Ministry of Higher Education and Scientific research

Department of Mathematics-College of Science

Salahaddin University/Erbil

Subject: Measure theory

Course Book – (M.Sc. Level) – College of Science002 --Measure Theory Course book-M.Sc-2023-2024

Lecturer's name: Ibrahim O. Hamad

Academic Year: 2023-2024 -- Second Semesters

له خوار دوه خشته ی ریز هی نه هاتن رون ده که ینه وه له بابه تی Modern Geometry که پیویسته پابهند بن پی ی:

ئاگادارى كۆتايى	ئاگاداری سەرەتايى	وشياركردنهوه	ژمارەى كاتژمىرەكان لە ھەفتەيەكدا(تيۆرى)
6	4	2	2

Course Book

1. Course name	Measure Theory	
2. Lecturer in charge	Ibrahim Othman Hamad	
3. Department/ College	Mathematics / Science	
4. Contact	e-mail : <u>ibrahim.hamad@su.edu.krd</u>	
	Tel: (optional) 07504630477	
5. Time (in hours) per week	For example Theory: 2	
	Practical:	
6. Office hours	Wensday and Thursday G-A(8:30 – 10:30), G-B(10:30 – 12:30)	
7. Course code		
8. Teacher's academic profile	Education:	
	PhD	
	Date: 25-5-2007	
	<i>Title</i> : Generalized Curvature and Torsion in Nonstandard Analysis	
	<i>Place of Attainments</i> : Mathematics Department, College of Science,	
	Supervisor: Professor Dr. Tahir Hassan Ismail	
	Supervisor Address: Mathematics Department, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq. Email: <u>tahir_hs@yahoo.com</u>	
	M. Sc.	
	Date: 2-8-2000	
	<i>Title</i> : A Nonstandard Study on The Taylor Series Development	
	<i>Place of Attainments</i> : Math. DeptCollege of SciUniv. of Salahaddin\Erbil- Iraq.	
	Supervisor: Professor Dr. Tahir Hassan Ismail,	
	B. Sc	

Date: 27-6-1992
<i>Place of Attainments</i> : Math. DeptCollege of SciUniv. of Salahaddin\Erbil- Iraq Title of the Graduation Project:
Number of Limit Cycles of Nonlinear Autonomous Homogeneous System of
Degree Three Academic records
2009 – Present : Assistant (Associate) Professor,
2004 – 2007: PhD student,
2005 – 2009: Lecturer,
2000 – 2005: Assistant Lecturer
1998 – 2000: M.Sc Student,
1993 – 1998: Assistant Researcher in Math. Dept.
Supervising 1 Ph.D + 2 M.Sc. +2 M.Sc.(under Supervision)
Committees Membership and Positions
 Member of several scientific and other department and college committees.
2. Member of the College Scientific Promotion committee.
3. 2014 Organizer of CIMPA-KURDISTAN-IRAQ research school, Inverse
problems: Theory and applications, University of Salahaddin, Erbil,
Kurdistan-Iraq, May 5-14, 2014, <u>http://www.cimpa-</u>
<pre>icpam.org/spip.php?article564</pre> Visiting.
4. 2011 Institute de Mathematiques de Jussieu - Paris, France; for a period
one month.
 2006 (INSPEM), University of Putra - Kuala Lumpur, Malaysia, for a period 6 month as a second part of PhD research.
unfortunately, we were unable to in compliance with the above invitations
because of the politic situation of Iraq at that time
Conferences and Schools:
1. Research School CIMPA UNESCO – EGYPT, Recent Development in the
Theory of Elliptic Partial Differential Equations 25/1-3/2/2009.
Alexandria, Egypt.
2. CIMPA-UNESCO-IPM School, Repres. Theory of Algebras, 15-25-6/,
2008.Tehran, Iran.
3. First Iraq-French Mathematics Conferenc, Cooparation with College of
Science 14 -18/11/2009. Hawler (Erbil) - Kurdistan Region, Iraq.

	4. The Second Conference on Mathematical Sciences (CMS'2008) 22-
	23/10/2008. Jordan, Zarqa.
	 The Second International Conference of Mathematics 26-30/10/2008. Syria, Aleppo.
	6. International Congress "Nonstandard Methods and Applications in
	Mathematics- NSM" 25-31/5/ 2006, Pisa, Italy.
	unfortunately, we were unable to in compliance with the above invitations
	because of the politic situation of Iraq at that time
	Publications: Papers: 20 papers in local and international journals
	Books : Generalized Curvature and Torsion in Nonstandard Analysis, (Nonstandard Technical Treatment for Some Differential Geometry Concepts), LAP Lambert Academic Publishing ISBN 978-3-8443-0763-4, 140 Pages.
	Articles
	 The Development Project of the Educational Program in Iraq (In Arabic), Journal of Afaq Al- Terbewiyha, Issued by the Ministry of Education – Iraqi Kurdistan Region, No.3(2004), pp 107-114.
	• Some Notes, About The Integration Subject in the Mathematics Book of
	6th Secondary School (In Kurdish) Journal of Assoy Parwardayi, Issued by
	the Ministry of Education – Iraqi Kurdistan Region, No.38(2003), pp 58-63.
	1. 1993-1998, as an Assistant Researcher:
	(Theoretical): O.D.E, probability, & Statistics, Euclidean and Non Euclidean
	Geometry. (Tutorial): Euclidean and Non Euclidean Geometry y, Statistics,
	O.D.E, P.D.E, Topology. (Computer Laboratory): Basic, Fortran, and Pascal
	Language.
9. Keywords	Sigma-algebras, outer measure, inner measure, Lebesgue Measure, Measurable Functions, Borel Sets

10. Course overview:

This course offers an in-depth introduction to measure theory, a crucial area of mathematical analysis with wide-ranging applications in probability, statistics, and various branches of mathematics. The topics covered include the construction and properties of measures, measurable functions, the Lebesgue measure, and convergence theorems. The course also introduces the concept of zero sets and the Radon-Nikodym Theorem.

11. Course objective:

- \circ $\;$ Understand the concept and construction of measures.
- Construct and understand measures and sigma-algebras
- $\circ\quad$ Define and work with measurable functions.
- Integrate functions using the Lebesgue measure.
- Apply the major convergence theorems.
- $_{\odot}$ $\,$ Analyze properties of measures, including sigma-algebras and measurable sets.
- \circ $\;$ Understand and apply the concept of zero sets.
- Develop and present rigorous mathematical proofs in the context of measure theory.

12. Student's obligation

Students and their obligations throughout the academic year, is the attendance and completion of all tests, exams, assignments.

13. Forms of teaching

Magic board and discussion and allow leg students to write some problems on the board and assignments and I give hard copy of my lecture notes to students before coming lecturer time.

14. Assessment scheme

The students are required to do two closed book exams during of the study year. The exam has 20 marks, attendance, classroom activities with quizzes 10 marks, assignments 10 marks. Report and siminar 10 marks. There will be a final exam on 50 marks with final Exam 50 marks.

15. Student learning outcome:

By the end of this course, students will be able to:

- 1- Construct Measures and Sigma-Algebras: Understand the fundamental concepts of measure theory, including the construction and properties of sigma-algebras and measures.
- 2- Work with Measurable Functions: Define and manipulate measurable functions, demonstrating an ability to analyze their properties and behaviors.
- 3- Apply the Lebesgue Integral: Integrate functions using the Lebesgue integral, and compare it to the Riemann integral, understanding its advantages and applications.
- 4- Convergence Theorem, Fatou's Lemma, and the Dominated Convergence Theorem to solve problems and prove results in measure theory.
- 5- Utilize Convergence Theorems: Apply key convergence theorems such as the Monotone.
- 6- Apply the Radon-Nikodym Theorem: Understand and apply the Radon-Nikodym Theorem in various contexts, including its implications for absolute continuity and the existence of densities.
- 7- Develop Rigorous Proofs: Construct clear, concise, and rigorous mathematical proofs related to measure theory, demonstrating logical reasoning and effective communication of complex ideas.

16. Course Reading List and References: **References**

- 1) Method of Real Analysis by R. Goldberg. **3rd Ed. 2020**
- 2) Mathematical Analysis by T. Apostol. 2nd Ed. 2002
- 3) Real Analysis by H. Royden. 4th Ed. 2010
- 4) Principles of Mathematical Analysis by W. Rudin. **3rd Ed 1976**
- 5) Measure, Integration, and a Primer on Probability Theory. 2020
- 6) Measure Theory and Nonlinear Evolution Equations. 2022
- 7) Measure-Theoretic Calculus in Abstract Spaces. 2024

17. The Topics: Chapter I System of Sets		Lecturer's name
1.1	Introduction.	
1.2	Elementary family.	
1.3	Semi-rings.	
1.4	Rings.	
1.5	σ -rings.	
1.6	Semi algebra.	
1.7	Algebra.	
1.8	σ - algebra.	
1.9	Borel algebra and Borel Sets.	
(Chapter II Introduction to Measure	
2		
2.1 So	ome Basic Question about Measure.	
2.1.1 What is Measure Theory?		
2.1.2 Why Measuring?		
2.1.3 How are We Measuring?		
2.2 Measure of Sets in \mathbb{R} .		
2.2.1	Length and Distance.	
2.2.2	Measure of Open and Closed Intervals.	
2.2.3	Measure of Open and Closed Sets.	
Chapter III Abstract Measure.		
3-1	Inner and Outer Measure of Bounded and	
Unbounded Sets.		
3-2	Some Type of Measures.	

2.2	Proportios of the Ipper and Outer Measure	
3-3		
3-4	F_{σ} and G_{δ} Sets.	
3-5	The Class of Measurable Set.	
3-6	Translation Invariance of Measure	
3-7	Measure Space, \mathcal{L}^p and L^p Spaces.	
<u>Chap</u>	ter IV Measurable Sets & Functions	
4-1	Measurable Functions.	
4-2	The Space of Measurable Functions.	
4-3	Properties of Measurable Functions.	
	(Equivalent fun, inverse image of	
	measurable map and Borel function).	
4-4	Complete Measure and Approximation	
	by Simple Functions.	
4-5	Egoroff, Lusin's, and Dominated	
	Convergence Theorems.	
4-6	Convergency of Sequence of Measurable	
	Functions.	
Chan	tor V Applications of Massura	
Cnap	$\frac{1}{1}$ Applications of Measure.	
19. E	xaminations:	19. Examinations:
Comp	ositional: In this type of exam the questions	Compositional: In this type of exam the
like a	ly starts with Explain how, furthermore it is secture notes and contains some homework	questions usually starts with Explain how, furthermore it is like as lecture notes and
so there will be continuing assignments of problem		contains some homework , so there will be
outsic	de the lecture notes (note that this problem	continuing assignments of problem outside
having small marks).		the lecture notes (note that this problem having small marks)
20. E	xtra notes:	20. Extra notes:
21. P	پيداچوونـهو دی هاو هٽ eer review	پيداچوونهوه هاوه ل 21. Peer review

19. Examinations:

Compositional: In this type of exam the questions usually starts with Explain how, furthermore it is like as lecture notes and contains some homework , so there will be continuing assignments of problem outside the lecture notes (note that this problem having small marks).

20. Extra notes:

21. Peer review

پيداچوونموهي هاوهڵ