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To be able to understand mathematics and mathematical arguments, it is necessary to have a solid
understanding of logic and the way in which known facts can be combined to prove new facts. In this
chapter we study basic mathematical logic that consists of statements, truth-values, and logical operations
(NOT, AND, OR, IF ANDONLY IF and IF... THEN) interms of truth tables. Moreover, we take a careful

look at the rules of logic and the way in which mathematical arguments are constructed. Logical statements

Definition 1.1. A statement is a sentence which can be classified as true or false without ambiguity. The
truth or falsity of the statement is known as the truth value. We use letters p, q, r... to denote the
statements. For a sentence to be a statement, it is not necessary that we actually know whether it is true

or false, but it must be clear that it is one or the other.
Ambiguity: Something that is not clear because it has more than one possible meaning.

Example 1.2. Consider the following sentences:

1. 711 is an even number” is a statement with truth value “false”.

2. "Every even number greater than 2 is the sum of two primes” is a statement, whose truth value is not

known...yet.

3. “21is an even number. 7 is a statement with truth value “True”.

Logical Connectives In studying mathematical logic we shall not be concerned with the truth value of any
particular simple statement. What will be important is how the truth value of a compound statement is
determined from the truth values of its simpler parts. To obtain such compound statements it is necessary

to introduce the concept of a connective.

Definition 1.3. A sentential connective is a logic symbol representing an operator that combines statements
into a new statement. Statements with connectives are called compound statements. Statements without
connectives are known as atomic statements. The sentential connectives are "not”, and”, "or”, ”if ...then”,
and "if and only if 7. The respective operators for these connectives are negation, conjunction, disjunction,

implication and equivalence respectively.



Definition 1.4. A truth table of a logical formula shows the conditions under which the logical formula
is true and those under which is false.The truth table of a connective is an alternative way of defining a
connective, since these are defined in terms of the truth value of the resulting compound statement, given
the truth value of its components.

Type of connectives : Negation , Conjunction, Disjunction, Conditional and Biconditional.

Definition 1.5. The negation (denial) of a statement is another statement which has opposite meaning for
the statement. If “p” is a statement, then negation of p is written as ~ p and read “not p”. When p is true,

then ~ p is false and viceversa.

Example 1.6. p: Yesterday is Monday. ~ p : Yesterday is not Monday.

The truth table for the negation of statement where T stands for true and F for false.

p ~pP
T F

Exercise 1.7. Suppose that p is a false statement.
1) What is the truth-value of the compound statement ~ p?
2) What is the truth-value of the compound statement ~ (~ p)?

Definition 1.8. Let p and q be two statements. The statement pAq is called the conjunction of p and q,
and read as “p and q”. pAq has true value of both p and q are true, otherwise it is false. The truth table

for the conjunction of two statements:

pArq
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Example 1.9. Let p and q be two statements as follows:

1. p: 2is an odd number. False
2. q: 2is a prime number. True.

3. pAq: 2 is an odd number and 2 is a prime number. False. (case 3)

Definition 1.10. Let p and q be two statements. The statement pVq is called the Disjunction of p and q,
and read as “p or q”. pVq is true when at least one of the two statements is true, and is false when both

are false. The truth table for the Disjunction of two statements:

P q pPVvgq
1| T T T
2 T F T
3| F T T
4] F F F




Note that the inclusive disjunction doesn’t complete the list of disjunctions used in everyday life. In
fact, we also have the exclusive disjunction, which is true when either p or q is true, but not when both are

true. In logic the only use for the connective or is for the inclusive meaning.

Definition 1.11. Let p and q be two statements. The statement p — ¢ is called conditional and it is read
as “If p then ¢”. p — ¢ has false value if p is true and q is false, otherwise it is true. In this implication

p — q, p is called hypothesis or premise and ¢ is conclusion or consequence. The truth table for conditional

P—q
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Exercise 1.12. Suppose that p is a false statement, and q is a true statement. What is the truth-value of
the compound statement (~ p)—q? What is the truth-value of the compound statement p— (~ q)7 What

is the truth-value of the compound statement p—q? What is the truth-value of the compound statement
~(p— (~q))?

Exercise 1.13. Suppose that the compound statement p— q is a true statement. In order for p to be true,
what must the truth-value of q be? Suppose that the compound statement p—q is a true statement. Which

truth value of p assures us that q is true?

Exercise 1.14. Suppose that the compound statement p—q is false. What are the truth-values of p and

of q7

Exercise 1.15. Suppose that p is a false statement, and q is a statement whose truth-value is presently
unknown. Suppose that the compound statement (~ p)—q is true. What is the truth-value of the statement
q? What is the truth-value of the statement q, if you are given that (~ p)—qis false? What is the truth-value

of the compound statement ~(q— (~q))?

Definition 1.16. Let p and q be two statements. The statementp<>q is called bi conditional and it is read
as “p if and only if q” or “p iff q”. p<>q is true if both p and q are true or false. p<»>q is false if p and q are
not equal. The truth table for Bi conditional

P<q
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Example 1.17. Let p and q be two statements as follows: p: a is a prime number and q : a“ is a prime

number. Then
1. p—q: if a is a prime number, then a? is a prime number.
2. p<>q :a is a prime number, if and only if a? is a prime number.

Exercise 1.18. Suppose that p is a false statement, and q is a true statement. What is the truth-value of
the compound statement (~ p)<>q? What is the truth-value of the compound statement p<>(~q)? What

is the truth-value of the compound statement p<>q? What is the truth-value of the compound statement

~(pe (~q))?



Remark 1.19. The number of cases of truth value of the true table = 2" where n is the number of simple

statements.

Problem 1.20. Construct the truth table for the compound statement (~(pVq))A(pVr) .

Solution. To find (~(pVq))A(pVr) we need to find (pVvq)), ~(pVvq) and(pVr) :

Problem 1.21. Construct the truth table for the compound statement ((~ p)Vq)<>(p—q).

Solution. First we need to find (~ p)Vq and p—q:

p|a|~p|~q|(~pVg|p=q| ((~p)Va(p—q)
T|T| F | F T T T
TIF| F | T F F T
F|T| T |F T T T
F|F| T | T T T T

Definition 1.22. If two or more statements p and ¢ have the same truth value in each logical possibili-
ties,then p is said to be logical equivalent to q and denoted by p=q. If p and q have not the same truth

value in at least one logical possibility we say p is not logical equivalent to q and denoted by p2q.
Problem 1.23. Show that ~(~ pVq)= pA ~ gq.

Solution. First find the truth table of the statement ~(~ pVvq) and pA ~ ¢g. To find ~(~ pVq), we need to
find (~ pVvaq)

Now we are going to find pA ~ g:
P|d|~q|pA~q
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Since ~(~ pVq) and pA ~ ¢ have the same truth value in each logical possibilities, then

~(~ pVa)=pA ~q.
Problem 1.24. Show that (~ p)Vqg = p—q.

Solution. We need to find ~ p, (~ p)Vq and p—q

p|da|~p|(~p)Vg|p—q
T|T| F T T
T|F| F F F
F|T| T T T
F|F| T T T

Since ~(~ pVq) and pA ~ ¢ have the same truth value in each logical possibilities, then

~(~ pVa)=pA ~q.
Definition 1.25. A statement is said to be a tautology if it has only true value.

Example 1.26. pV~p is a tautology.
P|~P|Pv~P
T F T
F T T

Definition 1.27. A statement is said to be contradiction if it has only false value.

Example 1.28. pA~p is a contradiction
P[~P[PA~P
T F F
F T F

Remark 1.29. The negation of tautology is a contradiction and the negation of contradiction is a tautology.
For example, pV~p is a tautology then ~(pV~p) is a contradiction and pA~p is a contradiction then~(pA~p)

is a tautology.

1. Verify(show) that the statement pV~(pAq) is tautology.

2. Verify that the statement (pAq)A~(pVq) is contradiction.

pAq|~(@Ag) | PV~ (PAQ)
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Exercise 1.30. Construct the truth table for the compound statement ((~ p)Vq)<>(p—q). What does the
truth table tell you about the two statements(~ p)VvVq and p—q?

Definition 1.31. If two or more statementsp and q have the same truth value in each logical possibili-
ties,then p is said to be logical equivalent to q and denoted by p=q. If p and q have not the same truth

value in at least one logical possibility we say p is not logical equivalent to q and denoted by p2ZQ.



Remark 1.32. Let p and q be two statements then the below truth table show the following:
p=p

2)p=pVp
3)p=pAp
“olumn 1 2 3 4 5 6 7 g 9 10 11 12 13
P |a|Ppvp |PAP |~P ~q | ~PpVq P—q ~q=~p|q=p | (PoAr(g—Pp) Peq q<p
Row
1 T|T T T F F T T T T T T T
2 T |F T F F T F F F T F F F
3 F|T T F T F T T T F F F F
4 F |F F F T T T T T T T T T

Exercise 1.33. Let p, q and r be any three statements if p=q, then

Al: Suppose that p=q to prove~p=~q. We have two cases.

Case 1: Let ~p be a true statement, then p is false statement [by definition of ~| Since =q , then q is
also false statement, so that~q is true [by definition of ~].

Case 2: ~p is false statement, then p is true statement [by definition of ~] Since p=q, then q is also true
statement, so that~q is false statement|by definition of ~] Therefore, ~p=~q [by the definition of =.

Laws of the Algebra of statements:
1. Idempotent Laws (i)pVp=p(ii)pAp=p
2. Associative Laws (i)(pVq)Vr=pV(qVr) (ii) (pAq)Ar=pA(qAr)
3. Commutative Laws (i)pVq=qVp(ii)pAq=qAp
4. De-Morgan’s Laws (i)~(pVq)=~pA~q(ii)~(pAq)=~pV~q
5. Distributive Laws (i)pV(qAr)=(pVaq)A(pVr)(ii)pA(qVr)=(pAq)V(pAr)
6. Complement laws (i) pV~p=T (ii) pA~p=F (iii)~~p=p(iv)~T=F,~F=T
7. Identity laws (i) pvF=p (ii) pAT=p (iii) pAF=F (iv) pvT=T.
Problem 1.34. Prove that (pVq)A~p=~pAq

Solution 1.35. L.H.S=(pVq)A~p=~pA(pVq) (by commutative Laws)
=(~pAp)V(~pAq) (by distributive Laws)
=FV(~pAq) (by complement laws ) =~pAq (by Identity laws)

Problem 1.36. Prove that [qV(pA~q)]V(~pAq) is a tautology



Solution 1.37. L.H.S=[qV(pA~q)]V(~pA~q)
=[(qVp)A(qV~q)]V(~pA~q)(by distributive law)
=[(qVp)AT]V(~pA~q) (by complement law) =(qVp)V(~pA~q) (by Identity law)
=(pVq)V(~pA~q) (by commutative law) =(pVq)V(~(pVq)) (by De-Morgan’s Law)
=T (by Complement law) This means that [qV(pA~q)]V(~pA~q) is a tautology.

Exercise 1.38. Let p, q and r be three statements then prove the following:
p—(q—=1)=(pAq) =T p—(q—=1)=~pV(q—T) p—(q—T)
=p—(~qVr). [~(pVa)l¢+—[(~ p)A(~q)] is tautology.
Therefore ~[~(pAq)<—((~ p)V(~q))] is contradiction.

Logical Implication:

Definition 1.39. Let p and q be two statements (simples or compounds) if the condition statement p—q
is tautology, then is called an implication and denoted by p=-q. Definition: Let p and q be two statements
(simples or compounds) if the Bi condition statement p<«+q is tautology, then is called ( p equivalent to q)
and denoted by p<q. Remark:p<q if and only if p=q or we say that If p<>q is a tautology, then p=q.
Theorem: For any two statements p and q , p=-q if and only if ~pVq is tautology. proof: H.W.

Problem 1.40. Prove that p—q<=~q—~p proof: p—q<=(~pVq) [by p—q=~pVq] < qV~p [by
commutative laws| <=~(~q)V~p [by Complement laws] <=~q—~p [by p—q=~pV(]

Definition 1.41. Let A be any set and let p(x) be a statement of a variable x , then the statement p(x)
in a variable x defined on the set A is called and open sentence if p(a) is a true or false statement for all
a € A. The set of solution is the set of all elements a in the set A if p(a) is a true. If we denote the set of

solution by S.S, then S.S = a € A; p(a)istrue.

Example 1.42. Let A =1,5,7 and p(z) : 3+ z > 6p(1) : 3+ 1 > 6 false statement. p(5) : 3+ 5 > 6 true
statement. p(7) : 3+ 7 > 6 true statement. Then p(x) is an open sentence in a variable x defined on the set

A.

Remark 1.43. In above example if B = 1,2,3,a. Then p(x) is not open sentence in a variable x defined on

the set B.

Definition 1.44. Let p(x) be an open sentence in a variable x defined on the set A, then the statement

there exists x,x in A,p(x) is called existential quantifier and denoted by 3 x,x€A p(x).

Example 1.45. Let A =5,10,15 and p(x): x is prime number. p(x) is an open sentence inx defined on A.
Since, 5 € A and p(5) is true, then the statement (3 x,x€A p(x) is true) (3 5,5€A,5 is prime number ) is an
existential quantifier. Remark: the statement (3 x,x€A,p(x) is true if the set of solutionis non empty set.
That is S.S={acA;p(a) is true }#2.

Definition 1.46. Let p(x) be an open sentence in a variable x defined on the set A, then the statement
for all x,x in A,p(x) is called universal quantifier and denoted by V x,x€A ,p(x). Remark: the statement (V
X,Xx€A p(x) is true if and only if S.S = a € A;p(a)istrue.

Example 1.47. Let A =1,3,5,7 and p(x) : x is odd number Then the statement V x,x€A,p(x)is true is a
universal quantifier. Remark: V x,p(x) is a shorthand of V x,x€A,p(x).



Theorem 1.48. Let p(x) be anopen sentence in x defined on the setA, then
L ~(Vxpx)=3x~p)
2. ~(3xpx) =Vx,~ p(x)
3. Vx,p(x) =~ (3 x,~ p(x))
4. 3x,p(x) =~ (Vx,~ p(x))

Proof. (1) To prove this theorem we have two cases.

Case 1: Suppose that ~(V x,p(x)) is true we have to prove that 3 x,~p(x) is true. Suppose that~(V
x,p(x)) is true thenV x,p(x) is false. This means that there exists an element say b€ A such that p(b)is false,
then there exists an element say b€A such that ~p(b)is true. This means that3 x,~p(x) is true.

Case 2: Suppose that~(V x,p(x)) is false thenV x,p(x) is true. This means that for all elements beA such
that p(b)is true, then for all elements b€ A such that ~p(b)is false. Then there exists an element beA such

that ~p(b)is false. This means that3 x,~p(x) is false. By case 1 and case 2 we can decide ~(V x,p(x))=3
X,~p(x). O

Exercise 1.49. Let p(x) andq(x) be two open sentence in x defined on the set A. Then prove or disprove

the following:
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Exercise 1.50. Show, by constructing its truth table, that (~(pVq)) < (~p)A(~q) is a tautology.

Exercise 1.51. Construct the truth table for the compound statement (¢—p) <>p—¢q). What does the
truth table tell you about the two statements ¢—p and p—q?

Exercise 1.52. Construct the truth table for the compound statement (~g—~p) <>p—¢q). What does the
truth table tell you about the two statements ~g—~p and p—q?

Exercise 1.53. Construct the truth table for the compound statement ((pVq)Vr) < (pV(qVr))). What
does the truth table tell you about the two statements (pVq)Vvr and pV(gVr)?

Exercise 1.54. Construct the truth table for the compound statement ((p—¢)A(g—1)) — (p—1).

Exercise 1.55. Construct the truth table for the compound statement ((pAq)V(pAr)) <> (pA(gVr)).
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Chapter Two Set Theory
Set theory is a basis of modern mathematics, and notions of set theory are used in all formal
descriptions. The notion of set is taken as “undefined”, “primitive”, or “basic”, so we don’t
try to define what a set is, but we can give an informal description, describe important
properties of sets, and give examples. All other notions of mathematics can be built up based
on the notion of set.
Similar (but informal) words: collection, group, aggregate.
Description: A set is a collection of objects which are called the members or elements of
that set. If we have a set we say that some objects belong (or do not belong) to this set, are
(or are not) in the set. A set is any collection of objects, for example, set of numbers. The
objects of a set are called the elements of the set. There are some main ways to specify a set:
a) by listing all its members (list notation);
Examples: {2,4,6},{1,2,...,100}, {a, b, c,d}, {Hewa, Aram, Ahmed, Awat}
b) by stating a property of its elements (predicate notation);
Examples: General form : { x | P(X)}, where P is some condition or property.
I. {x:xisanatural number and x < 8}, Reading: “the set of all x such that x is a natural
number and is less than 8.
ii. { x| xisaletter of Kurdish alphabet}
c) by defining a set of rules which generates (defines) its members (recursive rules).
Example: The set A of odd numbers greater than 2:
. 3€A
. ifxeA thenx+ 2€A
lii.  nothing else belongs to A.
The first rule is the basis of recursion, the second one generates new elements from the
elements defined before and the third rule restricts the defined set to the elements generated
by rulesi and ii.

d) Thereisanother way (Diagram) to show setsis called Venn diagram. For example:

PN

This means that the set A contains three elementstheseare 1, 2and 5or A = {1,2,5}.

1



Remark:

=

. We usually use capital lettersA, B, C, etc., to denote sets.
2. Thenotation x € A means x isanelement of A. Butx € A means x is not an element
of A. Example: 1 € {1,2,6},2 € {1,2,6},6 € {1,2,6} but 4 ¢ {1, 3, 6}.
3. A finite set is a set containing only finite number of elements.
For example A = {1,2,5} is afinite set contains three elements.
4. A set with infinitely many elementsis called an infinite set. For example, The set of
al positiveintegers, or N = {1,2,3, ..., } .
5. If the set is finite, its number of elementsiis represented by |A| or o(4).
Example, if A={1, 2, 3,4, 5} then |A|=50r o(4) =5.
6. Let a and b be two elements of the set of real numbers where a < b, then
[a,b]= {x:x € R,a < x < b}.
Empty Set: A set with no elementsis called empty set (or null set, or void set), and is
represented by @ or { }.
Example: Let N be the set of all natural numbers. Thentheset {x | x € N, x?> = 6}isan
empty set because there is no natural number whose sgquare is 6.
SUBSET:
A isasubset of aset B or A iscontained in B, if every element of aset A is also a member of
set B. Then A iscalled asubset of B and denoteby A € B. Every set is a subset of itself.
Definition: A set A isaproper subset of aset B if A isasubset of B and A is not equal to B
anddenotedby Ac B i.e.(AcB) & (AS B AN A#B).
Remark: A S B means “B is superset of A or B contains A”. If A is not a subset of B, we
write A @ B. That means there is at least one element in A that is not a member of B.
Definition:
Two sets are comparable if one of the setsis a subset of the other set,i.e. A € Bor B C A.
Theorem:
Let A, B and C besets. If A isasubset of B and B is a subset of C, then A is a subset of C.
Proof: Letx € A. SinceA € B thenx € B. [by the definition of C]
Since B € C thenevery element of B, which includes x, isamember of C.

Thenx € C. Therefore, A € C.



Equality of Sets: Let A and B be two sets. Then we called that set A is equal to the set B
(coincide) if every element of aset A isan element of aset B and every element of aset B is
an element of aset A. That is A isasubset of B and B is a subset of A. The equality of sets
A and B isdenoted by A =B. That is (A=B) if and only if (ASB A BCA).
Example: Theset{a, b, c, d} isequal totheset{c, a d, b},i.e.{a b, c,d} ={c, a d, b}.
Theset {a, b, c} isdifferent fromtheset {a b}, i.e. {a b, c} #{a b}.
Example: Let N be the set of positive integers.
If A ={x|xE€Nx <4}andB = {1,2,3}. ThenA = B.
Remark:

1. BEvay setisequal toitself,i.e. (A = B) © (B = A)

2. IfA =BandB =C then A = C.
Universal Set:
Sometimes we are interested only in the subsets of one set, and other sets have no meaning
for our consideration. In such a case we call this set the universal set.
Example:
Let A4 = {1,2,3}, Aoc=0, A1={1}, A:={2}, As={3}, As={1,2}, As={1,3}, Ae={2,3}, then the set A
IS super set for the sets Ao,A1,42, A3,A4, As,As and A so that can be called A isauniversal set.

ALGEBRA OF SETS

Basic Operation: Aswe have introduced meaning of the terms set, subset, null set and

universal set, we can learn how to build new sets using the sets we already know. The way
we do it is called set operations. The set operations are: union, intersection, difference,
Symmetric Difference and complement.

Union: The union of sets A and B is the set of al elements which belongto A or B or to
both. Itisdenotedby AU B, AUB={x€ U| x€Aorx € B}. AU B containsall

elements of set A and all elements of set B, but no other elements.




I nter section:

The intersection of sets A and B is the set of elements that are commonto sets A and B. It is
denoted by AN Bandisasoasubsetof U. ANB={x € Ul x€ Aand x € B}.

Remark: 1) A n B Consists of those and only those elements of U that arein A and in B at

the same time.

ANB

2){x| x€ Aand x € B} isashorthand for {x|x € U,x € Aand x € B}.
Exercise: Let A and B be two sets.
1. AnB€ Aand AnNBS B
2. ACAUB and B€ AUB
3. If Ac B, then AnB=A and AuB=B
Difference: The difference of sets A and B is the set of elements which belong to A, but do

not belongto B. Itisdenotedby A- BorA\B. A\B = {x|x€ Ux € Aandx €B}
Symmetric Difference: The Symmetric Difference of sets A and B is the set of elements
which belong to A, but do not belong to B or the set of elements which belong to B, but do
not belong to A . It is denoted by
AAB={xeU|x€A—-Borx eB—A}=(A—B) U(B—A4)
Complement Set:
Let U bethe universal set and A € U. Thenthe set of al elementsin U whicharenot in A
called complement set and denoted by A€ or A. A= {x |x € U, and x €A4}.
Remark: Let A beaset and U isauniversal set.

1. ThenA=U — A.
AUA=U
ANAS=0Q.
If x €A then x ¢A°.
If x € A®then x €A.

o & 0D



Theorem: Let A and B betwo setsand U isauniversal set. Then A — B = A n B“.
Proof: Letx € A—Biff x e Aandx €Biffx € Aandx € BCiff x € An B"
Digoint Sets: If two sets A and B have no common elements. i.e. no element of A isinB
and no element of B isin A, then A and B are digoint.
Remark:
1. If A and B aredigoint. Then A n B=0.
2. Suppose A and B are not comparable. If they are digjoint, they can be represented by
the diagram on the left. If they are not digjoint, they can be represented by the diagram
on theright.

Example: If A ={1,2},B=1{2,3}, C ={1,3,5} andU = {0,1,2,3,4, 5} then
1. AUB ={1,2,3}
2. AnB ={2}
3. A—B ={1}
4. B—A = {3}
5. AAB=(A—B)U (B - A)={1, 3}
6. ,A°={0, 3, 4, 5}
Find each of the following: 7.(AUuB)* 8.(AnB)° 9.AUC 10. CnB
11.A-C 12.C—-A 13.CAB14. C°
Example: Show that AcC B iff B°< A°
Suppose that AC B to prove B°< A® Letx € BCiff x ¢ B iff x € A (B isasuper set of the
set A) iff x € A®. Therefore, B°< A°
Properties of Sets:
Let A, B and C aresetsand U isauniversal set. Then
1. Associative Laws
i. (An B) n C=An (Bn C), ii. (AU B) U C=AuU (Bu C)
2. Commutative Laws
I. ANB=BNA, ii. AUB=BUA
3. Distributive Laws
LAN BuCO=AnNnBU(RANCOC



iLAu BN C)=(Au B) n (Au 0)
4. ldentity Laws LAUDP=A ii.LANU=A
5. Complement Laws i. ANA°=0 ii. AUA°=U

6. ldempotent Laws  i. ANA=A Ii. AUA=A
7. Bound Laws LANG=¢ i. AuU=U
8. Absorption Laws: LAUANB)=A i.An(AUuB)=A
9. Involution Law: (AS)C=A
10. L.@=U ii. U=p
11. DeMorgan’s Laws i. (An B)*=ACU B¢, ii. (AU B)*=A®n B®

Proof1—i Letexe (AN B) N C & x€ (AN B) A x € C[by thedefinition N]
&S (x€ANXxE B)Ax€ C  [bythedefinition N]
©x€AN(x€E BANx€e C) [byassociativelaw of A]
Sx€EAN(xEBNC) [by the definition N]
©x€eAN(BNC) [by the definition N]
Therefore, (AN B) N C=An (Bn C).
Proof 1 —ii. HW
Proof 2 —i: Leex€e ANB & (x € A) A(x € B). [by thedefinition of N ]
© (x €B)A(x € A) [by commutative laws of A ]
& x € BN A [by the definition of N ]
Therefore, ANB=BnA.
Proof 2 —ii:Letx € AUB & (x € A) V (x € B). [by thedefinition of union ]
& (x € B) V(x € A) [by by commutative laws of V]
& x € BUA [by the definition of union]
Therefore, AU B=BU A.
Proof 3—i:Toprove An (BUC)=(ANn B)U(An C)
Letxe AN (BUC) e [(x€e A)AN(x € BUC(C)]. [bythedefinitionof N ]
S x€eAAN[(xeB)V(xe )] [bythedefinitionof U]
S[xed)MxeB)|V[xeDAKXxel)] [bypr@rr)=(pAqV (pAT)]
& (x€eANn B)V(x € An C) [bythedefinitionof N ]

© x€ (AN B)U (AN C) [by the definition of U]
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© Therefore, AN (BUC)=(AN B)U(An C).
Proof 3 —ii: HW
Proof 4: ldentity Laws H.W
Proof 5: Complement Laws H.W
Proof 6 —i: Letx e ANA & (x € A)A(x € A). [bythedefinitionof N ]
& (x € A) [by Idempotent Lawsof A( p A p = p)]
< Therefore, AN A = A.
Proof 6 —ii: HW
proof 7:- Bound Laws H.W
proof 8:- Absorption Laws H.W
Proof 9: Involution Law (AC)C=A,
Let x €E(AC)C & x ¢ AC [by the definition of complement]
& x € A. Therefore, (A©)C=A.
Proof 11 — i DeMorgan Laws (An B)©=ACu B¢
To prove that (An B)©=ACuU B°.
Let xe(AN B)*s x & (AN B) [by the definition of complement]
& x & AV x ¢ B . [bythedefinition of N]
& x € AV x € B° [by the definition of complement]
& x € AU B€ [by the definition of U]. Therefore, (An B)© =AU B€.
Example: Let A and B be two setsand U is a universal set then Au (AU B€)¢ = AU B.
Proof: L.H.S=AU (AU B¢)¢ = AU (A° n (B°)¢) (By DeMorgan’s)
AU (A°NnB) (Byinvolution law)
= (AU A°) n (A U B) (By distributive laws)
= U N (AU B) (By Complement Laws)
=(A U B) (By ldentity Laws) =R.H.S
Exercises: Let A and B be two setsand U is a universal set then prove the following:
1. An(A°UB)=ANB
2. Simplify An (A U B¢
Definition:-
If every element of aset A isaset. Then A is called family of sets.
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Example:-

Let A={{1.2},{3,5}.{4}}

Definition ( Power Set ): Let A be any sets. Then the set of all subset of A is called a power
set of A, and denoted by P(A). That isP(A) = {B| BEA}.

Example: If A ={1, 2}, thenp(A) ={ {1,2},{1},{2}, ?}.
Theorem:
Let A beasetif o(A) =n, then o(p(A))=2" where ne N.
Theorem:
Let A and B be two sets. Then

1. ASBifandonlyif P(A) < P(B).

2. P(AN B) = P(A) n P(B) H.W
3. P(A) U P(B)S P(AU B) H.W
Proof 1. Supposethat AS B to prove P(A) < P(B) (viceversa)
Let D € P(A) ©D S A [by definition of power set]
© DEB [sinceAc B]
< D € P(A) [by definition of power set]
s P(A) € P(B).
Exercise: By an example show that P(AU B)% P(A) U P(B) HW

Index family of sets:  4dd jall cile ganall Alile
Let F beafamily of sets, and | be any set such that for each i € I , there exist aunique A in
F,thenl iscaledindexset,and i € | iscalledtheindex of A, and F is called the index

family of sets and denoted by F= {4,};¢;.
Example: Let A1={1}, A>={2}, As={3}, As={1,2}, As={1,3}, A6={2,3}, then F={ A1, A>,
As, Aa, As, Ag} isafamily of sets, and I={1, 2, 3, 4, 5, 6} isindex set.

8



Example: Let A={1, x, vy}, Av={2,z}, A={3}, Ac={1,2}, then F={ A4, Av, Ac A4, A¢}
iIsafamily of sets, and I={a, b, ¢, d} isindex set.

Generalized Union and | ntersection:-

Definition:

Let {A;};c;be anindex family of setsthen the union of sets A; consists of all elements which
arebelongsto A; for some i €1, thatis U;¢;4; ={ X; X€ A; for somei € [}.
Definition:
Let {B;};e; beanindex family of sets then the intersection of sets B j consists of all elements
insetsBj forall jeJ, thatisNje; Bji={y; y € Bjforal j€J}.
Theorem:- Let {A;};c; be anindexed family of sets then
1- If A, € B, Viel, then U;gA; €SB
2- IfBC A;, Viel, then B < Nig4;
Proof:- 1) Supposethat A; € B Vi € [ we haveto provethat U;c;4; € B.
Let x € Uje; A; then 3i € I such that x € A; {by definition of generalization of union},
thenx € BsinceA; € B Vi €l . Therefore, U;c;4; € B.
2) Supposethat B € A;, Vi € I we haveto provethat B € N;¢; 4;
Lety € Btheny € A;, Vi€l [sinceB S A; ,Viel]theny € N;;A; [by the definition
of generalization of intersection], therefore B € N;¢; 4;.
Theorem (Generalized Demorgan’s theorem)
Let {A;};c; be anindexed family of sets then
1- (Uier 4 = (Nier 4i°)
2- (Nier A€ = (Uier 4°)
Proof 1:Letx € (Uje  4;)F
< x & Ui A; (by the definition of complement)
o x ¢ A; Vi €1 (by the definition of union)
& x € A;° Vi € 1 (by the definition of complement)
& x € NA;° Vi € I (by definition of M)
Therefore, (Uie; 4; ) = (Nier 4i°).
Proof 2: HW



Foundations of Mathematics, First Stage- Mathematics Department Lecturer: Dr Hogir, 2022-2023
Chapter Three Relation

Ordered Pairs and Cartesian Product:

Definition:

Let A and B be two sets. Then the Cartesian Product of A and B is defined to be the set of
all ordered pairs (a, b) whereae Aandbe B. ThatisAxXB ={ (a,b) ,a€ AAbe B }.
Example: Let A={1, 2} and B={a, b, c}. Then

AxB={(1,4a), (1, b),(1,0¢), (2 a), (2 b), (2 c)}

BxA ={(a 1), (a 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

Exercise: If A={1, 3,5, 7} and B={-2, -9, 6}, c={X, vy, z} then find the following :
1.(AuB)xC 2.(AxC)u (BxC) 3.(AuB)x (BUC)

Remark: Let A and B be two sets. Then

1. In general AXB # BXA;

2. If (&, b) e AXxBthenae A andb € B;

3. If (a,b) ¢ AxBthen a¢ A orb¢ B;

4. AxB=0iff A=0 or B=¢;

5. AXxB =BxA iff A=B.

Theorem: Let A, B, C and D be three sets then:

1.AX (BNC) = (AxB)N(AxC),

2. Ax (BUC) = (AxB)U(AxC),

3.AX(B - C) =(AxB) - (AxC),

Proof 1: Let (a, b) € Ax (BNC)

& ae A A b e (BNC) [By the definition of Cartesian product]

< ac AAN(beBADbe C) [By thedefinition of intersection]

(@ AnraceA)A (beB Abe C) [By pAp=p]

(@ AAbeB)A(ae A AbeC) [By paAg=gapand pA(gAn)= (PAQ)AT]

< (a, b)e AXB A (a, b) € AXC [By the definition of Cartesian product]

& (a, b)e (AxXB n AxC) [By the definition of intersection]

Therefore, Ax (BNC) = (AxXB)N(AXC).

Proof 2: H.W



Proof 3: To prove Ax(B - C) = (AxB) - (AxC) we haveto prove Ax(B - C) £(AxB) - (AxC)
and (AxB) - (AxC)c AX(B - C). First we provethat Ax(B - C) S(AxB) - (AxC).
Let (a, b) eAX(B-C) = (ae A) A(be (B - C)) [By the definition of Cartesian product]

—ac A A (be B A b & C) [By the definition of deference]
=@ Anace A)A(beB ADbegC) [By pAp=p]
= acAAN[ac AAN(beBADb¢gC)][By associative law]
=ac AAN[(aeAANbeB)ADbgC] [By associative law]
=ac AN[(beB A ae A)Ab¢gC] [ By commutative law]
—=ac AAN[beB A (ae AAbgC)] [By associative law]
=(ac AANbeB)A (ac AAb¢C) [By associative law]
= (a, b) € AXB A (a, b)gAxC [By the definition of Cartesian product]
= (a, b) € AXB - (AxC). Therefore, AX(B - C) £(AXB) - (AxXC).
Conversely: HW
Definition: A relation R from aset A to aset B isasubset of Cartesian product A xB.
That isSRSAXB.
Example: Let A={a, b} and B={1, 2, 3}. Then R={(a, 2), (b, 3)} isarelation from A to B.
Remark:

1. Arelation R fromaset A to aset B isaset and its element of the form (a, b).

2. If Risarelationfrom A to A, then Risarelation on A.
Definition: Let A and B two sets and R berelation from A to B then the inverse of the
relation R is denoted by R~1and defined to be the set of all order pairs (b, a) of BxA, where
(a, b)ER. ThatisR™*={(b, a) ; (a, b)ERY}.
Remark:

1. Re AxB If andonly if R™1 € Bx A.

2. (a,b)eRIf andonly if (b, a) € R™1

Example: If A ={1,2}, B = {2,3} thenAxB ={(1, 2), (1, 3), (2, 2), (2, 3)} and

1. Ri={(a,b) EAx B;a =b}={(2,2)} , Ri*={(2,2)}

2. R={(a,b) € Ax B;a <b}={(23)} , R'={(3,2)}

3. Re={(a,b) € Ax B;a < b} =R1UR:={(2,2),(2,3)} , Rs'={(2,2),(3,2)}

4. R={(a,b) e AX B;a =>b} =Rs", R/'=R;
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Definition: let R be arelation on aset A. Then
1. Risreflexiverelationif (a @€eR, V acA
2. Rissymmetric relation if (a, b)ER, then (b, @ eR, V(a b)eR
3. Ristransitive relation if (a, b)eR and (b, ¢)eR, then (a, C)ER, V(a, b), (b,c)eER
4. Risequivaent relationif and only if R isreflexive, symmetric and transitive relation.
Example: Let A ={1, 2, 3} and consider the following relation on A:
R;={(1,1), (1, 3),(23),(2 2, (3, 3)}
R,={(1,1),(1,3), (3,1}
R3={(1,1),(2,2), (3, 3)}
R4={(1,1),(2,2),(3,3),(23), (3,2}
R; € AXA, R, isreflexiverelation, isnot symmetric relation, since (1, 3) )€ R;
but (3, 1) ¢ R,and R, istransitive relation, therefore, R, is not equivalent relation, sinceis
not symmetric relation. R,, R,, and R, HW
Exercise: Let R bearelation on aset A. Then prove the following:
1. R"H =R
2. Risreflexiverelation if and only if R~ isreflexive relation.
3. Rissymmetric relation if and only if R~ is symmetric relation.
4. Ristranstiverelation if and only if R~1 istransitive relation.
5. Risequivaent relation if and only if R~ is equivalent relation.
Proof 1. HW
Proof 2: Suppose that R isreflexive relation on A, we have to provethat R™! isalso
reflexive relation on A.
Risreflexiveiff vV X € A, (X, X) € R[ By the definition of reflexive]
Iff VXE A, (X, X) € R™1 [By the definition of inverse of the relations).
Iff R~lisreflexiverelation on A. [ By the definition of reflexive]
Therefore R isreflexiverelation If and only if R~ isreflexive relation.
Proof 3: HW
Proof 4: Suppose that R is transitive relation to prove R~ lis transitive relation.
Let (a b), (b,c) € R~1 then (b, @), (c, b) € R [By the definition of inverse of the relation].
Then (c, b), (b, @ € R then (c, @ € R [Since Ristransitive]
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Then (a, c) € R~ [By the definition of inverse of the relation].

Therefore, R~ tistransitive. Conversely: H.W

Proof 5: H.W

Theorem: Let R bearelation on A. Then R issymmetric if and only if R = R™1,

Proof: Suppose that R is symmetric to prove R = R™1,

Let (X, Y)E R, then (y, X)E R[since R is symmetric], then (x, y)€ R™[By the definition of
inverse of therelation ]. Therefore, R € R™1.

Let (a, b)e R™1, then (b, a)€ R[by the definition of inverse of the relation]

Then (a, b)€ R [since R is symmetric]. Therefore, R" € R, henceR = R™1,

Conversely: Supposethat R = R™! to prove R is symmetric.

Let (X, Y)E R, then (X, y)€ R™1[since R = R™1],then (y, X)€ R[by the definition of inverse
of the relations | Therefore, R is symmetric.

Remark: Let R and S betwo relationson set A. Then:
1) RnS{(X,y); (X, Y)ER A(X, y)ES}
2)  RUSH(X,y); (X, Y)ER V(X, y)€S}
3) RSk y): (X, y)ER AlX, y)€S}
4) RAS=RUS RNS.
Theorem: Let R and S be two relations onset A. Then:
1. RnS)1=R1tTnst 2 (RuUS)tT=R1Tus?
Proof 1. HW
Proof 2: Let (x,y)e (RUS)™!
< (¥, X)€ R U S [By the definition of inverse of relation]
& (v, X)ERV (y, X)ES [ By the definition of union]
& (X, Y)E R v (x,y)e ST [By the definition of inverse of relation]
o, y)ERTus? [By the definition of union]
Therefore, (RUS)"1 =R 1us
Exercise: Let Sand T be two reflexiverelationson aset A. Are the following relations
reflexive, symmetric or transitive?
1. SNT 2. SUT 3.ST 4. SAT



Definition: Let R be arelation from A to B adomain of relation R is the set of all elements
acA, such that (a, b) €R for some beB. That isDomain R={a€A ; (a, b) R for somebeB }.
Definition: Let R be arelation from A to B. Then Rang of relation R is the set of all
elements beB, such that (a, b) R for some aeA, that is

Rang R={beB ; (a, b) ER for some acA}.

Example: Let A ={1, 2, 3} and B={a, b, c, d} consider the relations

R,={(1, &), (1, b), (3, 0)}, R,={(1, &), (2, b)}. Then

domain of R, = {1, 3} and Domain of R, = {1,2}.

Rang of R, ={a,b,c} and Rang of R, = {a, b}.

Remark: Dom R is a shorthand of Domain R and Ran R is a shorthand of Rang R.
Theorem: Let R be arelation from A to B. Then

1) DomR=RanR™1 2) RanR=DomR™!

Proof 1. let x eEDom R then there existsy €B such that (X, y) € R [By the definition of
domain] =(y, X) € R™1[By the definition of inverse of the relation]

=x€ Ran R™! [By the definition of inverse of the relation]

Therefore, Dom R € Ran R™1.

CONVERSLY: Supposethat s€ Ran R™1, then there existst €B such that

(t, s) € R~1[BYy the definition of range]

Then (s, t) ER [By the definition of inverse of the relation]

Then s € Dom R [By the definition of domain]

Therefore, Ran R™! € Dom R. Hence Dom R = Ran R™1.

Definition: Let A beaset. Thentherelation I, on A iscalled identity relation if V(x,y) €
AXA (x,y) Elythenx = y.

Example: Let A={1, 2, 3}, then consider the following relationson A

1. R,;={(1,1), (2, 2), (3,3)} isanidentity relation

2. R,={(1, 1),(2, 3), (2, 2), (3, 3)} isnot identity relation, since (2, 3))€ R,and 2+ 3.

3. R;={(1,1), (2,2)} isnotidentity relation because (3, 3) & R;

Definition: Let R be an equivalence relation on aset A and let x be an element in A. The
equivalence class of x isthe set of all elementsy in A such that x hasarelation withy in R.
The equivalence class of x isdenoted by [x]. That is[x]={y€ A4; (X, Y)ER}.
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Example: let A={1, 2, 3,4} and R={(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3,4), (4, 3)}.
Then[1]={1, 2}, [2]={1, 2}, [3]={ 3, 4}, [4]={3, 4}

Theorem ( equivalence theorem): Let R be an equivalencerelation onaset A and let a, b €A. Then
Then

1) a€[d

2) if be[a , then [a]=[b]

3) [a]=[b] if and only if (a, b) ER

4)  If [aln[b]# @, then [a]=[b]

Proof 1: By the definition of equivalence class[a]={y€ 4; (a, Y)ER}.

Since Risreflexive (a, )€R, VaeA, therefore ac[4].

Proof 2: Suppose that be[a] to prove [al=[b](that is [a] < [b] and [b] <[a]).

Let xe[a], then (a, X)ER [by the definition of equivalence class]

Since be[a], then (a, b)eR [by the definition of equivalence class]

then (b, @) eR[Since R is symmetric]

Sothat (b, a), (a,x) €R then (b, X)e R[Since Ristransitive]

Then xe [b] [by the definition of equivalence class).

So that if xe[a] then xe [b]. Thus[a]<[b]

Let xe[b], then (b, X)ER [by the definition of equivaence class]

Since be[a], then (a, b)eR [by the definition of equivalence class]

So that (&, b), (b, x) €R then (a, x)€ R[Since R istransitive]

Then xe [a] [by the definition of equivalence class].

So that if xg[b] then xe [a]. Thus[b]<[a]. Therefore, [a]=[b].

Proof 3: Suppose [a] = [b] to prove (a, b) ER.

From (1), a€[a] then ag[b] (since [a]=[b])

Then (b, @) eR[by the definition of equivalence class)

Then (a, b)eR [Since R is symmetric]

Conversely: Suppose (a, b)eR to prove [a]=[b].

If (&, b)ER then be[a] [by the definition of equivalence class| then [a]=[b] [By part 2]
Proof 4: If [a]n[b]+# @, then [a]=[b]

If [a]N[b]+# @, then there exist XEA such that xe [aN[b] then
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X€ [a] and x€[b] [By the definition of intersection]

then [a]=[x] and [b]=[x] [By part 2] then [a]=[b]

Definition: Let{A;};c;be afamily of nonempty subsets of aset A. Then {4;};c; iscaled
partition for A if {A;};c; satisfy the following conditions:-

1)A;NnA;=0 Vijjelandi#j, 2) A=U;e 4; .

Example: Let A={1,2,3,4,5} and Fi={{1} {2,3}{4,5} } and F,={{1,2,3} {4}, {5}, {1}}.
Then F; is partition for A but F, is not partition for A because

{1,2,3}n {1} # @ and {1,2,3} # {1}

Theorem: Let R be an equivalence relation on aset A and let {[a]},c4be afamily of
equivalence class with respect to R. Then {[a]},e4 IS apartition for A.

Example: A={1, 2, 3} and R=1,U {(2,3), (3,2)} then [1]={1}, [2]={2,3}, [3]={2,3} then
A=[1]u [2]u [3]. Thefamily {[1], [2], [3]}={{1}, {2, 3}} isapartition for A.

Theorem: Let {4;};c; be apartition of anonempty set A. Then there exists an equivalence
relation R on A, such that the family of equivalence class with respect to R is equal to {4;};c;-
Definition: Let R be arelation on A. Then R is called anti-symmetric relation on A, if
Vx,y €A, (X YA, X) € R then x=y.

Example: Let A={1, 2, 3, 4}, then consider the following relationson A

) R=(11),(12), (2 1)}

2)  R={(1,1),(1,2,(22), (44}

3)  R:={(1,1),(22),(33)}

4)  R~(12),(21),(2 3)}

R,is symmetric but not anti-symmetric, because (1, 2) and (2, 1)€ R; and 1 # 2. R, isnot
symmetric, because (1, 2)€ R,but (2, 1)& R, but R, anti-symmetric. R; both symmetric
and anti-symmetric. R, neither symmetric since (2, 3) € R, but (3, 2))¢ R,nor anti-
symmetric because (1, 2) and (2, 1)€ R, and 1 # 2.

Theorem:

Let R bearelation on aset A. Then R is anti-symmetricif andonly if RN R~ € 1,

Proof: Suppose that R is anti-symmetric to proveRNR™! € 1,.

Let (x,y)€ RNR™L. Then (x,y) ERA(X,y) € R~ [By the definition of intersection]

Then (X, y) ER A(y, X) € R[By the definition of inverse of the relations]
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Thenx=y [By assumption]. Then (X, y) € I, [By definition of1,], therefore RN R~ 1,
Conversely: Supposethat RN R™! € I, to prove R is anti- symmetric.
Let (X,Y), (y,X)E R. Then (x,y), (Y, X) € R A (y, X), (X, y)) € R~![by the definition of
inverse of the relations]. Then (X, y), (v, X) € R n R™[By the definition of intersection]
Then (X, y) A (Y, X) €I, [SinceRNR™1 S 1,]
Then x=y [by the definition of 1,]. Therefore, R is anti-symmetric.
Definition: Let R bearelation on aset A. Then Riscalled partially ordered relation on A,
If Risreflexive anti- symmetric and transitive relation on the set A.
Example: Let Z be a set of integers, then consider the following relations on Z:

1) Ri={(x,y) € ZXZ; X<y}, 2) Re={ (X, y) € Z X Z;; X=y}
3 R (X,Y) € ZXZ; x>y}, 4) RF{(x,Y) € ZXT; X*=y?}
R;isreflexive relation, anti-symmetric and transitive, therefore R; is partially ordered
relation. Ryis reflexive relation, anti-symmetric and transitive, therefore R, is partially
ordered relation. Rsis not reflexive relation, therefore Rz is not partially ordered relation.
Rsisnot partially ordered relation, since R4 is not anti-symmetric.
Exercise: Let R be apartialy ordered relation on aset A, then prove that R~ isalso
partially ordered relation on A.
Definition: Let R bearelationonaset A, if Risapartially ordered relation on A, then the
order pair (A, R) iscaled partially ordered set.
Example: Let A={1, 2, 3} andlet R ={(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)}, since Rispartialy
ordered relation, then (A, R) is partially ordered set.
Definition: Let (A, R) be apartialy ordered set, an element acA is caled least element of a
set A with respect to arelation R if and only if (a, X)€ R, V X€EA.
Definition: Let (A, R) be apartialy ordered set an element beA is called greatest element
of aset A with respect to arelation R if and only if (X, b)ER, YXEA.
Example: Let A= {3, 6, 9} and then consider the following relationson A.
Ri={ (X, y) EAXA; X<y}, R={(X,y) EAXA; x=y }, R={(X,y) EAXA; y divisible by x}
R,={(3, 3), (6, 6), (9,9), (3,6), (3,9, (6,9} Ryisapartially ordered relationon A. 3isa
least element of A with respect to R; since (3, X) ERy, V Xe A. 9isagreatest element of A
with respect to R; since (X, 9) €Ry, V X€ A.



R,={(3, 3), (6, 6), (9, 9), (9, 6),(9, 3), (6, 3)} isapartially ordered relation on A. 9isaleast
element of A with respect to R,. Since (9, X) €ER, Vxe A. 3isagreatest element of A with
respect to R, since (x, 3) ERy, V Xe A. R3={(3, 3), (6, 6), (9, 9), (3, 6), (3, 9)} Rszisa
partially ordered relation on A and 3isaleast element of A with respect to R; since (3, X)
€ER, V xe A. A has not greatest element with respect to Rs.
Example: A={a, b, ¢} and R={ (4, @), (b, b), (c, ©), (& b), (c, b)}, then (A, R) isapartialy
ordered set. aisnot least element because ceA but (a, ¢)€R. b isnot least element since
ceA but (b, c)¢R. cisnot least element because aeA but (c, Q) ¢R.
So that A has not any least element with respect to arelation R. ais not greatest element
because ceA but (¢, a)¢R. b is greatest element because for all XeA, (X, b)ER. cis not
greatest element because thereis at least an element such aeA but (a, ¢)&€R.
Example: Let Z be aset of integersand R;={(X,y) € Z X Z ; X<y }.
R is a partially ordered relation on A but there isn’t any least element of A with respect to R.
Theorem:

1. Let R beapartialy ordered relation on A. Thenif A hasaleast element, thenitis

unique.
2. Let Rbeapartially ordered relation on A. Then if A has agreatest element, theniitis
unique.

Proof(1): Suppose that there exist at least two least elements et be aand b (a+b). Then (a,
b)eR and (b, @) €R by the definition of least element. But R is partially ordered relation on
A(R is anti-symmetric) then a=b. Which is contradiction with our assumption.
Proof(2): HW
Definition: Let (A, R) be apartially ordered set, an element meX is called aminimal
element of A with respect to R, if thereis no x€A such that (x, m) R and x=m.
Definition: Let (A, R) be apartialy ordered set, an element neA is called amaximal
element of A with respect to R, if thereis no x€A such that (n, X) €R and x=#n.
Example: Let A={a, b, ¢} and R={(a, a), (b, b), (c, ¢), (& b), (c, b)}then (A, R) isapartially
ordered set. aisaminimal element of A with respect to R. cisaso aminimal element of A

with respect to R but b isnot minimal element of A with respect to R since (c, b)eR and



c+b. bisamaximal element of A with respect to R but both aand ¢ are not maximal
element of A with respect to R since (a, b) €R, c#b and (c, b) €R, c+#b.
Theorem: Let (A, R) isapartial order set. If ac A isamaximal element of A with respect to
R then ais minimal element of A with respect to R™ .
Proof: Let acA be a maximal element of A with respect to R then thereisno XxeA such that
(a, x) €R and x#athen thereis no x€A such that (x, a) € R* and x#a Thenisaminimal
element of A with respect to R.
Example: Let A={a, b, ¢, d} and I, ={(a a), (b, b), (c, ¢)} then
1. (A, 1,) isapartia order set, (A, I 5) has not least element but all elements of A are minimal.
2. (A, l4) has not greatest element but all elements of A are maximal.
Definition:-Let (A,R) be apartial order set, and BS A and element ac A called alower
bound of B in A if (a, X)ER, Vx€ B. Inthis case B called bounded below by a.
Definition:-Let (A, R) be apartial order set, and BS A and element be A called an upper
bound of B in A if (x,b) € R, Vx € B. Inthiscase B called bounded above by b.
Definition:-Let (A, R) be apartial order set, and BS A, then B called bounded set if B
bounded below and bounded above.
Remark: The set of all upper bound elementsof B in A is called upper bound set of B in A
and the set of all lower bound elementsof B in A is called lower bound set of B in A.
Example:- Let A={3, 6, 9, 12, 15} , B={6, 12} and R;={(X, Y)EAXA, x <y} then (A, Ry) is
apartial order set and { 3, 6} islower bounded set of B in A with respect to R; (B bounded
below by 3, 6).
Definition:-Let (A, R) be apartial order set, and BCA and element a € A iscaled agreatest
lower bound( infimum)for B in A if

1. aislower boundedfor B inA.

2. (x, 0)ER, for al lower bound x for Bin A.

Definition:-Let (A, R) be apartial order set, and BS A and element § € A caled least upper
bound (supremum) of BinA if

1. S upper bound for B in A.

2. (B, x)€ R, for al upper bound x for B in A.
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Example: Let A={1,2,3,4}, B={2,3} and R={(X, Y)EAXA; x <y}.

1.

o g &~ 0w DN

~

1isleast element of A with respect to R.

4 isgreatest element of A with respect to R.

1 isminimal element of A with respect to R.

4 ismaximal element of A with respect to R.

C={1, 2}is lower bounded set of B in A with respect to R.

2 is greatest lower bounded of B in A with respect to R since 2 is greatest element of
the set C with respect to the relation S=SRN(CxC) ={(1, 1), (1, 2), (2, 2)}.

D={3, 4} isupper bounded set of B in A with respect to R.

3isleast upper bounded of B in A with respect to R since 3 isleast element of the set
D with respect to the relation T=RN(DxD) ={(3, 3), (3, 4), (4, 4)}.

Exercise: If A ={a,y, a,, a3}, B ={a,} andR = {(a,,, a,) € A X A: m < n}then answer

the following:

1.

© © N o g kM w DN

Show that (4, R) isapartially ordered set.

Find least element (if exist).

Find greatest element (if exist).

Find minimal element(s).

Find maximal element(s).

Find lower bounded set of B in A.

Find upper bounded set of BinA.

Find least upper bounded of B in A (if exist).
Find greatest lower bounded of B in A (if exist).

Exercises:- Let (A,R) be apartial order set, and BC A.

1.
2.

If B hasaninfimumin A thenit isunique.

If B has asupremum in A then it isunique.

Definition:-Let (A, R) be apartial ordered set. Then (A, R) iscalled totally (linearly)
ordered set if for every X, y €A then either (X, y) ER or (y, X) ER.
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Example: Let A={1, 2, 3} and R={ (X, y)EAXA; x <y} thenR={(1, 1), (2, 2), (3, 3), (1, 2),
(1, 3), (2, 3)}, then (A, R) isatotally ordered set.
Definition:- Let (A, R) be apartial ordered set. Then (A, R) iscalled a well-ordered set if
for every non empty subset B of A has aleast element.
Remark: Rg = {(a,b) € R;a,b € B}.
Example: Let A={1, 2, 3} and R={ (X, y)EAXA; x <y} thenR={(1, 1), (2, 2), (3, 3), (1, 2),
(1, 3), (2, 3)}, then (A, R) isawell-ordered set. Because the set A has the following
nonempty subsets. {1}, {2}, {3},{1, 2},{1, 3},{2, 3}, A and
Ry ={ (X, y)€ R; x<y}={(1, 1)} and lisaleast element of Ry, .
Rn={(X,¥)€ R; x<y}={(2, 2)} and 2isaleast element of Ry, .
Ri51={ (X, Y)€ R; x <y}={(3, 3)} and isaleast element of R3; .
R ={(X, ¥)€ R; x<¥y}={(1, 1), (2, 2), (1, 2)} and lisaleast element of Ry, 5 .
R ={(X,¥)€ R; x <y}={(1,1), (3, 3), (1, 3)} and lisaleast element of Ry, 53 .
R ={(X,¥)€ R;x <y}={(2, 2), (3, 3), (2, 3)} and 2isaleast element of Ry, 3, .
R,={(x,y)EAX A; x <y}=R={(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} and lisaleast
element of R, .
Remark:
1. Every totally ordered set is apartially ordered set, but the converseis not true.
2. Every well-ordered set isatotally ordered set, but the converseis not true.
3. (A, R)iscadled awell-ordered set if for every non empty subset B of A has aleast
element with respect to arelation Rz or Swhere S=SRN(BxB).
Example:
1. Let A={1,2,3} and R={(X,y)EZ X Z;Xx =Yy} then (Z, R) isatotally ordered set and
well-ordered set.
2. Let B[O, 1]={x: X€ R, 0<x<1} and R={ (X, y)eBxB, x >y} then (B, R) isatotally
ordered set and but not well-ordered set. Why?
Definition: Let R bearelation from A to B, and S be arelation from B to C. Then the
composition of relation R and S is denoted by SoR and defined by
SoR:{(X,z)EAxC| dyeB:(x,y) ERA(y,z) €S}

12



Example: Let A={1, 2}, B={3,4}, C={5, 6} , R={(, 3), (2, 4)} and S={(3, 5), (4, 6)} then
SoR={(1, 5), (2, 6)}

o
v
oo

SoR

Example Let A={1, 2,3}, B={a b, c, d} and C={w, x,V, z}, R={(1, a), (2, 8, (3, d)}
and S={(a, x), (b, y), (b, 2), (c, 2), (d, w)} then SoR={(1, x), (2, X), (3, w)}.
Theorem: Let R bearelation on aset A. Then Rol,=I,0R=R
Proof: Casel, To prove Rol,=R. Let (X, Z)ERol 5 then 3yeA such that (X, y)€ I, and (y,
z)eR[by the definition of composition of relation]. Then x=y and (y, z)€ R [by the
definition of identity relation]. Then (x, z)€ R [since x=y]. This meansthat if (X, Z)€ Rol,
then (X, z)€ R, thus, Rol, SR.
Conversely: Supposethat (a, c)eR then (a, @€ 15 A (a,c) € R [by the definition of identity
relation] then (a, c)€ Rol,. Thismeansthat if (a, c)€ R then (a, )€ Rol,. Thus RS Rol,.
Therefore, Rol,=R.
Case 2, To prove [,0R=R H.W . By case 1 and 2 Rol ,=I,0R=R.
Theorem: Let R, Sand T berelationson aset A. Then

1) (RoS)oT=Ro(SoT)

2) (RUS)oT=(RoT)uU(SoT)

3) (RNS)oT<S(RoT)N(SoT)

4) If RSS, then (i) RoTSSoT  (ii) TORST0S
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5) (RoS)NT=@ & (ToR"H)NS =0
6) (SoR)"1=R 1o 571
Proof 2: Let (x, 2€(RUS)OT < 3 yeA such that (x, Y)ETA(Y, 2)€(RUS) [by the definition
of composition of relation] .
< (X, Y)ETA((Y, 2€RV(y, 2)€S) [By the definition of union]
< ((X, Y)ETA(Y, 2€R)V((X, Y)ETA(Y, 2€S) [ by distributive law]
& (X, 2) EROT V (X, z) €SoT [by the definition of composition of relation]
& (X, 2) €(RoT)U(SoT). Therefore (RUS)oT=(RoT)uU(SoT).
Proof 4 (ii): Suppose that RES, we have to prove that TORSToS
Let (X, Z)ETOR, then 3yeA such that (x, y)ERA(y, 2) €T
then (X, y)ESA(Y, 2 €T [since RSY],
then(x, z)€ ToS [by the definition of composition of relation]
Thusif (x, 2)€EToR then (x, 2)€ToS, Therefore, TORSTO0S.
Proof 5: Suppose (ToR)NS= @ iff 3(x, y)e(ToR NS iff (x, y)E(TOR™ ) A (x, y)ESIiff
3z € A such that ((x, 2))ER™ A (z,y) € T) A (X, Y)ESIff ((z, X)ER A (z,y) € T) A (X, Y)ES
iff (z,X)ERA((z,y) € T) A (X, Y)ES) [by associative law]
iff (z, X)ER A ( (X, Y)ESA (z,¥) €T)) [by commutative law]
iff ((z, X)ER A (X, Y)ES) A (z,y) €T[by associative law]
iff (z, y)€ (SoR) A (z, y) €T[ by the definition of composition]
iff (z, y)€ (SoR)NT[by the definition of intersection].
Thus (RoS)NT# @ . Therefore, by Contrapositive law if (RoS)NT=@ iff (ToR*)NS=0.
Theorem: Let R bearelation onaset A. Risapartially ordered relation on A if and only if
RNnR™! =1, and RoR=R.
Proof: Supposethat R is partially ordered relation on A, to prove R N R~ = [, and RoR=R.
Case1l: ToproveRN R =1,.
Let (x,y) € RN R7LIff (X, y) ERA (X, y) € R™I[by the definition of intersection]
Iff (X, y) ER A (Y, X) €R [by the definition of R™1], Iff x=y [since R is anti-symmetric
relation]. Iff (X, )€ I, therefore, RN R™1 S I,. Let (X, y)€E Rand (X, y)€ R™1[sinceRis
reflexive relation]. Then (x, XY)€ RN R~ therefore, RN R~ = 1,.
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Case 2: To prove ROR=R. Let (X, Z)EROR then 3 yeA such that (x, y) € RA(y, z)€ R[By the
definition of composition relation]. Then (x, z)€ R [Since R is transitive relation], thus
RoRCR. Let (X, Y)E R, then (X, X)ERA(X, Y)ER [since R isreflexive relation], then (X,
y)EROR[ by the definition of composition of relations]. Hence RS RoR. Therefore, R= RoR.
Conversely: Supposethat RN R~ = I, and RoR=R to prove R is partially ordered relation
onaset A.
Let Xx€A then (X, X)E I, then (x, X)E R N R~I[sinceR N R™! = 1,], then (X, X)ER, So that
Risreflexive relation.
Let (x, y), (Y, X)ER, then (x, Y)ERA(y, X)ER, then (X, y)ER A (X, y)ER™
Then (x,y)€ RN R71, then(x,y) € I, [SinceRN R~ =1,], then x=y.
So that R is anti-symmetric relation.
Let (X,y) and (y, 2 €R, then (X, y) € R and (y, z) € R, then (X, Z) ERoRthen (X, 2) € R
[R=RoR]. So that R istransitive relation.
Therefore, Ris partially ordered relation.
Exercises. Let Sand R betwo relations on aset A. Then prove or disprove the following:

1) Sistransitiveiff SoScS.

2) If Sisreflexive and transitive relation then SoS=S.

3) SoR=R0S

4) Dom(SoR)< dom(R)

5) Ran (SoR) )< Rang (S)

6) If Ran (S)€ Dom(R) then (RoS)=Dom S.
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