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To be able to understand mathematics and mathematical arguments, it is necessary to have a solid
understanding of logic and the way in which known facts can be combined to prove new facts. In this
chapter we study basic mathematical logic that consists of statements, truth-values, and logical operations
(NOT, AND, OR, IF ANDONLY IF and IF. . . THEN) interms of truth tables. Moreover, we take a careful
look at the rules of logic and the way in which mathematical arguments are constructed. Logical statements

Definition 1.1. A statement is a sentence which can be classified as true or false without ambiguity. The
truth or falsity of the statement is known as the truth value. We use letters p, q, r. . . to denote the
statements. For a sentence to be a statement, it is not necessary that we actually know whether it is true
or false, but it must be clear that it is one or the other.

Ambiguity: Something that is not clear because it has more than one possible meaning.

Example 1.2. Consider the following sentences:

1. ”11 is an even number” is a statement with truth value “false”.

2. ”Every even number greater than 2 is the sum of two primes” is a statement, whose truth value is not
known...yet.

3. “2 is an even number. ” is a statement with truth value “True”.

Logical Connectives In studying mathematical logic we shall not be concerned with the truth value of any
particular simple statement. What will be important is how the truth value of a compound statement is
determined from the truth values of its simpler parts. To obtain such compound statements it is necessary
to introduce the concept of a connective.

Definition 1.3. A sentential connective is a logic symbol representing an operator that combines statements
into a new statement. Statements with connectives are called compound statements. Statements without
connectives are known as atomic statements. The sentential connectives are ”not”, ”and”, ”or”, ”if ...then”,
and ”if and only if ”. The respective operators for these connectives are negation, conjunction, disjunction,
implication and equivalence respectively.
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Definition 1.4. A truth table of a logical formula shows the conditions under which the logical formula
is true and those under which is false.The truth table of a connective is an alternative way of defining a
connective, since these are defined in terms of the truth value of the resulting compound statement, given
the truth value of its components.

Type of connectives : Negation , Conjunction, Disjunction, Conditional and Biconditional.

Definition 1.5. The negation (denial) of a statement is another statement which has opposite meaning for
the statement. If “p” is a statement, then negation of p is written as ∼ p and read “not p”. When p is true,
then ∼ p is false and viceversa.

Example 1.6. p: Yesterday is Monday. ∼ p : Yesterday is not Monday.
The truth table for the negation of statement where T stands for true and F for false.

Exercise 1.7. Suppose that p is a false statement.
1) What is the truth-value of the compound statement ∼ p?
2) What is the truth-value of the compound statement ∼ (∼ p)?

Definition 1.8. Let p and q be two statements. The statement p∧q is called the conjunction of p and q,
and read as “p and q”. p∧q has true value of both p and q are true, otherwise it is false. The truth table
for the conjunction of two statements:

Example 1.9. Let p and q be two statements as follows:

1. p : 2 is an odd number. False

2. q : 2 is a prime number. True.

3. p∧q: 2 is an odd number and 2 is a prime number. False. (case 3)

Definition 1.10. Let p and q be two statements. The statement p∨q is called the Disjunction of p and q,
and read as “p or q”. p∨q is true when at least one of the two statements is true, and is false when both
are false. The truth table for the Disjunction of two statements:
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Note that the inclusive disjunction doesn’t complete the list of disjunctions used in everyday life. In
fact, we also have the exclusive disjunction, which is true when either p or q is true, but not when both are
true. In logic the only use for the connective or is for the inclusive meaning.

Definition 1.11. Let p and q be two statements. The statement p→ q is called conditional and it is read
as “If p then q”. p → q has false value if p is true and q is false, otherwise it is true. In this implication
p→ q, p is called hypothesis or premise and q is conclusion or consequence. The truth table for conditional

Exercise 1.12. Suppose that p is a false statement, and q is a true statement. What is the truth-value of
the compound statement (∼ p)→q? What is the truth-value of the compound statement p→ (∼ q)? What
is the truth-value of the compound statement p→q? What is the truth-value of the compound statement
∼(p→ (∼q))?

Exercise 1.13. Suppose that the compound statement p→ q is a true statement. In order for p to be true,
what must the truth-value of q be? Suppose that the compound statement p→q is a true statement. Which
truth value of p assures us that q is true?

Exercise 1.14. Suppose that the compound statement p→q is false. What are the truth-values of p and
of q?

Exercise 1.15. Suppose that p is a false statement, and q is a statement whose truth-value is presently
unknown. Suppose that the compound statement (∼ p)→q is true. What is the truth-value of the statement
q? What is the truth-value of the statement q, if you are given that (∼ p)→q is false? What is the truth-value
of the compound statement ∼(q→ (∼q))?

Definition 1.16. Let p and q be two statements. The statementp↔q is called bi conditional and it is read
as “p if and only if q” or “p iff q”. p↔q is true if both p and q are true or false. p↔q is false if p and q are
not equal. The truth table for Bi conditional

Example 1.17. Let p and q be two statements as follows: p: a is a prime number and q : a2 is a prime
number. Then

1. p→q: if a is a prime number, then a2 is a prime number.

2. p↔q :a is a prime number, if and only if a2 is a prime number.

Exercise 1.18. Suppose that p is a false statement, and q is a true statement. What is the truth-value of
the compound statement (∼ p)↔q? What is the truth-value of the compound statement p↔(∼q)? What
is the truth-value of the compound statement p↔q? What is the truth-value of the compound statement
∼(p↔ (∼q))?
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Remark 1.19. The number of cases of truth value of the true table = 2n where n is the number of simple
statements.

Problem 1.20. Construct the truth table for the compound statement (∼(p∨q))∧(p∨r) .

Solution. To find (∼(p∨q))∧(p∨r) we need to find (p∨q)), ∼(p∨q) and(p∨r) :

Problem 1.21. Construct the truth table for the compound statement ((∼ p)∨q)↔(p→q).

Solution. First we need to find (∼ p)∨q and p→q:
p q ∼ p ∼ q (∼ p)∨q p→q ((∼ p)∨q)↔(p→q)

T T F F T T T
T F F T F F T
F T T F T T T
F F T T T T T

Definition 1.22. If two or more statements p and q have the same truth value in each logical possibili-
ties,then p is said to be logical equivalent to q and denoted by p≡q. If p and q have not the same truth
value in at least one logical possibility we say p is not logical equivalent to q and denoted by p�q.

Problem 1.23. Show that ∼(∼ p∨q)≡ p∧ ∼ q.

Solution. First find the truth table of the statement ∼(∼ p∨q) and p∧ ∼ q. To find ∼(∼ p∨q), we need to
find (∼ p∨q)

Now we are going to find p∧ ∼ q:
p q ∼ q p∧ ∼ q

T T F F
T F T T
F T F F
F F T F
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Since ∼(∼ p∨q) and p∧ ∼ q have the same truth value in each logical possibilities, then
∼(∼ p∨q)≡ p∧ ∼ q.

Problem 1.24. Show that (∼ p)∨q ≡ p→q.

Solution. We need to find ∼ p, (∼ p)∨q and p→q
p q ∼ p (∼ p)∨q p→q

T T F T T
T F F F F
F T T T T
F F T T T

Since ∼(∼ p∨q) and p∧ ∼ q have the same truth value in each logical possibilities, then
∼(∼ p∨q)≡ p∧ ∼ q.

Definition 1.25. A statement is said to be a tautology if it has only true value.

Example 1.26. p∨∼p is a tautology.

Definition 1.27. A statement is said to be contradiction if it has only false value.

Example 1.28. p∧∼p is a contradiction

Remark 1.29. The negation of tautology is a contradiction and the negation of contradiction is a tautology.
For example, p∨∼p is a tautology then ∼(p∨∼p) is a contradiction and p∧∼p is a contradiction then∼(p∧∼p)
is a tautology.

1. Verify(show) that the statement p∨∼(p∧q) is tautology.

2. Verify that the statement (p∧q)∧∼(p∨q) is contradiction.

Exercise 1.30. Construct the truth table for the compound statement ((∼ p)∨q)↔(p→q). What does the
truth table tell you about the two statements(∼ p)∨q and p→q?

Definition 1.31. If two or more statementsp and q have the same truth value in each logical possibili-
ties,then p is said to be logical equivalent to q and denoted by p≡q. If p and q have not the same truth
value in at least one logical possibility we say p is not logical equivalent to q and denoted by p�Q.
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Remark 1.32. Let p and q be two statements then the below truth table show the following:
1) p ≡ p

2) p ≡ p ∨ p

3) p ≡ p ∧ p

Exercise 1.33. Let p, q and r be any three statements if p≡q, then

A1: Suppose that p≡q to prove∼p≡∼q. We have two cases.
Case 1: Let ∼p be a true statement, then p is false statement [by definition of ∼] Since ≡q , then q is

also false statement, so that∼q is true [by definition of ∼].
Case 2: ∼p is false statement, then p is true statement [by definition of ∼] Since p≡q, then q is also true

statement, so that∼q is false statement[by definition of ∼] Therefore, ∼p≡∼q [by the definition of ≡.
Laws of the Algebra of statements:

1. Idempotent Laws (i)p∨p≡p(ii)p∧p≡p

2. Associative Laws (i)(p∨q)∨r≡p∨(q∨r) (ii) (p∧q)∧r≡p∧(q∧r)

3. Commutative Laws (i)p∨q≡q∨p(ii)p∧q≡q∧p

4. De-Morgan’s Laws (i)∼(p∨q)≡∼p∧∼q(ii)∼(p∧q)≡∼p∨∼q

5. Distributive Laws (i)p∨(q∧r)≡(p∨q)∧(p∨r)(ii)p∧(q∨r)≡(p∧q)∨(p∧r)

6. Complement laws (i) p∨∼p≡T (ii) p∧∼p≡F (iii)∼∼p≡p(iv)∼T≡F,∼F≡T

7. Identity laws (i) p∨F≡p (ii) p∧T≡p (iii) p∧F≡F (iv) p∨T≡T.

Problem 1.34. Prove that (p∨q)∧∼p≡∼p∧q

Solution 1.35. L.H.S=(p∨q)∧∼p≡∼p∧(p∨q) (by commutative Laws)
≡(∼p∧p)∨(∼p∧q) (by distributive Laws)
≡F∨(∼p∧q) (by complement laws ) ≡∼p∧q (by Identity laws)

Problem 1.36. Prove that [q∨(p∧∼q)]∨(∼p∧q) is a tautology
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Solution 1.37. L.H.S=[q∨(p∧∼q)]∨(∼p∧∼q)
≡[(q∨p)∧(q∨∼q)]∨(∼p∧∼q)(by distributive law)
≡[(q∨p)∧T]∨(∼p∧∼q) (by complement law) ≡(q∨p)∨(∼p∧∼q) (by Identity law)
≡(p∨q)∨(∼p∧∼q) (by commutative law) ≡(p∨q)∨(∼(p∨q)) (by De-Morgan’s Law)
≡T (by Complement law) This means that [q∨(p∧∼q)]∨(∼p∧∼q) is a tautology.

Exercise 1.38. Let p, q and r be three statements then prove the following:
p→(q→r)≡(p∧q)→r p→(q→r)≡∼p∨(q→r) p→(q→r)
≡p→(∼q∨r). [∼(p∨q)]←→[(∼ p)∧(∼q)] is tautology.
Therefore ∼[∼(p∧q)←→((∼ p)∨(∼q))] is contradiction.

Logical Implication:

Definition 1.39. Let p and q be two statements (simples or compounds) if the condition statement p→q
is tautology, then is called an implication and denoted by p⇒q. Definition: Let p and q be two statements
(simples or compounds) if the Bi condition statement p↔q is tautology, then is called ( p equivalent to q)
and denoted by p⇔q. Remark:p⇔q if and only if p≡q or we say that If p↔q is a tautology, then p≡q.
Theorem: For any two statements p and q , p⇒q if and only if ∼p∨q is tautology. proof: H.W.

Problem 1.40. Prove that p→q⇐⇒∼q→∼p proof: p→q⇐⇒(∼p∨q) [by p→q≡∼p∨q] ⇐⇒ q∨∼p [by
commutative laws] ⇐⇒∼(∼q)∨∼p [by Complement laws] ⇐⇒∼q→∼p [by p→q≡∼p∨q]

Definition 1.41. Let A be any set and let p(x) be a statement of a variable x , then the statement p(x)
in a variable x defined on the set A is called and open sentence if p(a) is a true or false statement for all
a ∈ A. The set of solution is the set of all elements a in the set A if p(a) is a true. If we denote the set of
solution by S.S, then S.S = a ∈ A; p(a)istrue.

Example 1.42. Let A = 1, 5, 7 and p(x) : 3 + x > 6p(1) : 3 + 1 > 6 false statement. p(5) : 3 + 5 > 6 true
statement. p(7) : 3 + 7 > 6 true statement. Then p(x) is an open sentence in a variable x defined on the set
A.

Remark 1.43. In above example if B = 1, 2, 3, a. Then p(x) is not open sentence in a variable x defined on
the set B.

Definition 1.44. Let p(x) be an open sentence in a variable x defined on the set A, then the statement
there exists x,x in A,p(x) is called existential quantifier and denoted by ∃ x,x∈A,p(x).

Example 1.45. Let A = 5, 10, 15 and p(x): x is prime number. p(x) is an open sentence inx defined on A.
Since, 5 ∈ A and p(5) is true, then the statement (∃ x,x∈A,p(x) is true) (∃ 5,5∈A,5 is prime number ) is an
existential quantifier. Remark: the statement (∃ x,x∈A,p(x) is true if the set of solutionis non empty set.
That is S.S={a∈A;p(a) is true } 6=∅.

Definition 1.46. Let p(x) be an open sentence in a variable x defined on the set A, then the statement
for all x,x in A,p(x) is called universal quantifier and denoted by ∀ x,x∈A,p(x). Remark: the statement (∀
x,x∈A,p(x) is true if and only if S.S = a ∈ A; p(a)istrue.

Example 1.47. Let A = 1, 3, 5, 7 and p(x) : x is odd number Then the statement ∀ x,x∈A,p(x)is true is a
universal quantifier. Remark: ∀ x,p(x) is a shorthand of ∀ x,x∈A,p(x).
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Theorem 1.48. Let p(x) be anopen sentence in x defined on the setA, then

Proof. (1) To prove this theorem we have two cases.
Case 1: Suppose that ∼(∀ x,p(x)) is true we have to prove that ∃ x,∼p(x) is true. Suppose that∼(∀

x,p(x)) is true then∀ x,p(x) is false. This means that there exists an element say b∈A such that p(b)is false,
then there exists an element say b∈A such that ∼p(b)is true. This means that∃ x,∼p(x) is true.

Case 2: Suppose that∼(∀ x,p(x)) is false then∀ x,p(x) is true. This means that for all elements b∈A such
that p(b)is true, then for all elements b∈A such that ∼p(b)is false. Then there exists an element b∈A such
that ∼p(b)is false. This means that∃ x,∼p(x) is false. By case 1 and case 2 we can decide ∼(∀ x,p(x))≡∃
x,∼p(x).

Exercise 1.49. Let p(x) andq(x) be two open sentence in x defined on the set A. Then prove or disprove
the following:
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Exercise 1.50. Show, by constructing its truth table, that (∼(p∨q)) ↔ (∼p)∧(∼q) is a tautology.

Exercise 1.51. Construct the truth table for the compound statement (q→p) ↔p→q). What does the
truth table tell you about the two statements q→p and p→q?

Exercise 1.52. Construct the truth table for the compound statement (∼q→∼p) ↔p→q). What does the
truth table tell you about the two statements ∼q→∼p and p→q?

Exercise 1.53. Construct the truth table for the compound statement ((p∨q)∨r) ↔ (p∨(q∨r))). What
does the truth table tell you about the two statements (p∨q)∨r and p∨(q∨r)?

Exercise 1.54. Construct the truth table for the compound statement ((p→q)∧(q→r)) → (p→r).

Exercise 1.55. Construct the truth table for the compound statement ((p∧q)∨(p∧r)) ↔ (p∧(q∨r)).
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Foundations of Mathematics,  First Stage- Mathematics Department     Dr Hogir, 2021-2022       

 Chapter Two                                                                Set Theory                                                  

Set theory is a basis of modern mathematics, and notions of set theory are used in all formal 

descriptions. The notion of set is taken as “undefined”, “primitive”, or “basic”, so we don’t 

try to define what a set is, but we can give an informal description, describe important 

properties of sets, and give examples. All other notions of mathematics can be built up based 

on the notion of set.  

Similar (but informal) words: collection, group, aggregate. 

Description:  A set is a collection of objects which are called the members or elements of 

that set. If we have a set we say that some objects belong (or do not belong) to this set, are 

(or are not) in the set. A set is any collection of objects, for example, set of numbers. The 

objects of a set are called the elements of the set. There are some main ways to specify a set: 

a) by listing all its members (list notation); 

Examples: {2, 4, 6}, {1, 2, … , 100}, {𝑎, 𝑏, 𝑐, 𝑑},  {Hewa, Aram, Ahmed, Awat} 

b) by stating a property of its elements (predicate notation); 

Examples: General form : { x | P(x)}, where P is some condition or property. 

i. {x : x is a natural number and x < 8}, Reading: “the set of all x such that x is a natural 

number and is less than 8”. 

ii. { x| x is a letter of Kurdish alphabet}  

c) by defining a set of rules which generates (defines) its members (recursive rules). 

Example:  The set A of odd numbers greater than 2:  

i. 3 ∈ A   

ii. if x ∈ A, then x + 2 ∈ A 

iii. nothing else belongs to A. 

The first rule is the basis of recursion, the second one generates new elements from the 

elements defined before and the third rule restricts the defined set to the elements generated 

by rules i and ii.  

d)  There is another way (Diagram) to show sets is called Venn diagram. For example: 

 

This means that the set 𝐴 contains three elements these are 1, 2 and 5 or 𝐴 = {1,2,5}. 
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Remark:  

1. We usually use capital letters𝐴, 𝐵, 𝐶, etc., to denote sets. 

2. The notation 𝑥 ∈ 𝐴 means 𝑥 is an element of 𝐴. But 𝑥 ∉  𝐴  means 𝑥 is not an element 

of 𝐴. Example: 1 ∈ {1, 2, 6}, 2 ∈ {1, 2, 6}, 6 ∈ {1, 2, 6} but 4 ∉ {1, 3, 6}. 

3. A finite set is a set containing only finite number of elements.  

For example 𝐴 = {1,2,5} is a finite set contains three elements. 

4. A set with infinitely many elements is called an infinite set. For example, The set of 

all positive integers, or ℕ = {1,2,3, … , } . 

5. If the set is finite, its number of elements is represented by |A| or 𝑜(𝐴). 

 Example, if A = {1, 2, 3, 4, 5} then |A|=5 or  𝑜(𝐴)  = 5. 

6. Let 𝑎 and 𝑏 be two elements of the set of real numbers where 𝑎 < 𝑏, then 

 [𝑎, 𝑏]= {𝑥: 𝑥 ∈ ℝ, 𝑎 ≤ 𝑥 ≤ 𝑏}. 

Empty Set: A set with no elements is called empty set (or null set, or void set), and is 

represented by ∅ or { }. 

Example: Let ℕ be the set of all natural numbers. Then the set {𝑥 | 𝑥  ℕ,   𝑥2  =  6} is an 

empty set because there is no natural number whose square is 6.  

SUBSET:  

 A is a subset of a set B or A is contained in B, if every element of a set 𝐴 is also a member of 

set 𝐵.  Then 𝐴 is called a subset of  𝐵 and denote by 𝐴 ⊆ 𝐵.  Every set is a subset of itself. 

Definition: A set A is a proper subset of a set B if A is a subset of B and A is not equal to B 

and denoted by  𝐴 ⊂ 𝑩   𝑖. 𝑒. (𝐴 ⊂ 𝑩)    ↔  (𝐴 ⊆  𝐵   ∧    𝐴 ≠ 𝐵) .  

Remark:  𝐴 ⊆ 𝐵 means “B is superset of A or B contains A”. If A is not a subset of B, we 

write 𝐴 𝐵. That means there is at least one element in A that is not a member of  𝐵.  

Definition:  

Two sets are comparable if one of the sets is a subset of the other set, i.e. 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.    

Theorem:  

Let A, B and C be sets. If 𝐴 is a subset of B and B is a subset of C, then 𝐴 is a subset of C. 

Proof:  Let 𝑥 ∈ 𝐴. Since 𝐴 ⊆ 𝐵  then 𝑥 ∈ 𝐵.  [by the definition of ⊆] 

Since 𝐵 ⊆ 𝐶  then every element of  𝐵, which includes 𝑥, is a member of 𝐶.  

Then 𝑥 ∈ 𝐶.  Therefore, 𝐴 ⊆ 𝐶.  
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Equality of Sets: Let A and B be two sets. Then we called that set A is equal to the set B 

(coincide) if every element of a set A is an element of a set B and every element of a set B is 

an element of a set A. That is A is a subset of B and B is a subset of A. The equality of sets 

A and B is denoted by A = B. That is (A=B) if and only if (A⊆B ∧ B⊆A).  

Example: The set {a, b, c, d} is equal to the set {c, a, d, b}, i.e. {a, b, c, d} = {c, a, d, b}.   

The set {a, b, c} is different from the set {a, b}, i.e.  {a, b, c} ≠{a, b}.  

Example: Let ℕ be the set of positive integers. 

 If  𝐴 =  {𝑥 | 𝑥  ℕ, 𝑥 <  4} and 𝐵 =  {1, 2, 3}. Then 𝐴 = 𝐵.   

Remark:  

1. Every set is equal to itself, i.e. (𝐴 =  𝐵)  ⇔ (𝐵 =  𝐴)  

2. If 𝐴 =  𝐵 and 𝐵 = 𝐶  then  𝐴 =  𝐶.  

Universal Set:  

Sometimes we are interested only in the subsets of one set, and other sets have no meaning 

for our consideration. In such a case we call this set the universal set.  

Example:  

Let 𝐴 = {1,2,3}, 𝐴0=∅, 𝐴1={1}, 𝐴2={2}, 𝐴3={3}, 𝐴4={1,2}, 𝐴5={1,3}, 𝐴6={2,3}, then the set 𝐴 

is super set for the sets 𝐴0,𝐴1,𝐴2, 𝐴3,𝐴4, 𝐴5,𝐴6 and 𝐴 so that can be called A is a universal set. 

 

ALGEBRA OF SETS 

Basic Operation: As we have introduced meaning of the terms set, subset, null set and 

universal set, we can learn how to build new sets using the sets we already know. The way 

we do it is called set operations. The set operations are: union, intersection, difference, 

Symmetric Difference  and complement.  

Union: The union of sets 𝐴 and 𝐵 is the set of all elements which belong to 𝐴 or 𝐵 or to 

both. It is denoted by 𝐴 ∪  𝐵, 𝐴 ∪ 𝐵 = {𝑥 ∈  𝑈 |  𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}.  𝐴 ∪ 𝐵 contains all 

elements of set A and all elements of set B, but no other elements. 
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Intersection:  

The intersection of sets 𝐴 and 𝐵 is the set of elements that are common to sets 𝐴 and 𝐵. It is 

denoted by A ∩ B and is also a subset of  U.  A ∩ B = {x ∈ U|  x ∈ A and x ∈  B}.   

Remark: 1) A ∩ B Consists of those and only those elements of U that are in A and in B at 

the same time.  

                                 

2) {x |  x ∈ A and x ∈  B} is a shorthand for {x | x ∈ U, x ∈ A and x ∈  B}.    

Exercise: Let A and B be two sets.  

1. A∩B⊆ A and A∩B⊆ B 

2. A⊆A∪B and B⊆ A∪B 

3. If A⊆ B, then  A∩B=A and A∪B=B 

Difference: The difference of sets 𝐴 and 𝐵 is the set of elements which belong to 𝐴, but do 

not belong to 𝐵. It is denoted by 𝐴 –  𝐵 or 𝐴 \ 𝐵.  𝐴 \ 𝐵 =  {𝑥 | 𝑥 ∈  𝑈, 𝑥 ∈ 𝐴 and 𝑥 𝐵}  

Symmetric Difference: The Symmetric Difference of sets 𝐴 and 𝐵 is the set of elements 

which belong to 𝐴, but do not belong to 𝐵 or the set of elements which belong to 𝐵, but do 

not belong to 𝐴 . It is denoted by 

 A △  𝐵  =  {𝑥 ∈  𝑈 | 𝑥 ∈ 𝐴 − 𝐵 𝑜𝑟  𝑥 ∈ 𝐵 − 𝐴}= (𝐴 − 𝐵)  ∪ (𝐵 − 𝐴) 

Complement Set:  

Let 𝑈 be the universal set and 𝐴 ⊆ 𝑈.  Then the set  of all elements in 𝑈 which are not in 𝐴 

called complement set and denoted by 𝐴C  or  A. AC =  {𝑥 |𝑥 ∈  𝑈, and 𝑥 𝐴}. 

Remark: Let 𝐴 be a set and 𝑈 is a universal set.  

1. Then 𝐴c=𝑈 − 𝐴. 

2. A∪Ac=𝑈 

3. A∩Ac=∅. 

4. If  𝑥 ∈A then 𝑥 ∉Ac. 

5. If  𝑥 ∈ Ac then 𝑥 ∉A. 
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Theorem: Let 𝐴 and 𝐵 be two sets and 𝑈 is a universal set. Then 𝐴 − 𝐵 = 𝐴 ∩ 𝐵c.  

Proof: Let 𝑥 ∈  𝐴 − 𝐵 iff  𝑥 ∈ 𝐴 and 𝑥 𝐵 iff 𝑥 ∈ 𝐴 and 𝑥 ∈  𝐵c iff 𝑥 ∈  𝐴 ∩ 𝐵c. 

Disjoint Sets: If two sets A and B have no common elements. i.e.  no element of A is in B 

and no element of B is in A, then A and B are disjoint.  

Remark: 

1. If A and B are disjoint. Then 𝐴 ∩ 𝐵=∅. 

2. Suppose A and B are not comparable. If they are disjoint, they can be represented by 

the diagram on the left. If they are not disjoint, they can be represented by the diagram 

on the right.  

   

Example:  If 𝐴 = {1,2}, 𝐵 = {2,3},  𝐶 = {1, 3, 5} and 𝑈 = {0,1,2,3,4, 5} then  

1. 𝐴 ∪ 𝐵 = {1, 2, 3}  

2. 𝐴 ∩ 𝐵 = {2} 

3. 𝐴 − 𝐵 = {1} 

4.  𝐵 − 𝐴 = {3} 

5.  𝐴 △ 𝐵 = (𝐴 − 𝐵) ∪ ( 𝐵 − 𝐴)={1, 3} 

6. , 𝐴c ={0, 3, 4, 5} 

Find each of the following:       7. (𝐴 ∪ 𝐵)C           8. (𝐴 ∩ 𝐵)c          9. 𝐴 ∪ 𝐶       10.  𝐶 ∩ 𝐵        

11. 𝐴 − 𝐶   12. 𝐶 − 𝐴  13. 𝐶 △ 𝐵 14.  𝐶c 

Example: Show that A⊆ B iff  Bc ⊆ Ac 

Suppose that A⊆ B to prove  Bc ⊆ Ac. Let 𝑥 ∈ Bc iff  𝑥 ∉ B  iff  𝑥 ∉ 𝐴 (B is a super set of the 

set A) iff  𝑥 ∈ Ac . Therefore, Bc ⊆ Ac 

Properties of Sets:  

Let A , B  and C are sets and U is a universal set. Then 

1. Associative  Laws  

i. (A∩ B) ∩ C=A∩ (B∩ C),  ii. (A∪ B) ∪ C=A∪ (B∪ C)  

2. Commutative Laws  

 i. A∩B= B∩A,  ii. A∪ B=B∪ A 

3. Distributive Laws 

i.A ∩  (B ∪  C) = (A ∩  B) ∪  (A ∩  C)  
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 ii. A ∪  (B ∩  C) = (A ∪  B) ∩  (A ∪  C)   

4. Identity Laws             i. A ∪ ∅ = A   ii. A ∩ U = A 

5. Complement Laws     i.  A  Ac =     ii. A∪ Ac=      

6.  Idempotent Laws       i. A∩A=A   ii. A∪A=A 

7. Bound Laws                i. A ∩ ∅ = ∅     ii.  A ∪ U = U 

8. Absorption Laws:       i. A ∪ (A ∩ B) = A   ii. A ∩ (A ∪ B) = A 

9. Involution Law:            (AC)C=A  

10.               i. ∅c= U       ii.  Uc=   

11. DeMorgan’s Laws   i. (A∩ B)C =AC∪ BC, ii. (A∪ B)C=AC∩ BC 

𝑃𝑟𝑜𝑜𝑓 1 − 𝑖  Let 𝑥 ∈ (𝐴 ∩  𝐵)  ∩  𝐶  ⇔  𝑥 ∈ (𝐴 ∩  𝐵) ∧  𝑥 ∈  𝐶[by the definition ∩] 

⇔ (𝑥 ∈ 𝐴 ∧  𝑥 ∈  𝐵) ∧  𝑥 ∈  𝐶      [by the definition ∩] 

⇔ 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈  𝐵 ∧  𝑥 ∈  𝐶)      [by associative law of  ∧] 

⇔ 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∩ 𝐶)                  [by the definition ∩] 

⇔ 𝑥 ∈ 𝐴 ∩ (𝐵 ∩ 𝐶)                  [by the definition ∩] 

Therefore, (A∩ B) ∩ C=A∩ (B∩ C). 

𝑃𝑟𝑜𝑜𝑓 1 − 𝑖𝑖. H.W  

P𝑟𝑜𝑜𝑓 2 − 𝑖:  Let 𝑥 ∈ 𝐴 ∩ 𝐵 ⇔ (𝑥 ∈ 𝐴) ∧( 𝑥 ∈ 𝐵).    [by the definition of ∩ ] 

⇔ (𝑥 ∈ 𝐵) ∧ ( 𝑥 ∈ 𝐴)  [by  commutative laws of ∧ ] 

⇔  𝑥 ∈ 𝐵 ∩ 𝐴  [by the definition of ∩ ] 

Therefore, A∩B=B∩A. 

𝑃𝑟𝑜𝑜𝑓 2 − 𝑖𝑖: Let 𝑥 ∈ 𝐴 ∪ 𝐵 ⇔ (𝑥 ∈ 𝐴) ∨ ( 𝑥 ∈ 𝐵).    [by the definition of union ] 

⇔ (𝑥 ∈ 𝐵) ∨ ( 𝑥 ∈ 𝐴 ) [by by commutative laws of  ∨] 

⇔  𝑥 ∈ 𝐵∪𝐴  [by the definition of union] 

Therefore, A∪ B=B∪ A. 

𝑃𝑟𝑜𝑜𝑓 3 − 𝑖: To prove  A ∩  (𝐵 ∪ 𝐶) = (𝐴 ∩  𝐵) ∪ (𝐴 ∩  𝐶) 

Let 𝑥 ∈ A ∩  (𝐵 ∪ 𝐶) ⇔ [(𝑥 ∈ 𝐴) ∧( 𝑥 ∈ 𝐵 ∪ 𝐶)].    [by the definition of ∩ ] 

⇔ (𝑥 ∈ 𝐴) ∧ [( 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐶)]    [by the definition of ∪] 

⇔ [(𝑥 ∈ 𝐴) ∧( 𝑥 ∈ 𝐵)] ⋁ [(𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐶)]    [by 𝑝 ∧ (𝑞 ∧ 𝑟) ≡ ( 𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟)] 

⇔ ( 𝑥 ∈ 𝐴 ∩  𝐵)⋁( 𝑥 ∈ 𝐴 ∩  𝐶)   [by the definition of ∩ ] 

⇔  𝑥 ∈ (𝐴 ∩  𝐵) ∪ (𝐴 ∩  𝐶) [by the definition of ∪] 
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⇔  Therefore,  A ∩  (𝐵 ∪ 𝐶) = (𝐴 ∩  𝐵) ∪ (𝐴 ∩  𝐶). 

𝑃𝑟𝑜𝑜𝑓 3 − 𝑖𝑖:  H.W 

𝑃𝑟𝑜𝑜𝑓 4: Identity Laws H.W 

𝑃𝑟𝑜𝑜𝑓 5: Complement Laws H.W 

𝑃𝑟𝑜𝑜𝑓 6 − 𝑖:  Let 𝑥 ∈ 𝐴 ∩ 𝐴 ⇔ (𝑥 ∈ 𝐴) ∧( 𝑥 ∈ 𝐴).    [by the definition of ∩ ] 

⇔ ( 𝑥 ∈ 𝐴)  [by Idempotent Laws of ∧ (  𝑝 ∧  𝑝 ≡ 𝑝)] 

⇔  Therefore, 𝐴 ∩ 𝐴 = 𝐴.  

𝑃𝑟𝑜𝑜𝑓 6 − 𝑖𝑖: H.W 

𝑝𝑟𝑜𝑜𝑓  7:- Bound Laws H.W 

𝑝𝑟𝑜𝑜𝑓  8:- Absorption Laws H.W 

𝑃𝑟𝑜𝑜𝑓 9: Involution Law   (AC)C=A , 

Let 𝑥 ∈(AC)C ⇔ 𝑥 ∉ AC   [by the definition of complement] 

⇔ 𝑥 ∈ A. Therefore, (AC)C=A. 

  𝑃𝑟𝑜𝑜𝑓 11 − 𝑖 De Morgan Laws  (A∩ B)C =AC∪ BC 

 To prove that (A∩ B)C =AC∪ BC.  

Let 𝑥 (𝐴 ∩  𝐵)c ⇔ 𝑥 ∉  (𝐴 ∩  𝐵)  [by the definition of complement] 

⇔ 𝑥 ∉ 𝐴 ∨ 𝑥 ∉ 𝐵 . [by the definition of ∩] 

⇔ 𝑥 ∈ Ac ∨  𝑥 ∈ Bc  [by the definition of complement] 

⇔ 𝑥 ∈ AC∪ BC  [by the definition of ∪]. Therefore, (A∩ B)C =AC∪ BC. 

Example: Let A and 𝐵 be two sets and 𝑈 is a universal set then A∪ (𝐴 ∪ 𝐵𝑐)𝑐 = 𝐴 ∪ 𝐵. 

Proof: L.H.S=𝐴 ∪ (𝐴 ∪ 𝐵𝑐)𝑐 = 𝐴 ∪ (𝐴𝑐 ∩ (𝐵𝑐)𝑐)  (By DeMorgan’s) 

𝐴 ∪ (𝐴𝑐 ∩ 𝐵)     (By involution  law) 

= (𝐴 ∪ 𝐴𝑐) ∩ (𝐴 ∪ 𝐵) (By distributive laws) 

= 𝑈 ∩ (𝐴 ∪ 𝐵) (By Complement Laws) 

=(𝐴 ∪ 𝐵) (By Identity Laws) =R.H.S 

Exercises : Let A and 𝐵 be two sets and 𝑈 is a universal set then prove the following:   

1. A∩ (𝐴𝑐 ∪ 𝐵) = 𝐴 ∩ 𝐵  

2. Simplify 𝐴 ∩ (𝐴 ∪ 𝐵𝑐)𝑐  

Definition:-  

If every element of a set A is a set. Then A is called family of sets. 
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Example:-  

Let  A={{1,2}, {3,5},{4}} 

Definition ( Power Set ): Let A be any sets. Then the set of all subset of A is called a power 

set of A, and denoted by  P(A). That is P(A) = {B  B A}.  

Example: If A = {1, 2}, then p(A) = { {1,2}, {1}, {2}, ∅}.  

Theorem:  

Let A be a set if o(A) =n , then o(p(A))=2n  where n∈ ℕ. 

Theorem:  

Let A and B be two sets. Then  

1. A  B if and only if P(A)  P(B). 

2. P(A  B) = P(A) ∩ P(B) H.W 

3. P(A) ∪ P(B)  P(A  B) H.W 

Proof 1: Suppose that A  B   to prove  P(A)  P(B) (viceversa) 

Let D  P(A)  ⇔D  A    [by definition of power set] 

⇔ D  B    [since A⊆ 𝐵] 

⇔ D  P(A) [by definition of power set] 

⇔ P (A)  P (B). 

Exercise: By an example show that  P(A  B)  P(A) ∪ P(B) H.W 

Index family of sets:        عائلة المجموعات المرقمة 

Let F be a family of sets, and I be any set such that for each 𝑖  𝐼 , there exist a unique Ai in 

F, then I is called index set , and  i   I  is called the index of A, and F is called the index 

family of sets and denoted by F= {𝐴𝑖}𝑖∈𝐼. 

Example: Let 𝐴1={1}, 𝐴2={2}, 𝐴3={3}, 𝐴4={1,2}, 𝐴5={1,3}, 𝐴6={2,3}, then F={ 𝐴1, 𝐴2, 

𝐴3, 𝐴4, 𝐴5, 𝐴6} is a family of sets, and I={1, 2, 3, 4, 5, 6} is index set.  
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 Example:  Let 𝐴a={1, 𝑥, 𝑦}, 𝐴b={2, 𝑧}, 𝐴c={3}, 𝐴d={1,2},  then F={Aa , Ab , Ac ,Ad , Ae} 

is a family of sets, and I={a, b, c, d} is index set.  

Generalized Union and Intersection:- 

Definition:  

Let {𝐴𝑖}𝑖∈𝐼be an index family of sets then the union of sets 𝐴𝑖 consists of all elements which 

are belongs to Ai  for some  i  I,  that is  ⋃ 𝐴𝑖 𝑖∈𝐼 = { x; x∈ 𝐴i for some 𝑖 ∈ 𝐼}. 

Definition: 

 Let {𝐵𝑖}𝑖∈𝐼 be an index family of sets then the intersection of sets B j consists of all elements 

in sets B j  for all  j  J,  that is ⋂ 𝐵𝑗∈𝐽 j= {y; 𝑦 ∈ 𝐵j for all 𝑗 ∈ 𝐽 }. 

Theorem:- Let {𝐴𝑖}𝑖∈𝐼  be an indexed family of sets then  

1- If  𝐴𝑖 ⊆ 𝐵 ,   ∀𝑖 ∈ 𝐼,    𝑡ℎ𝑒𝑛    ⋃ 𝐴𝑖  ⊆𝑖∈𝐼  𝐵  

2- If 𝐵 ⊆ 𝐴𝑖 , ∀𝑖 ∈ 𝐼,    𝑡ℎ𝑒𝑛        𝐵 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼  

Proof:- 1) Suppose that 𝐴𝑖 ⊆ 𝐵   ∀𝑖 ∈ 𝐼 we have to prove that ⋃ 𝐴𝑖  ⊆𝑖∈𝐼  𝐵 . 

Let  𝑥 ∈ ⋃ 𝐴𝑖 𝑖∈𝐼  𝑡ℎ𝑒𝑛 ∃𝑖 ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝐴𝑖   {by definition of generalization of union}, 

then 𝑥 ∈ 𝐵 since 𝐴𝑖 ⊆ 𝐵   ∀𝑖 ∈ 𝐼 . Therefore,  ⋃ 𝐴𝑖  ⊆𝑖∈𝐼  𝐵 . 

2) Suppose that 𝐵 ⊆ 𝐴𝑖 , ∀𝑖 ∈ 𝐼 we have to prove that  𝐵 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼    

Let 𝑦 ∈ 𝐵 𝑡ℎ𝑒𝑛 𝑦 ∈ 𝐴𝑖  , ∀𝑖 ∈ 𝐼  [since 𝐵 ⊆ 𝐴𝑖    , ∀𝑖 ∈ 𝐼] then 𝑦 ∈ ⋂ 𝐴𝑖𝑖∈𝐼    [by the definition 

of generalization of intersection], therefore  𝐵 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼 . 

Theorem (Generalized Demorgan’s  theorem) 

Let {𝐴𝑖}𝑖∈𝐼 be an indexed family of sets then 

1- (⋃ 𝐴𝑖  𝑖∈𝐼 )𝑐 = (⋂ 𝐴𝑖
𝑐

𝑖∈𝐼 )  

2- (⋂ 𝐴𝑖𝑖∈𝐼 )𝑐 = (⋃ 𝐴𝑖
𝑐 𝑖∈𝐼 ) 

𝑷𝒓𝒐𝒐𝒇 𝟏: Let 𝑥 ∈ (⋃ 𝐴𝑖 𝑖∈𝐼 )𝑐 

⇔ 𝑥 ∉ ⋃ 𝐴𝑖  𝑖∈𝐼  (by the definition of complement) 

⇔ 𝑥 ∉ 𝐴𝑖  ∀𝑖 ∈ 𝐼  (by the definition of union)  

⇔ 𝑥 ∈ 𝐴𝑖
𝑐  ∀𝑖 ∈ 𝐼  (by the definition of complement) 

⇔ 𝑥 ∈ ⋂𝐴𝑖
𝑐 ∀𝑖 ∈ 𝐼 (by definition of ) 

Therefore, (⋃ 𝐴𝑖 𝑖∈𝐼 )𝑐 = (⋂ 𝐴𝑖
𝑐

𝑖∈𝐼 ). 

Proof 2: H.W 
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Chapter Three                                                                            Relation  

Ordered Pairs and Cartesian Product: 

Definition:  

Let A and B be two sets. Then the Cartesian Product of A and B is defined to be the set of 

all ordered pairs (a, b) where a   A and b   B. That is A B = { (a, b) , a   A b   B }. 

Example: Let A={1, 2}  and B={a, b, c}. Then 

A B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} 

B A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}. 

Exercise:   If A ={1, 3, 5, 7} and B={-2, -9, 6}, c={x, y, z}then find the following : 

1.(A B) C                        2.(A C)  (B C)                     3.(A B)  (B C) 

Remark: Let A and B be two sets. Then 

1. In general A B   B A; 

2. If (a, b)   A B then a   A and b   B; 

3. If (a, b)    A B then  a    A or b   B; 

4. A B =   iff  A=     or  B=  ; 

5. A B = B A   iff A=B. 

Theorem: Let A, B, C and D be three sets then: 

1.A  (B C) = (A B) (A C),  

2. A  (B C) = (A B) (A C) ,  

3.A (B - C) = (A B) - (A C),  

Proof 1: Let (a, b)   A  (B C) 

  a  A   b   (B C) [By the definition of Cartesian product] 

  a  A   (b   B   b  C)   [By the definition of intersection] 

  (a  A  a  A)    (b   B   b  C)  [By p p   p] 

  (a  A   b   B)          b  C)  [By p q   q p and   p (q r)  (p q) r]  

  (a, b)  A B   (a, b)   A C [By the definition of Cartesian product] 

  (a, b)  (A B   A C) [By the definition of intersection] 

Therefore,  A  (B C)   (A B) (A C). 

Proof 2: H.W 
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Proof 3: To prove A (B - C) = (A B) - (A C) we have to prove A (B - C)  (A B) - (A C) 

and (A B) - (A C)  A (B - C). First we prove that  A (B - C)  (A B) - (A C). 

  Let (a, b)  A (B - C)   (a  A)   (b   (B - C)) [By the definition of Cartesian product] 

 a  A   (b   B   b   C) [By the definition of deference] 

 (a  A  a  A)   (b   B   b   C)  [By p p p] 

  a  A   a  A   (b   B   b   C) ] [By associative law] 

 a  A   (a   A   b   B )   b   C]  [By associative law] 

 a  A   (b   B     a   A)   b   C]  [ By commutative law] 

 a  A   b   B      a   A   b   C)] [By associative law] 

 (a  A   b   B )    (a  A   b   C)  [By associative law] 

  (a, b)   A B   (a, b) A C  [By the definition of Cartesian product] 

  (a, b)   A B – (A C). Therefore, A (B - C)  (A B) - (A C). 

Conversely: H.W 

Definition: A relation R from a set A to a set B is a subset of Cartesian product A B.  

That is R A B. 

Example: Let A={a, b} and B={1, 2, 3}. Then R={(a, 2), (b, 3)} is a relation from A to B. 

Remark:  

1. A relation R from a set A to a set B is a set and its element of the form (a, b). 

2. If R is a relation from A to A, then R is a relation on A. 

Definition: Let A and B two sets and R be relation from A to B then the inverse of the 

relation R is denoted by    and defined to be the set of all order pairs (b, a) of B A, where 

(a, b) R. That is    ={(b, a) ; (a, b) R}. 

Remark: 

1. R  A B If and only if      B  . 

2. (a, b)  R If and only if  (b, a)      

Example:  If   {   }   {   }   then A B = {(1, 2), (1, 3), (2, 2), (2, 3)} and  

1. R1={    )         }  {    )}   ,  R1
-1 {    )}    

2. R2={    )         }  {    )}   ,  R2
-1 {    )}    

3. R3={    )         }  R1  R2={    )     )}   ,  R3
-1 {    )     )}    

4. R4={    )         }   R3
-1,  R4

-1= R3 
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Definition: let R be a relation on a set A. Then  

1. R is reflexive relation if  (a, a) R ,    a A 

2. R is symmetric relation if (a, b) R, then (b, a) R ,  (a, b) R 

3. R is transitive  relation if (a, b) R and (b, c) R, then (a, c) R,  (a, b), (b,c) R 

4. R is equivalent relation if and only if R is reflexive, symmetric and transitive relation. 

Example: Let A ={1, 2, 3}  and  consider the following relation on A:  

  = {(1, 1), (1, 3), (2, 3), (2, 2), (3, 3)} 

  ={(1, 1), (1, 3), (3, 1)} 

  ={(1, 1), (2, 2), (3, 3)} 

  ={(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)} 

    A A,     is reflexive relation, is not symmetric relation, since (1, 3) )     

but (3, 1)    and    is transitive  relation, therefore,    is not equivalent relation, since is 

not symmetric relation.         and    H.W 

Exercise: Let R be a relation on a set A. Then prove the following: 

1.      )  = R  

2. R is reflexive relation if and only if     is reflexive relation. 

3. R is symmetric relation if and only if     is symmetric relation. 

4. R is transitive relation if and only if     is transitive relation. 

5. R is equivalent relation if and only if     is equivalent relation. 

Proof 1: H.W 

Proof 2: Suppose that R is reflexive relation on A, we have to prove that     is also 

reflexive relation on A. 

R is reflexive iff   x    , (x, x)     [ By the definition of reflexive ] 

Iff   x   , (x, x)      [By the definition of inverse of the relations]. 

Iff     is reflexive relation on A. [ By the definition of reflexive ] 

Therefore R is reflexive relation If and only if     is reflexive relation. 

Proof 3: H.W 

Proof 4: Suppose that R is transitive relation to prove    is transitive relation. 

Let (a, b), (b, c)       then (b, a), (c, b)     [By the definition of inverse of the relation]. 

Then (c, b), (b, a)    then (c, a)    [Since R is transitive] 
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Then (a, c)      [By the definition of inverse of the relation]. 

Therefore,    is transitive. Conversely: H.W 

Proof 5: H.W 

Theorem: Let R be a relation on A. Then R is symmetric if and only if      . 

Proof: Suppose that R is symmetric to prove      . 

Let (x, y)  , then (y, x)  [since R is symmetric], then (x, y)    [By the definition  of 

inverse of the relation ]. Therefore,      . 

Let (a, b)    , then (b, a)  [by the definition  of inverse of the relation] 

Then (a, b)   [since R is symmetric]. Therefore,      , hence        

Conversely: Suppose that       to prove R is symmetric. 

Let (x, y)  , then (x, y)    [since      ],then (y, x)  [by the definition  of inverse 

of the relations   Therefore, R is symmetric. 

 

Remark: Let R and S be two relations on set A. Then: 

1) R S={(x, y); (x, y) R   (x, y) S} 

2) R S={(x, y); (x, y) R   (x, y) S} 

3) R S={(x, y); (x, y) R   (x, y) S} 

4) R S= R S- R S. 

Theorem: Let R and S be two relations onset A. Then: 

1.     )                 2.     )           

Proof 1: H.W 

Proof 2: Let (x, y)     )   

  (y, x)      [By the definition of inverse of relation] 

  (y, x) R   (y, x) S  [ By the definition of union] 

  (x, y)      (x, y)      [By the definition of inverse of relation] 

 (x, y)                       [By the definition of union] 

Therefore,     )          . 

Exercise: Let S and T be two reflexive relations on a set A.  Are the following relations 

reflexive, symmetric or transitive?  

1. S T          2. S T                 3. S-T                  4. S T 
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Definition: Let R be a relation from A to B a domain of relation R is the set of all elements 

a A, such that (a, b)  R for some b B. That is Domain R={a A ; (a, b)  R for some b B }. 

Definition: Let R be a relation from A to B. Then Rang of relation R is the set of all 

elements b B, such that (a, b)  R for some a A, that is  

Rang  R={b B ; (a, b)  R for some a A}. 

Example: Let A ={1, 2, 3} and B={a, b, c, d} consider the relations  

  ={(1, a), (1, b), (3, c)},   ={(1, a), (2, b)}. Then  

domain of    {   } and Domain of    {   }.   

 Rang  of     {     }  and Rang of    {   }. 

Remark: Dom R is a shorthand of Domain R and Ran R is a shorthand of Rang R.  

Theorem: Let R be a relation from A to B. Then 

1) Dom R= Ran    .                                    2)   Ran R=         

Proof 1: let x  Dom R then there exists y  B such that (x, y)    [By the definition of 

domain]   (y, x)     [By the definition of inverse of the relation] 

 x         [By the definition of inverse of the relation] 

Therefore, Dom R         . 

CONVERSLY: Suppose that s        , then there exists t  B such that  

(t, s)     [By the definition of range] 

Then (s, t)  R  [By the definition of inverse of the relation] 

 Then s   Dom R [By the definition of domain] 

Therefore,              . Hence Dom R         . 

Definition: Let A be a set. Then the relation    on A  is called identity relation if      )  

        )     then      

Example: Let A={1, 2, 3}, then consider the following relations on  A  

1.   ={(1, 1), (2, 2), (3, 3)}  is an identity relation 

2.   ={(1, 1),(2, 3), (2, 2), (3, 3)} is not identity relation, since (2, 3))   and 2  . 

3.   ={(1, 1), (2, 2) }  is not identity relation because  (3, 3)     

Definition: Let R be an equivalence relation on a set A and let x be an element in A. The 

equivalence class of x is the set of all elements y in A such that x has a relation with y in R. 

The equivalence class of x is denoted by [x]. That is [x]={y  ; (x, y) R}. 
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Example: let A={1, 2, 3, 4} and R={(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3,4), (4, 3)}. 

Then [1]={1, 2}, [2]={1, 2}, [3]={ 3, 4}, [4]={3, 4} 

Theorem ( equivalence theorem): Let R be an equivalence relation on a set A and let a, b  A. Then  

Then   

1) a [a] 

2) if b [a] , then [a]=[b] 

3)  [a]=[b] if and only if (a, b)  R 

4) If [a] [b]  , then [a]=[b] 

Proof 1: By the definition of equivalence class [a]={y  ; (a, y) R}.  

Since R is reflexive (a, a) R,  a A, therefore a [a]. 

Proof 2: Suppose that b [a] to prove [a]=[b](that is  [a]  [b] and [b]  [a]). 

Let x [a], then (a, x) R [by the definition of equivalence class] 

Since b [a], then (a, b) R [by the definition of equivalence class] 

then (b, a)  R[Since R is symmetric] 

So that  (b, a)     )  R  then (b, x)  R [Since R is transitive] 

Then  x  [b] [by the definition of equivalence class]. 

So that if x [a] then x  [b]. Thus [a] [b] 

Let x [b], then (b, x) R [by the definition of equivalence class] 

Since b [a], then (a, b) R [by the definition of equivalence class] 

So that (a, b)     )  R  then (a, x)  R [Since R is transitive] 

Then  x  [a] [by the definition of equivalence class]. 

So that if x [b] then x  [a]. Thus [b] [a]. Therefore, [a]=[b]. 

Proof 3: Suppose [a] = [b] to prove (a, b)  R. 

From (1), a [a] then a [b] (since [a]=[b]) 

Then (b, a) R[by the definition of equivalence class] 

Then (a, b) R [Since R is symmetric] 

Conversely: Suppose (a, b) R to prove [a]=[b]. 

If (a, b) R then b [a] [by the definition of equivalence class] then [a]=[b] [By part 2] 

Proof 4: If [a] [b]  , then [a]=[b] 

If [a] [b]  , then there exist  x A such that x  [a] [b] then  



7 
 

x  [a] and x [b] [By the definition of intersection]  

then [a]=[x] and [b]=[x]  [By part 2] then [a]=[b] 

Definition: Let{  }   be a family of nonempty subsets of a set A. Then {  }    is called 

partition for A if {  }    satisfy the following conditions:- 

1)            i, j   and     ,                                          2) A=⋃       . 

Example: Let  A={1,2,3,4,5} and F1={{1},{2,3},{4,5} } and F2= {{1,2,3},{4}, {5}, {1}}. 

Then F1 is partition for A but F2 is not partition for A because  

 {     }  { }     and {     }  { } 

Theorem: Let R be an equivalence relation on a set A and let {   }   be a family of 

equivalence class with respect to R. Then {   }    is a partition for A.   

Example: A= {1, 2, 3} and R=IA {    )     )} then  [1]={1},  [2]={2,3},  [3]={2,3} then 

A= [1]  [2]  [3]. The family {[1], [2], [3]}={{1}, {2, 3}} is a partition for A. 

Theorem:  Let {  }    be a partition of a nonempty set A. Then there exists an equivalence 

relation R on A, such that the family of equivalence class with respect to R is equal to {  }      

Definition: Let R be a relation on A. Then R is called anti-symmetric relation on A, if 

       , (x, y) (y, x)   R then x=y. 

Example: Let A={1, 2, 3, 4}, then consider the following relations on  A  

1)   ={(1, 1), (1, 2), (2, 1)}                 

2)   ={(1, 1),(1, 2), (2, 2), (4, 4)} 

3)   ={(1, 1), (2, 2), (3, 3)} 

4)   ={(1, 2), (2, 1), (2, 3)} 

  is symmetric but not anti-symmetric, because (1, 2) and (2, 1)    and    .    is not 

symmetric, because (1, 2)   but (2, 1)    but      anti-symmetric.     both symmetric  

and anti-symmetric.     neither symmetric since (2, 3)     but (3, 2))   nor anti-

symmetric because (1, 2) and (2, 1)     and    .  

Theorem:  

Let R be a relation on a set A. Then R is anti-symmetric if and only if          

Proof: Suppose that R is anti-symmetric to prove         . 

Let (x, y)      . Then (x, y)  R  (x, y)       [By the definition of intersection] 

Then (x, y)  R  (y, x)   R [By the definition of inverse of the relations] 
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Then x= y   [By assumption]. Then (x, y)     [By definition of  ], therefore           

Conversely: Suppose that          to prove R is anti- symmetric. 

Let (x, y), (y, x)  . Then (x, y)  (y, x)        (y, x)  (x, y))     [by the definition of 

inverse of the relations]. Then (x, y), (y, x)        [By the definition of intersection] 

Then (x, y)   (y, x)       [Since         ] 

Then x=y [by the definition of   ]. Therefore, R is anti-symmetric. 

Definition: Let R be a relation on a set A. Then R is called partially ordered relation on A, 

if R is reflexive anti- symmetric and transitive relation on the set A. 

Example: Let   be a set of integers, then consider the following relations on  : 

1) R1={(x, y)      ; x y },                            2) R2={(x, y)      ;; x y} 

3) R3={(x, y)      ; x y },                                  4)   R4={(x, y)      ; x2 y2} 

R1 is reflexive relation, anti-symmetric and transitive, therefore R1 is partially ordered 

relation. R2 is reflexive relation, anti-symmetric and transitive, therefore R2 is partially 

ordered relation. R3 is not reflexive relation, therefore R3 is not partially ordered relation. 

R4 is not partially ordered relation, since R4  is not anti-symmetric.  

Exercise: Let R be a partially ordered relation on a set A, then prove that     is also 

partially ordered relation on A. 

Definition: Let R be a relation on a set A, if R is a partially ordered relation on A, then the 

order pair (A, R) is called partially ordered set. 

Example: Let A={1, 2, 3} and let R ={(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)}, since R is partially 

ordered relation, then (A, R) is partially ordered set. 

Definition: Let (A, R) be a partially ordered set, an element a A is called least element of a 

set A with respect to a relation R if and only if (a, x)     x A. 

Definition: Let (A, R) be a partially ordered set an element b A is called greatest element 

of a set A with respect to a relation R if and only if (x, b) R,  x A. 

Example: Let A= {3, 6, 9} and then consider the following relations on A. 

R1={(x, y)  A A; x y}, R2= {(x, y)  A A;  x y }, R3= {(x, y)  A A; y divisible by x} 

  ={(3, 3), (6, 6), (9, 9), (3, 6), (3, 9), (6, 9)} R1 is a partially ordered relation on A. 3 is a 

least element of A with respect to R1 since (3, x)  R1,   x  A  9 is a greatest element of A 

with respect to R1 since (x, 9)  R1,   x  A  
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  ={(3, 3), (6, 6), (9, 9), (9, 6),(9, 3), (6, 3)} is a partially ordered relation on A. 9 is a least 

element of A with respect to R2. Since (9, x)  R,  x  A  3 is a greatest element of A with 

respect to R2 since (x, 3)  R1,   x  A    ={(3, 3), (6, 6), (9, 9), (3, 6), (3, 9)} R3 is a 

partially ordered relation on A and 3 is a least element of A with respect to R3 since (3, x) 

 R,   x  A. A has not greatest element with respect to R3. 

Example: A= {a, b, c} and R={(a, a), (b, b), (c, c), (a, b), (c, b)}, then (A, R) is a partially 

ordered set.  a is not least element because c A but (a, c) R. b is not least element since 

c A but (b, c) R. c is not least element because a A but (c, a) R.  

So that A has not any least element with respect to a relation R. a is not greatest element  

because c A but (c, a) R. b is greatest element because for all x A, (x, b) R. c is not 

greatest element because there is at least an element such a A but (a, c) R.  

Example: Let   be a set of integers and  R1={(x, y)       ; x y  }. 

R1 is a partially ordered relation on A but there isn’t any least element of A with respect to R. 

Theorem:  

1. Let R be a partially ordered relation on A. Then if A has a least element, then it is 

unique. 

2. Let R be a partially ordered relation on A. Then if A has a greatest element, then it is 

unique.  

Proof(1): Suppose that there exist at least two least elements let be a and b (a b). Then (a, 

b) R and (b, a)  R by the definition of least element. But R is partially ordered relation on 

A(R is anti-symmetric) then a=b. Which is contradiction with our assumption.   

Proof(2): H.W 

Definition: Let (A, R) be a partially ordered set, an element m X is called a minimal 

element of A with respect to R, if there is no x A such that (x, m)  R and x m. 

Definition: Let (A, R) be a partially ordered set, an element n A is called a maximal 

element of A with respect to R, if there is no x A such that (n, x)  R and x n. 

Example: Let A={a, b, c} and R={(a, a), (b, b), (c, c), (a, b), (c, b)}then (A, R) is a partially 

ordered set. a is a minimal element of A with respect to R. c is also a minimal element of A 

with respect to R but b is not minimal element of A with respect to R since (c, b) R and 
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c b. b is a maximal element of A with respect to R but both a and c are not maximal 

element of A with respect to R since (a, b)  R, c b and (c, b)  R, c b. 

Theorem: Let (A, R) is a partial order set. If a   is a maximal element of A with respect to 

R then a is minimal element of A with respect to R-1 . 

Proof: Let a A be a maximal element of A with respect to R then  there is no x A such that 

(a, x)  R and x a then there is no x A such that (x, a)   R-1  and x a. Then is a minimal 

element of A with respect to R.  

Example: Let A={a, b, c, d} and    ={(a, a), (b, b), (c, c)} then 

1. (A, IA) is a partial order set, (A, IA) has not least element but all elements of A are minimal. 

2. (A, IA) has not greatest element but all elements of A are maximal. 

 Definition:-Let (A,R) be a partial order set, and B   and element a   called a lower 

bound of B in A if (a, x) R,  x  B. In this case B called bounded below by a. 

Definition:-Let (A, R) be a partial order set, and B   and element b   called an upper 

bound of B in A if (  b)        . In this case B called bounded above by b. 

Definition:-Let (A, R) be a partial order set, and B  , then B called bounded set if B 

bounded below and bounded above. 

Remark: The set of all upper bound elements of B in A is called upper bound set of B in A 

and the set of all lower bound elements of B in A is called lower bound set of B in A. 

Example:- Let A={3, 6, 9, 12, 15} , B={6, 12} and R1={(x, y) A A, x ≤ y} then (A, R1) is 

a partial order set and {3, 6} is lower bounded set of B in A with respect to R1 ,(B bounded 

below by 3, 6). 

Definition:-Let (A, R) be a partial order set, and B A and element     is called a greatest  

lower bound( infimum)for B in A if  

1.   is lower bounded for B  in A   

2. ( x, α) R  for all lower bound x for B in A.  

 

Definition:-Let (A, R) be a partial order set, and B   and element     called least upper 

bound (supremum) of  B in A if  

1.   upper bound for B in A.  

2. ( , x)    for all upper bound x for B in A.  
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Example: Let A={1,2,3,4},  B={2,3} and R={(x, y) A A; x ≤ y}. 

1. 1 is least element of A with respect to R. 

2. 4 is greatest element of A with respect to R.  

3. 1 is minimal element of A with respect to R. 

4. 4 is maximal element of A with respect to R.  

5. C={1, 2}is  lower bounded set  of B in A with respect to R. 

6. 2 is greatest lower bounded of B in A with respect to R since 2 is greatest element of 

the set C with respect to the relation S=R (C C) ={(1, 1), (1, 2), (2, 2)}. 

7. D={3, 4} is upper bounded set of B in A with respect to R. 

8. 3 is least upper bounded of B in A with respect to R since 3 is least element of the set 

D with respect to the relation T=R (D D) ={(3, 3), (3, 4), (4, 4)}. 

 Exercise: If    {        },   {  }  and   {      )          }then answer 

the following: 

1. Show that (   ) is a partially ordered set.  

2. Find least element (if exist). 

3. Find greatest element (if exist). 

4. Find minimal element(s). 

5. Find maximal element(s). 

6. Find lower bounded set of  B in A. 

7. Find upper bounded set of  B in A. 

8. Find least upper bounded of B in A (if exist).  

9. Find greatest lower bounded of B in A (if exist).  

 

Exercises:- Let (A,R) be a partial order set, and B    

1. If B has an infimum in A then it is unique. 

2. If B has a supremum in A then it is unique. 

Definition:-Let (A, R) be a partial ordered set. Then (A, R) is called totally (linearly) 

ordered set if for every x, y  A then either (x, y)  R or (y, x)  R. 
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Example: Let A={1, 2, 3} and R={(x, y) A A; x   y} then R={(1, 1), (2, 2), (3, 3), (1, 2), 

(1, 3), (2, 3)}, then (A, R) is a totally ordered set.  

Definition:- Let (A, R) be a partial ordered set. Then (A, R) is called a well-ordered set if 

for every non empty subset B of A has a least element. 

Remark:    {    )         }. 

Example: Let A={1, 2, 3} and R={(x, y) A A; x   y} then R={(1, 1), (2, 2), (3, 3), (1, 2), 

(1, 3), (2, 3)}, then (A, R) is a well-ordered set. Because the set A has the following 

nonempty subsets: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A and  

 { }={(x, y)   ; x   y}={(1, 1)} and 1is a least element of  { } . 

 { }={(x, y)   ; x   y}={(2, 2)} and 2is a least element of  { } . 

 { }={(x, y)   ; x   y}={(3, 3)} and 3is a least element of  { } . 

 {   }={(x, y)   ; x   y}={(1, 1), (2, 2), (1, 2)} and 1is a least element of  {   } . 

 {   }={(x, y)   ; x   y}={(1, 1), (3, 3), (1, 3)} and 1is a least element of  {   } . 

 {   }={(x, y)   ; x   y}={(2, 2), (3, 3), (2, 3)} and 2 is a least element of  {   } . 

  ={(x, y) A  ; x   y}=R={(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} and 1is a least 

element of    .  

Remark:  

1. Every totally ordered set is a partially ordered set, but the converse is not true. 

2. Every well-ordered set is a totally ordered set, but the converse is not true. 

3. (A, R) is called a well-ordered set if for every non empty subset B of A has a least 

element with respect to a relation     or S where S=R (B B). 

Example:  

1. Let A={1, 2, 3} and R={(x, y)      ; x   y} then ( , R) is a totally ordered set and 

well-ordered set. 

2. Let B=[0, 1]={x: x  , 0 x 1} and R={(x, y) B B, x   y} then (B, R) is a totally 

ordered set and but not well-ordered set. Why? 

Definition: Let   be a relation from   to  , and   be a relation from   to  . Then the 

composition of relation   and   is denoted by     and defined by  

   = {(x, z)      ⎜          )        )   } 
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Example: Let A={1, 2}, B={3,4}, C={5, 6} , R={(1, 3), (2, 4)} and S={(3, 5), (4, 6)} then 

SoR={(1, 5), (2, 6)} 

 

   

                                                        

                                                                    

                                                                           

                                                                                 

                                                                      

Example: Let A={1, 2, 3} ,   B={a, b, c, d} and C={w, x, y, z}, R={(1, a), (2, a), (3, d)}    

and S={(a, x), (b, y), (b, z), (c, z), (d, w)}  then  SoR={(1, x), (2, x), (3, w)}.  

Theorem: Let R be a relation on a set A. Then Ro  =  oR=R 

Proof:  Case 1, To prove Ro  =R. Let (x, z) RoIA then  y A such that  (x, y)  IA and (y, 

z) R[by the definition of composition of relation]. Then x=y and (y, z)    [by the 

definition of identity relation]. Then (x, z)     [since x=y]. This means that if (x, z)  Ro   

then (x, z)  , thus, Ro   R.   

Conversely: Suppose that (a, c) R then (a, a)        )      [by the definition of identity 

relation] then (a, c)     . This means that if (a, c)   then (a, c)     . Thus R     . 

Therefore, Ro  =R. 

Case 2, To prove   oR=R H.W . By case 1 and 2 Ro  =  oR=R. 

Theorem: Let R, S and T be relations on a set A. Then  

1) (RoS)oT=Ro(SoT) 

2) (R S)oT=(RoT) (SoT) 

3) (R S)oT (RoT) (SoT) 

4) If R S, then (i) RoT SoT     (ii) ToR ToS 
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5) (RoS) T=        )      

6)     )  =          

Proof 2: Let (x, z) (R S)oT    y A such that (x, y) T (y, z) (R S) [by the definition 

of composition of relation] . 

  (x, y) T ((y, z) R (y, z) S) [By the definition of union] 

  ((x, y) T (y, z) R) ((x, y) T (y, z) S)  [ by distributive law] 

  (x, z)  RoT   (x, z)  SoT [by the definition of composition of relation] 

  (x, z)  (RoT) (SoT). Therefore  (R S)oT=(RoT) (SoT). 

Proof 4 (ii): Suppose that R S, we have to prove that ToR ToS 

Let (x, z) ToR, then  y A such that (x, y) R (y, z) T 

then (x, y) S (y, z) T   [since R S], 

then(x, z)  ToS [by the definition of composition of relation] 

Thus if (x, z) ToR then (x, z) ToS, Therefore, ToR ToS. 

Proof 5: Suppose (ToR-1 )∩S   iff  (x, y) (ToR-1 )∩S iff (x, y) (ToR-1 )   (x, y) S iff 

  z   A such that ((x, z)) R-1   (z, y)   T)   (x, y) S iff ((z, x) R   (z, y)   T)   (x, y) S 

iff  (z, x) R   ((z, y)   T)   (x, y) S) [by associative law]  

iff (z, x) R   ( (x, y) S  (z, y)  T)) [by commutative law]  

iff ((z, x) R    (x, y) S)   (z, y)  T[by associative law] 

iff (z, y)  (SoR)   (z, y)  T[ by the definition of composition] 

iff (z, y)  (SoR) T[by the definition of intersection].  

Thus (RoS) T   . Therefore, by Contrapositive law if (RoS) T=   iff (ToR-1 )∩S= .  

Theorem: Let R be a relation on a set A. R is a partially ordered relation on A if and only if 

         and RoR=R. 

Proof: Suppose that R is partially ordered relation on A, to prove          and RoR=R.  

Case 1: To prove           

Let (x, y)        . Iff (x, y)  R   (x, y)     [by the definition of intersection] 

Iff (x, y)  R   (y, x)  R [by the definition of    ], Iff x=y [since R is anti-symmetric 

relation]. Iff (x, y)   , therefore,         . Let (x, y)    and (x, y)      [since R is 

reflexive relation]. Then (x, x)        therefore,         . 
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Case 2: To prove RoR=R. Let (x, z) RoR then   y A such that  x, y)    (y, z)  [By the 

definition of composition relation]. Then (x, z)   [Since R is transitive relation], thus 

RoR R. Let (x, y)    then (x, x) R (x, y) R [since R is reflexive relation], then (x, 

y) RoR[by the definition of composition of relations].  Hence R  RoR. Therefore, R= RoR. 

Conversely: Suppose that           and RoR=R to prove R is partially ordered relation 

on a set A. 

 Let x A then (x, x)   , then (x, x)      [since         ], then (x, x) R, So that 

R is reflexive relation. 

Let (x, y), (y, x) R, then (x, y) R (y, x) R, then (x, y) R   (x, y) R-1 

Then (x, y)       , then (x, y)     [Since         ], then x=y. 

So that R is anti-symmetric relation.  

Let (x, y) and (y, z) R, then (x, y)    and (y, z)     then (x, z)  RoR then (x, z)    

[R=RoR]. So that R is transitive relation. 

Therefore,  R is partially ordered relation. 

Exercises: Let S and R be two relations on a set A. Then prove or disprove the following: 

1) S is transitive iff SoS S. 

2) If S is reflexive and transitive relation then SoS=S. 

3) SoR=RoS   

4) Dom(SoR)  dom(R)     

5) Ran (SoR) )  Rang (S)  

6) If Ran (S)  Dom(R) then (RoS)=Dom S. 
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