identity).
The product of two elements x andy in a Jordan algebra is also denoted X oy,
particularly to avoid confusion with the product of a related associative algebra.
Example 2.5:

The set of self-adjoint real, complex, or quaternionic matrices with multiplication

Xy+yx

form a special Jordan algebra.

Definition 2.6: [6]

A vector space L over a field F, with an operation Lx L— L, denoted

(x, y) = [xy] and called the bracket or commutator of r and y, is called a Lie algebra
over F if the following axioms are satisfies:

(LI) The bracket operation is bilinear

(L2) [xxI=0forall xinL.

(L3) IXIyzll*+Iylzx]]*+[z[xyll =0 (x,y, z €L).

Axiom (L3) is called the Jacobi identity. Notice that (LI) and (L2), applied

to [x+y, x+y], imply anticommutativity: (L2') [xy] = - [yx]. Conversely,

if char F + 2, it is clear that (L2") will imply (L2

We say that two Lie algebras L, L' over F are isomorphic if there exists a vector space
isomorphism : L— L' satisfying @[x] = [(B(X)( @(y)] for all x, y in L (and then @ is
called an isomorphism of Lie algebras). Similarly, it is obvious how to define the
notion of (Lie) subalgebra of L: A subspace K of L is called a subalgebra if [xy] € K
whenever x, y K; in particular, K is a Lie algebra in its own right relative to the
inherited operations. Note that any nonzero element x € L defines a one dimensional

subalgebra Fx, with trivial multiplication, because of L2
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Proposition 2.7:[10]
Let L be a Lie algebra, and letv € L. Then [v, 0] =0, v] =0.
Proof. By bilinearity of the bracket,
[v,0]=[v,v—Vv]=[v,v]—[v,Vv]=0
[0,v]=[v—v,Vv]=][v,v]—[v,v]=0
(if) Suppose that X, y € L satisfy [x, y] # 0. Show that x and y are
linearly independent over F.
Lemma 2.8:
Let L be aLiealgebraover F. Letx,y e Landa € F.
Then a[x, y] = [ax, Y] = [X, ay].
Examples 2.9:[6]
(1) Let F = R. The vector product (X, y) — X Ay defines the structure of
a Lie algebra on R3. We denote this Lie algebra by R3 Explicitly, if
X = (X1, X2, X3) and y = (Y1, Y2, Ys), then
X AY = (Xoys — XsY2, X3y1 — X1Y3, X1y2 = XaY1).
Example 2.10:
Convince yourself that A is bilinear. Then check that the Jacobi identity
holds. Hint: If x - y denotes the dot product of the vectors x, y € , R3
thenx A(yAz)=(X-z)y—(x-y)zforallx,y, z€R3
Lemma 2.11: [10]
Let u,v,w € R?3.Then ux(vxw)= (u-w)v —(u-v)w.
Proof. ux(vxw) = ux(v2w? —-v3w? | vdw! — viw? | viw? — v2wl)
=(uA(viw2-vaw?) - ud(viwi-viwgd),
ud(vewi-viw?) - ut(viwz-vawd),
ut(viwi-viwd) - u?(vaw3-viw?))
=(vivawz-vauwi-viudwl+vindwe,
V2URWA-vAutw2-utviwz+veutwl,
viaulwl-viutw3-uavawi+viuAw?)
= udviw2-vauwi-viudwivivdwi+utvint-utviwt

11



’V3U1W1 _V1u1W3 _V2u2W3 +V3U2W2+V3U3W3 -V3U3W3
=(viulw + uPw? + Bwe) — wiuvt + udv? + udv),
v2(uwi+u?w?+ udw®) — w2(uivt + uAvi+ udv3),

V3uiwi+ wPwAHudw? ) — wiutvt + u? v2 + udve)

=(vi(u.w),v3(u.w),v3(u.w))-(w(u.v),w?(u.w),w3(u.w)) =(u.w)v-(u.v)w
(2) Any vector space V has a Lie bracket defined by [x,y] =0forall x,y e V.
This is the abelian Lie algebra structure on V . In particular, the field F
may be regarded as a 1-dimensional abelian Lie algebra.
Proposition 2.12 : [10]
The Jacobi identity holds for the cross product of vectors in R®.

Proof. Using the above proposition,

[x, Iy, zI] + Iy, [z, X]] + [z, [X, Y]]

=x-2y-x-yzt{y x)z-(y 2)x+(z y)x—(z Xy

=x-2)y-(z Xyt xz-x-yzt@z yx-—(y 2x

=0+0+0 =0

(3) Suppose that V is a finite-dimensional vector space over F. Write gl(V ) for the
set of all linear maps from V to V . This is again a vector space over F, and it
becomes a Lie algebra, known as the general linear algebra, if we define the Lie
bracket [-,—] by [X, y] =Xy —y o x for X, y € gl(V ), where - denotes the
composition of maps.
Proposition 2.13 :[10]

Let V be a finite-dimensional vector space over F and let gl(V ) be the set of all
linear maps from V to V . We define a Lie bracket on this space by

[X, Y] = x © y —y ° X where ° denotes map composition. We claim that the Jacobi
identity holds for this bracket operator
Proof.

[x, Iy, 1] + Iy, [z, X]] + [z, [x, Y]]
:(Xoon—Zopo)+(yoZoX—XoZoy)+(ZoXoy—pooZ)
:(Xoyoz—xoZoy)+(onoX—pooZ)+(ZoXoy—Zopo)

=xcly,z]+yelz,x]+z° [xy][x [y, z]] + [y, [z x]] + [z [x, y]]
12



:(XOyOZ—yOXOZ)+(ZOXOy—XOZOy)+(yOZOX—ZOyOX)

=[x ylezt[z,x]oy+[y, z]°x

Thus wereach x ° [y, z] ty° [z, x] + z° [X, V]

=[x,y]°z+ [z x]°y+ [y, z] °x Now we can subtract to have one side equal zero,
O=xc[y,z]-[y,z]ex+tyelz,x] [z, x]ey+tze[x,y] ~[X, y]°z

=[x [y, z]] + [y, [z, X]] + [z, [X, Y]] which is precisely the Jacobi identity

Now we show that the associative algebra with (A+,.) with (A+[ 1)
where [X,y]=xy-yx become lie algebra:
1- [X,X]=X.X-X.X=x%-x2=0
2-[x,ly.zII=[x.y1.z1+1y.[x.Z]]

RHS=[x[y,z]=[x,(yz-zy)] =x(yz-zy)-(yz-zy)x
=X(yz)-x(zy)-(yz)x+(zy)x
LHS[[x,yl.zI+y.[x.z] =[(xy-yx).z]+[y,(xz-zx)]
=(Xy-yX).z-z(xy-yXx)+y(xz-zx)-(xz-zx)y
=(xy)z-(yx)z-z(xy)+z(yx)+y(xz)-y(zx)-(x2)y +(zX)y
=(xy)z+z(yx)-y(zx)-(xz)y
Thus [x.[y,z]]=[[x,y].z]+]y.[x,z]]. =

Remark 2.14: [10]

Let L be a Lie algebra. Show that the Lie bracket is associative, that is,

X, [y, 11 = [[X, y], z] forall x,y, z € L, if and only if for all a, b € L the
commutator [a, b] lies in Z(L).

If A is an associative algebra over F, then we define a new bilinear operation
[-,—]on A by [a, b]=ab—baforall a, b €A.

Then A together with [—,—] is a Lie algebra; this is not hard to prove. The
Lie algebras gl(V ) and gl(n, F) are special cases of this construction.

Quotient Algebras 2.15:[8]
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If 1 is an ideal of the Lie algebra L, then I is in particular a subspace of L, and so we
may consider the cosets z + | = {z + x : x € |} for z € L and the quotient vector space
LI={z+1:z€L}.

Now we define thata Lie bracketon L/ by [w+1,z+1]=[w, z]+1forw,z € L.
Here the bracket on the right-hand side is the Lie bracket in L. To be sure
that the Lie bracket on L/I is well-defined, we must check that
[w, z] + | depends only on the cosets containing w and z and not on the particular
coset representatives w and z. Supposew + I =w'+landz+1=2"+1. Then
w—W' € land z -z € I. By bilinearity of the Lie bracket in L,

W', Z]=[w' + (w-Ww), 2+ (z-7)]
=[w, z] +[w-w,Z]+[wW,z-27+[w-W,z-21,
where the final three summands all belong to 1.

Therefore [W' + 1, Z' + 1] =[w, z] + |, as we needed. It now follows from part (i) of the
exercise below that L/l is a Lie algebra. It is called the quotient or factor algebra of L

by I.

Proposition 2.16: [10]

Let L be a Lie algebra over F, and let I be an ideal of L. The the bracket on L/I
satisfies the Jacobi identity.

Proof. Letu+1,v+1,w+1€L/l. Then
[u+l [v+l,w+I]]+[v+lL[w+Lu+I]]+[w+L[u+lLLv+I]]=[u+l, [v,w] +
T+ v+ 1w, u] + 1]+ [w 1 [u, v+ 1] =([us v Wl D+ (v [wul T+ D+ ([w, [uvTH)

=([u,[v,W]]+[Vv,[w,u]]+[w,[u,v]])+I =0+1 Where 0+l is the additive identity of L/l. m

Now we show that that the linear transformation = : L — L/I which takes an
element z € L to its coset z + | is a homomorphism of Lie algebras.
Proposition 2.17:[10]
Let I be an ideal of Lie algebra L over F. Define n : L — L/I by n(z) = z + 1. Then
n is a Lie algebra homomorphism.

Proof. First we show that 7 is a linear map. Leta € Fand u, v € L

14



mau tv)=(au+v)+I=@u+D)+v+Dh=au+])+ (v+I =an(u) + nv)
so 7 is linear. Now we show that & preserves the bracket.

n([u, v])=[w, v] +I=[u+1, v +I] =[n(u), m(v)]. [

Thus 7 is a Lie algebra homomorphism.

Definition 2.18: [2]

A K-algebra A is called semisimple if A is semisimple as an A module. We have

already seen some semisimple algebras or it is a direct some of simple algebras.

Example 2.19:
Every matrix algebra M,(K) is a semisimple algebra.
Definition 2.20: [7]
An idempotent elementor simply idempotentof aringis an elementasuch
thata?=a.[1] That is, the element isidempotentunder the  ring's
multiplication. Inductively then, one can also conclude thata=a?=a’=a*= ..
=a" for any positive integer n. For example, an idempotent element of a matrix
ring is precisely an idempotent matrix.
We can check this for the integers mod 6, R = Z/6Z. Since 6 has two prime factors (2
and 3) it should have 22 idempotents.

02=0=0(mod 6),12=1=1 (mod 6) and 22 =4 =4 (mod 6)

32=9=3 (mod 6), 42=16 =4 (mod 6) and 52 =25 = 1 (mod 6)
From these computations, 0, 1, 3, and 4 are idempotents of this ring, while 2 and 5
are not. This also demonstrates the decomposition properties described below:
because 3 + 4 = 1 (mod 6), there is a ring decomposition 3Z/6Z @ 4Z/6Z. In
3Z/6Z the identity is 3+6Z and in 4Z/6Z the identity is 4+6Z

Definition 2.21: [8]

If L1 and L2 are Lie algebras over a field F, then we say thatamap ¢ : L1 — L2 isa
homomorphism if ¢ is a linear map and ¢([x, y]) = [¢(X), ¢(y)] for all X,y € L1.
Notice that in this equation the first Lie bracket is taken in L1 and the second

Lie bracket is taken in L2. We say that ¢ is an isomorphism if ¢ is also bijective.
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An extremely important homomorphism is the adjoint homomorphism . If L
Is a Lie algebra, we define ad : L — gl(L)

by (ad x)(y) := [x, y] for x, y € L. It follows from the bilinearity of the Lie
bracket that the map ad x is linear for each x € L. For the same reason, the
map X _— ad x is itself linear. So to show that ad is a homomorphism, all we
need to check is that ad([x, y]) =ad xcady —ady - ad x forall x,y € L

this turns out to be equivalent to the Jacobi identity. The kernel of ad is the
centre of L.

Example 2.22: [10]

Show that if ¢ : L; — L, is a homomorphism, then the kernel of ¢,

ker ¢, is an ideal of L;, and the image of ¢, im¢, is a Lie subalgebra of L.

Proposition 2.23: [10]

Let L, L, be Lie algebras and let ¢ : L1 — L, be a homomorphism.
Then ker ¢ is an ideal of L;.

Proof: We need to show that for x € L;, y € ker o = {v € L1 : ¢(v) = 0},
we have [X, y] € ker ¢. Let X € L,y € ker ¢. Then

o([x, y]) = [0(x), o(y)] = [e(x), 0] =0. ~

Proposition 2.24: [10]

Let L be a Lie algebra such that the bracket is associative. Then for x,y € L,

[x, y] € Z(L).

Proof. Let x, y, z € L. We need to show that [[X, y], z] = 0.

Using anti-communitivity, linearity, and associativity we get

[z, [x, Y11 =[x, y1, 2] = [y, x], 2] = [[y, x], Z]

=1y, [x, z]l =y, —lz x]] =1y, [z, x]]

Then using the Jacobi identity and substituting —[y, [z, x]] for [z, [x, y]] [X, [y, z]] +
[y, [z, X]] + [z, [x, Y]] =01[x, [y, z]l + [y, [z, x]] — [y, [z, x]] =0

[x, [y, z]]=0 and [[X,y], z] = 0. [
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Theorem 2.25:(Isomorphism theorems) :[8]

(@) Let ¢ : L1 — L2 be a homomorphism of Lie algebras. Then ker¢ is an
ideal of L1 and im ¢ is a subalgebra of L2, and

L1/ ker ¢=im ¢.

(b) If I and J are ideals of a Lie algebra, then (I + J)/J=1/(1 N J).

(c) Suppose that | and J are ideals of a Lie algebra L such that | < J.
Then J/l'is an ideal of L/l and (L/D)/(3/1) = L/J.

Definition2.26 : [2]

Let A and B be K-algebras. A map ¢ : A — B is a K-algebra
homomorphism (or homomorphism of K-algebras) if

(1) ¢ is a K-linear map of vector spaces,

(11) p(ab) = @(a)p(b) for all a, b € A,

(iii) (1) = 1.

The map ¢ : A — B is a K-algebra isomorphism if it is a K-algebra

homomorphism and is in addition bijective. If so, then the K-algebras A and B are

said to be isomorphic, and one writes A=B. Note that the inverse of an algebra

isomorphism is also an algebra isomorphism.
Remark 2.27:

(1) To check condition (ii) of Definition 1.22, it suffices to take for a, b any two

elements in some fixed basis. Then it follows for arbitrary elements of A as long as @

is K-linear.

(2) Note that the definition of an algebra homomorphism requires more than just

being a homomorphism of the underlying rings. Indeed, a ring homomorphism

between K-algebras is in general not a K-algebra homomorphism.

Definition 2.28: [8]
Let A be an algebra over a field F. A derivation of A is an F-linear map
D : A — Asuch that D(ab) = aD(b) + D(a)b for all a, b € A.

17



Remark 2.29:

Let DerA be the set of derivations of A. This set is closed under addition
and scalar multiplication and contains the zero map. Hence DerA is a vector
subspace of gl(A). Moreover, DerA is a Lie subalgebra of gl(A), for by part (i)
of the following exercise, if D and E are derivations then so is [D,E].
Theorem: [10]

Let D and E be derivations of an algebra A. Then

[D,E] =D - E—E -~ Disalso a derivation of A

Proof. We need to show that

[D, E](xy) = xX[D, E](y) + [D, E](x)y. First we compute

D ¢ E(xy) and E » D(xy). D ° E(xy)

= D(XE(y) + E(x)y) = D(XE(y)) + D(E(x)y)

=xD ° E(y) + D®)E(y) + D ° Ex)y + EX)D(y) E ° D(xy)

= xE » D(y) + E®)D(y) + DX)E(y) + E » D(x)y
Now that we’ve done that we can easily compute

[D, E](xy). [D, E](xy) = (D °E - E ° D)(xy)

=D - E(xy) — E < D(xy)

=xD o E(y) + D ¢ E(x)y — xE ° D(y) — E e D(x)y

=x(D * E(y) - E > D(y)) + (D * E(x) - E * D(x))y

=x[D, E](y) — [D, E](x)y. u

Example 2.31 :[8]

(1) Let A =R* R be the vector space of all infinitely differentiable functions
R — R. For f, g € A, we define the product fg by pointwise multiplication:
(fg)(x) = f(x)g(x). With this definition, A is an associative algebra. The

usual derivative, Df = f', is a derivation of A since by the product rule

D(fg) = (fg)' = f'g + fg' = (Df)g + f(Dg).

(2) Let L be a Lie algebraand let x € L. The map adx : L — L is a derivation
of L since by the Jacobi identity. Then

(@d X)Ly, z] = [x, Iy, zI1 = [[x, y1. Z] + [y, [x, Z]] = [(adx)y, z] + [y, (ad x)Z]
18



Peirce decomposition:

For an Algebra A containing an idempotent e there exist left, right and two-sided

Peirce decompositions, which are defined by

A=Ae + A (1—e) and A=eA + (1—e) A
A=e Ae +eA (1—e) + (1—e) Ae+ (1—e) A(1—e)
Respectively. If has no identity, then one puts, by definition,
A(l—e)={x—xe:x€eA}and (1—e)Ae {x —xe:x € A},
(1-e)A(l-e)={x—ex—xe+exe: X €A}
The sets (1—e) A and eA (1—e) are defined analogously. Therefore, in a two-sided
Peirce decomposition an element x € A can be represented as
x=ee+(ex—exe)+(ex—exe)+(x—ex—xe+exe),
In a left decomposition as x=xe + (x — xe)
And in right decomposition as x=ex+ (x — xe)

There is also Peirce decomposition with respect to an orthogonal system of

idempotent {e; ...e,}where Y ;e; = 1: A=z Aj e e
ij

19



Chapter Three

Classification of associative algebras

In this chapter we review and highlight the main theorems about the classification
of associative algebra. We show that every simple K -algebra is isomorphic to an
algebra of the form M,(D), where D is a division algebra and every semisimple
algebra is isomorphic to a direct product of matrix algebras over division algebras.
We illustrate this algebraic concepts by solving some examples about them.
Definition 3.1:

A right module over a K-algebra A, or a right A-module, is a vector space M over the
field K whose elements can be multiplied by the elements of the algebra, i. e. to every
pair (m, a), m €M, a € A, there corresponds a uniquely determined element ma € M
such that the following axioms are satisfied:

1) (m; + mp)a = ma + mya;

2) m(a + a2) = ma, + may;

3) (am)a = m(aa) = a(ma) where a €K;

4) m(ab) = (ma)b;

5 my=m.

Example 3.2: R?is Max2(R)- module via the action
a b\(vV\ _ (av+ bw
(6 ) =Gt aw)
It is not hard to check that this action satisfies the above five conditions .

We can generalize this action and we get that R" is My«n(R)-module.

Proposition 3.3:[10]

Let M be a module over an algebra A = A; X A, X... xAjand 1 =¢e + e + ... + &
be the corresponding central decomposition of the identity of A. Then
M= Me, @ ... Me,, where Me;are modules over A..
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Remark 3.4: [11]

There is a bijective correspondence between the decompositions of an A-module M
into a direct sum of sub modules and the decompositions of the identity of the algebra
E =E, (M).We have already attached to every decomposition of the module M a
decomposition of the identity of the algebra E. Now, let 1 = e, + e, + ... + e be a
decomposition of the identity of the algebra E. Put M; = I, €. Then, for every element
me M m=( +e +..+e)m=em+ em+ ..+ em, where em € Mi.
If m=m;+m,+ ... + msis adecomposition of the element m in the form of the sum

of the elements mi € Mi , then m; = eix; for some x; € M. Then, eim=2f:1 e;m; =m;

Remark 3.5:[11]

A module M is indecomposable if and only if there are no non-trivial (i. e. different
from 0 and 1) idempotents in the algebra E, (M). If e is a non-trivial idempotent, then
f=1-eisalso a non-trivial idempotent which is orthogonal to e, and thus 1 =e + fis

a decomposition of the identity.

Theorem 3.6: [11]
There is a bijective correspondence between
1) the decompositions of the algebra A into a direct product of algebras;

2) the decompositions of A into a direct sum of ideals.

Remark 3.7: [11]
There is a bijective correspondence between the direct product decompositions of the
algebra A and those e; of decomposition of the identity 1 = e, + e, + ... + &5 because

eiAe;=0fori=].

Theorem 3.8 (Schur): [11]
If U and V are simple A-modules, then every nonzero homomorphism f: U -V is an

isomorphism.
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Definition 3.9: [11]
A module M is called semisimple if it is isomorphic to a direct sum of simple

modules.

Proposition 3.10:[11]

The following conditions are equivalent:

1) the module M is semisimple

2)M=Y%, Miwhere Mi are simple submodules of M.
3) every submodule NcM has a complement.

4) every simple submodule NcM has a complement
Corollary 3.11: [11]

Every submodule and every factor module of a semisimple module is semisimple.

Lemma 3.12 (Brauer): [11]
If 1 is a minimal right ideal of an algebra A, then either 12 = 0, or | = €A,
where e is an idempotent
Theorem 3.13: [11] The following conditions for an algebra A are equivalent:
1) Ais semisimple;
2) every right ideal of A is of the form eA, where e is an idempotent;
3) every non-zero ideal of A contains a non-zero idempotent;
4) A has no non-zero nilpotent ideals;

5) A has no non-zero nilpotent right ideals.

Theorem 3.14: [11]

1) A commutative algebra is semisimple if and only if it contains no nilpotent elements
2) The center of a semisimple algebra is semisimple.

3) Every vector space over a division algebra D is isomorphic to nD (direct sum of n
copies of the regular module). The number n is determined uniquely.

4) The module V over the algebra A = M,(D) is simple and the algebra M,(D) is

semisimple.
22



Proposition 3.15: [11]
1) Every module over the algebra A = My(D) is semisimple.
2) Every simple A-module is isomorphic to V, and the regular A-module is

isomorphic to nV.

Theorem 3.16: [11]

1) A commutative semisimple algebra is isomorphic to a direct product of fields.
Conversely, a direct product of fields is a semisimple algebra.

2) If K is algebraically closed, then every commutative semi simple K -algebra is
isomorphic to k"

Theorem 3.17: [11] (Wedderburn-Artin).

Every semisimple algebra is isomorphic to a direct product of matrix algebras over
division algebras. Moreover, a direct product of matrix algebras over division
algebras is a semisimple algebra.

Theorem 3.18: [11] (Molien).

If K is algebraically closed, then every semisimpie K -algebra is isomorphic to the
algebra of the form Mp1(K) X Mp2(K) X... XMs(K).

Theorem 3.19: [11]

1)Every simple K -algebra is isomorphic to an algebra of the form M,(D), where D is
a division algebra.

2) Every simple algebra over an algebraically closed field K is isomorphic to M, (K)
for some n.

Proposition 3.20: [2]

Let K be a field. Then we have the following:

(a) Every 1-dimensional K-algebra is isomorphic to K.

(b) Every 2-dimensional K-algebra is commutative.

(c) Up to isomorphism, there are precisely three 2-dimensional algebras over R. Any
2-dimensional algebra over R is isomorphic to precisely one of

R[X]/(X?) or R[X]/(X?—1)and R[X]/(X?+1).
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