

Robotic Systems

Chapter IV Forward Kinematics

Prof. Dr. Ibrahim Hamarash Salahaddin University-Erbil

Forward Kinematics

The calculation of the position and orientation of the endeffector frame from joint coordinates.

di

The pose of the end frame x3,y3,z3 with respect to the reference frame x0,y0,z0 is expressed by the following post multiplication of three pairs of homogenous transformation matrices:

 ${}^{0}\mathbf{H}_{3} = ({}^{0}\mathbf{H}_{1}\mathbf{D}_{1}) \cdot ({}^{1}\mathbf{H}_{2}\mathbf{D}_{2}) \cdot ({}^{2}\mathbf{H}_{3}\mathbf{D}_{3}).$

Robotic Systems, Chapter IV

$${}^{0}\mathbf{H}_{1}\mathbf{D}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c1 - s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c1 - s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}\mathbf{H}_{2}\mathbf{D}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c2 - s2 & 0 & 0 \\ s2 & c2 & 0 & l_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c2 - s2 & 0 & l_{2} \\ s2 & c2 & 0 & l_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{H}_{3}\mathbf{D}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & 1 & -d_{3} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & 1 & -d_{3} \\ 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{H}_{3} = \begin{bmatrix} c12 - s12 & 0 & -l_{3}s12 - l_{2}s1 \\ s12 & c12 & 0 & l_{3}c12 + l_{2}c1 \\ 0 & 0 & 1 & l_{1} - d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $c12 = \cos(\vartheta_1 + \vartheta_2) = c1c2 - s1s2$ and $s12 = \sin(\vartheta_1 + \vartheta_2) = s1c2 + c1s2$.

Example: 3R planar open chain

- $x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3),$
- $y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3),$
- $\phi = \theta_1 + \theta_2 + \theta_3.$

{0}

Example

The forward kinematics can be written as a product of four homogeneous transformation matrices:

$$T_{04} = T_{01}T_{12}T_{23}T_{34},$$

$$T_{01} = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & 0\\ \sin\theta_1 & \cos\theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad T_{12} = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & L_1\\ \sin\theta_2 & \cos\theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$T_{23} = \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & L_2\\ \sin\theta_3 & \cos\theta_3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad T_{34} = \begin{bmatrix} 1 & 0 & 0 & L_3\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Denavit-Hartenberg Convention

The forward kinematic is given by:

 $T_{0n}(\theta_1,\ldots,\theta_n)=T_{01}(\theta_1)T_{12}(\theta_2)\cdots T_{n-1,n}(\theta_n)$

With a set of rules for assigning link frames.

Rule 1

Assigning \hat{z}_i axis coincide with joint i and z_{i-1} axis coincide with joint axis i-1. the direction of positive rotation is determined by the right hand rule.

Rule 2: Origin of the link reference frame Find the line segment that orthogonally intersects both the joint axes \hat{z}_{i-1} and \hat{z}_{I} .

The \hat{x} -axis is chosen to be in the direction of the mutually perpendicular line pointing from the (i-1)-axis to the i-axis.

The \hat{y} -axis is then uniquely determined from the cross product $\hat{x} X \ \hat{y} = \hat{z}$.

Rule 3: The D-H parameters

Define four parameters that exactly specify $\mathsf{T}_{i\text{-}1,i}$.

- 1. The length of the mutually perpendicular line, denoted by the scalar $\mathbf{a_{i-1}}$ is called the **link length** of link i-1. Despite its name, this link length does not necessarily correspond to the actual length of the physical link.
- 2. The link twist α_{i-1} between \hat{z}_{i-1} and \hat{z}_i measured about \hat{x}_{i-1} .
- 3. The link offset d_i is the distance from the intersection of \hat{x}_{i-1} and \hat{z}_i to the origin of the link-i frame.
- 4. The joint angle Φ_i is the angle from \hat{x}_{i-1} to \hat{x}_i about Z_{i-1} .

Video Segment

Example: 3R Spatial open chain

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	0	θ_1
2	90°	L_1	0	$\theta_2 - 90^\circ$
3	-90°	L_2	0	θ_3

D-H parameters

- The length of the mutually perpendicular line, denoted by the scalar a_{i-1} is called the link length of link i-1. Despite its name, this link length does not necessarily correspond to the actual length of the physical link.
- 2. 2. The link twist α_{i-1} between \hat{z}_{i-1} and \hat{z}_i measured about \hat{x}_{i-1} .
- 3. The link offset d_i is the distance from the intersection of \hat{x}_{i-1} and \hat{z}_i to the origin of the link-i frame.
- 4. The joint angle Φ_i is the angle from \hat{x}_{i-1} to \hat{x}_{I} .

Manipulator Forward Kinematic

Example: RRRP spatial open chain

- The length of the mutually perpendicular line, denoted by the scalar a_{i-1} is called the link length of link i-1. Despite its name, this link length does not necessarily correspond to the actual length of the physical link.
- 2. 2. The link twist α_{i-1} between \hat{z}_{i-1} and \hat{z}_i measured about \hat{x}_{i-1} .
- 3. The link offset d_i is the distance from the intersection of \hat{x}_{i-1} and \hat{z}_i to the origin of the link-i frame.

4. The joint angle Φ_i is the angle from \hat{x}_{i-1} to \hat{x}_{I} .

Manipulator Forward Kinematic

Example: 2dof planar manipulator

Denavit-Hartenberg parameters

	d	θ	а	α
L1	0	θ_1	a	00
L2	0	θ_2	22	00

The i-1**H**_i matrices result:

$${}^{0}\mathsf{H}_{1} = \begin{bmatrix} C_{1} & -S_{1} & 0 & a_{1}C_{1} \\ S_{1} & C_{1} & 0 & a_{1}S_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}\mathsf{H}_{2} = \begin{bmatrix} C_{2} & -S_{2} & 0 & a_{2}C_{2} \\ S_{2} & C_{2} & 0 & a_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{T}_{2} = {}^{0}\mathbf{H}_{1} {}^{1}\mathbf{H}_{2} = \begin{bmatrix} C_{12} & -S_{12} & 0 & a_{1}C_{1} + a_{2}C_{12} \\ S_{12} & C_{12} & 0 & a_{1}S_{1} + a_{2}S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reading List:

Kevin M. Lynch and Frank C. Park, 2017, Modern Robotics, 1st Edition, Cambridge University Press, chapter 4.

Watching list

https://www.youtube.com/watch?v=rA9tmOgTln8

Questions?