Topics in Power System Dynamics

Chapter I
Introduction to the Course

Prof.Dr. Ibrahim Hamarash
Salahaddin University-Erbil

Electrical Power System

© 2020/2021 , Professor Ibrahim Hamarash, PhD. lbrahim.hamad@su.edu.krd

Dynamic Phenomena in Electrical Power Systems

Classification of Stability in Power Systems

© 2020/2021, Professor Ibrahim Hamarash, PhD. lbrahim.hamad@su.edu.krd

Mathematical Interpretation of Stability

 Example: Second Order System subjected to a Unit Step SignalTypical second order system may be written in the form of:

A typical Second Order

System

Note: Compare to

$$
\frac{X(S)}{F(s)}=\frac{1}{m s^{2}+b s+k}
$$

$$
G(s)=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$ determine the values of ω_{n} (undamped natural frequency) and ξ (damping ratio)

$$
\frac{Y(s)}{R(s)}=\frac{w_{n}{ }^{2}}{s^{2}+2 w n \xi s+w n^{2}}
$$

If this system is subjected to a unit step signal, $R(s)=1 / s$
then,

$$
Y(s)=\frac{1}{s} * \frac{w_{n}{ }^{2}}{s^{2}+2 w n \xi s+w n^{2}}
$$

Input signal
The System

Using partial fraction expansion,

$$
Y(s)=\frac{A}{s}+\frac{B s+C}{s^{2}+2 w n \xi s+w n^{2}}
$$

Output signal

By partial fraction expansion, $A=1$, hence

$$
\begin{aligned}
& Y(s)=\frac{1}{s} * \frac{\omega_{n}{ }^{2}}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}}=\frac{1}{s}+\frac{B s+C}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}} \\
& \frac{B s+C}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}}=\frac{\omega_{n}{ }^{2}}{s\left(s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}\right)}-\frac{1}{s} \\
& Y(s)=\frac{1}{s}-\frac{s+\xi \omega_{n}}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}}-\frac{\xi \omega_{n}}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}}
\end{aligned}
$$

$$
\mathrm{Y}(\mathrm{~s})=\frac{1}{s}-\frac{s+\xi \omega_{n}}{\left(s^{2}+2 \omega_{n} \xi s+\omega_{n}^{2}\right)}-\frac{\xi}{\sqrt{1-\xi^{2}}} \frac{\omega_{d}}{s^{2}+2 \omega_{n} \xi s+\omega_{d}^{2}}
$$

$$
\mathrm{Y}(\mathrm{~s})=\frac{1}{s}-\frac{s+\xi \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\omega_{d}^{2}}-\frac{\xi}{\sqrt{1-\xi^{2}}} \frac{\omega_{d}}{\left(s+\xi \omega_{n}\right)^{2}+\omega_{d}^{2}}
$$

$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$

Taking inverse Laplace transform,
$y(t)=1-e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t\right)-\frac{\zeta}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t\right)$
This equation represents the dynamic response (output signal in time domain). More versions of the equation are available by mathematical re-arrangement of the equation.

$$
\begin{aligned}
& \boldsymbol{y}(\boldsymbol{t})=\mathbf{1}-\boldsymbol{e}^{-\zeta \omega_{\boldsymbol{n}} \boldsymbol{t}} \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\omega}_{\boldsymbol{d}} \boldsymbol{t}\right)-\frac{\zeta}{\sqrt{1-\zeta^{2}}} \boldsymbol{e}^{-\zeta \omega_{\boldsymbol{n}} \boldsymbol{t}} \sin \left(\boldsymbol{\omega}_{\boldsymbol{d}} \boldsymbol{t}\right) \\
& \boldsymbol{y}(\boldsymbol{t})=\mathbf{1}-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}\left\{\sqrt{\mathbf{1}-\zeta^{2}} \cos \left(\omega_{\boldsymbol{d}} \boldsymbol{t}\right)-\zeta \sin \left(\omega_{\boldsymbol{d}} \boldsymbol{t}\right)\right\} \\
& \boldsymbol{y}(\boldsymbol{t})=\mathbf{1}-\frac{e^{-\zeta \omega n t}}{\sqrt{1-\zeta^{2}}}\{\sin (\varphi)(\cos (\boldsymbol{\omega} \boldsymbol{d} \boldsymbol{t})-\cos (\varphi) \sin (\boldsymbol{\omega} \boldsymbol{d})\} \\
& y(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\varphi\right)
\end{aligned}
$$

or,
$y(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)$

This is another version of the output signal
equation

This triangle is introduced as a mathematical notation for re-arrangement of the output signal equation.

$$
y(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)
$$

Input signal

The System

Note: The output equation is a sine wave with a variable amplitude.

Output signal
error (e) = input - response
$=e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t\right)-\frac{\zeta}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t\right)$
Steady State error ($e_{s s}$) (error as time goes to infinity) is:

$$
\mathrm{e}_{\mathrm{ss}}=\lim _{t \rightarrow \infty}(e)=0
$$

Interpretation: there is no deviation from the reference (unit step signal) at the end $(t=\infty)$.

Time domain specifications

 $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{p}}, \mathrm{t}_{\mathrm{s}}, \mathrm{M}_{\mathrm{p}}\right)$

The effect of ξ and ω

$$
\frac{Y(s)}{R(s)}=\frac{w_{n}^{2}}{s^{2}+2 w n \xi s+w n^{2}}
$$

The system is subjected to a step input yield:

$$
Y(s)=\frac{1}{s} * \frac{\omega_{n}^{2}}{\left(s^{2}+2 \omega_{n} \xi s+\omega_{n}^{2}\right)}
$$

Using partial fraction method to find Laplace inverse of $Y(s)$,

$$
\mathrm{Y}(\mathrm{~s})=\frac{1}{s}+\frac{A}{\left(s-s_{1}\right)}+\frac{B}{\left(s-s_{2}\right)}
$$

Taking Laplace inverse for the $Y(s)$,

$$
y(t)=1+A e^{s_{1} t}+B e^{s_{2} t}
$$

Where,

$$
\begin{aligned}
& s_{1}=-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1} \\
& s_{2}=-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1} \\
& y(t)=1+K e^{-\zeta \omega_{n} t}\left(e^{\omega_{n} \sqrt{\zeta^{2}-1} t}+e^{-\omega_{n} \sqrt{\zeta^{2}-1} t}\right)
\end{aligned}
$$

Output for different values of ξ

$$
y(t)=1+K e^{-\zeta \omega_{n} t}\left(e^{\omega_{n} \sqrt{\zeta^{2}-1} t}+e^{-\omega_{n} \sqrt{\zeta^{2}-1} t}\right)
$$

$$
\frac{Y(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \omega_{n} \xi s+\omega_{n}^{2}}
$$

$$
s_{1,2}=-\zeta \omega_{n} \pm w n \sqrt{\zeta^{2}-1}
$$

Cases:
a. $\xi>1$, b. $\xi=0, c .0<\xi<1$, d. $\xi=1$,

Summary and Conclusion

© 2020/2021 , Professor Ibrahim Hamarash, PhD. lbrahim.hamad@su.edu.krd

Response Types

© 2020/2021 , Professor Ibrahim Hamarash, PhD. lbrahim.hamad@su.edu.krd

Characteristic equation

$$
\frac{Y(s)}{R(s)}=\frac{\omega_{n}{ }^{2}}{s^{2}+2 \omega_{n} \xi s+\omega_{n}{ }^{2}} \quad \text { Transfer Function }
$$

$$
s^{2}+2 \omega_{n} \zeta s+w_{n}^{2}=0 \quad \text { Characteristic equation }
$$

$$
s_{1,2}=-\zeta \omega_{n} \pm w n \sqrt{\zeta^{2}-1} \text { Roots of characteristic equation }
$$

\checkmark Stability (Physically)

A system is said to be stable if after the occurrence of a disturbance has the ability to restore its initial condition or to reach to a states very close to that of the original.
\checkmark Stability (Mathematically)
A system is said to be stable if and only if, all roots of the characteristic equation lie on the LHS of the complex plane.

State Variable Example: RL circuit

Step Response on an RL Circuit

Solution of RL circuit

$$
\begin{gathered}
E=R I+L \frac{d I}{d t} \\
\frac{E}{s}=R \mathscr{L}(I)+L\left(s \mathscr{L}(I)-I_{0}\right) \\
\mathscr{L}(I)=\frac{E / L}{s(R / L+s)}+\frac{I_{0} / L}{R / L+s} \\
I(t)=\frac{E}{R}+\left[I_{0}-\frac{E}{R}\right] e^{-R t / L}
\end{gathered}
$$

State Variable

The state of a dynamic system is the smallest set of variables called (state variables) such that the knowledge of these variables at $\dagger=\dagger_{\circ}$ and the input applied for $t \geq \dagger_{\text {。 }}$ completely determine the behavior of the system for any time $\dagger \geq \dagger_{0}$.

If n state variables are needed to completely describe the behavior of a given system, then these variables can be considered the n components of a vector called state vector.

The State Space Mathematical

 modelConsider a system is described by the $2^{\text {nd }}$ order differential equation

$$
a_{1} \frac{d^{2} y(t)}{d t^{2}}+a_{2} \frac{d y(t)}{d t}+a_{3} y(t)=u(t)
$$

$$
\begin{aligned}
& \text { Let } \\
& y(t)=x_{1} \\
& \dot{y}(t)=\dot{x}_{1}(t)=x_{2} \\
& \dot{x}_{2}(t)=\ddot{y}(t)=-\frac{a_{2}}{a_{1}} x_{2}(t)-\frac{a_{3}}{a_{1}} x_{1}(t)+\frac{1}{a_{1}} u(t)
\end{aligned}
$$

Example of a 2nd order system

Displacement caused by the Applied Force = Output

State Variable

$$
\begin{aligned}
& \dot{y}(t)=\dot{x}_{1}(t)=x_{2} \\
& \dot{x}_{2}(t)=\ddot{y}(t)=-\frac{a_{2}}{a_{1}} x_{2}(t)-\frac{a_{3}}{a_{1}} x_{1(t)}+\frac{1}{a_{1}} u(t)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{-a_{3}}{a_{1}} & \frac{-a_{2}}{a_{1}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{a_{1}}
\end{array}\right] \mathrm{u}(\mathrm{t})
$$

$$
\left[x_{1}(t)\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

State space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =c x(t)+D u(t)
\end{aligned}
$$

The first and the second equations are known as state equation and output equation respectively

Example: Find the eigenvalues

$$
[A]=\left[\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right]
$$

Characteristic equation is

$$
|\lambda[I]-[A]|=0
$$

$$
\begin{aligned}
& \left|\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]-\left[\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right]\right|=0 \\
& \left|\begin{array}{cc}
\lambda+3 & -2 \\
1 & \lambda
\end{array}\right|=0 \\
& \lambda^{2}+3 \lambda+2=0
\end{aligned}
$$

$$
(\lambda+2)(\lambda+1)=0
$$

The eigenvalues are $\lambda_{1}=\mathbf{- 2}$ and $\lambda_{2}=\mathbf{- 1}$

Example: Consider a 2 -dimensional system with the following system and input matrices.

The transfer function of the system is

$$
[G(s)]=[C](s[I]-[A])^{-1}[B]
$$

$$
[G(s)]=\frac{\left[\begin{array}{cc}
1 & 0
\end{array}\right]}{s^{2}+3 s+2}\left[\begin{array}{cc}
s+3 & 1 \\
-2 & s
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{s+3}{(s+1)(s+2)}
$$

The denominator of the transfer function is

$$
|s[I]-[A]|=s^{2}+3 s+2=(s+1)(s+2)
$$

The roots of the characteristic equation, i.e., the eigenvalues are -1 and -2 and therefore, the system is stable.

$$
\begin{aligned}
& {[A]=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] \quad[B]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }[C]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]} \\
& (s[I]-[A])=\left[\begin{array}{cc}
s & -1 \\
2 & s+3
\end{array}\right] \\
& (s[I]-[A])^{-1}=\frac{\operatorname{adj}(s[I]-[A])}{\mid s[I]-[A \mid}=\frac{1}{s^{2}+3 s+2}\left[\begin{array}{cc}
s+3 & 1 \\
-2 & s
\end{array}\right]
\end{aligned}
$$

Solution of state space equation
a. Homogenous state response

The state-variable response of a system described by

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)
$$

with zero input, and an arbitrary set of initial conditions $x(0)$ is the solution of the set of n homogeneous first-order differential equations.

To derive the homogeneous response $x_{h}(t)$, we begin by considering the response of a first-order (scalar) system with state equation

$$
x(t)=a x(t)
$$

With initial condition $x(0)$. In this case the homogeneous response $x_{h}(\dagger)$ has an exponential form defined by the system time constant $\mathrm{T}=-1 / \mathrm{a}$, or

$$
x_{h}(t)=e^{a t} x(0)
$$

The exponential term $e^{a t}$ may be expanded as power series to give,

$$
x_{h}(t)=\left(1+a t+\frac{a^{2} t^{2}}{2!}+\frac{a^{3} t^{3}}{3!}+\ldots+\frac{a^{k} t^{k}}{k!}+\ldots\right) x(0),
$$

The above solution is true for higher order systems, say $\mathrm{n}^{\text {th }}$ order system to be,

$$
\mathbf{x}_{h}(t)=\left(\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+\ldots+\frac{\mathbf{A}^{k} t^{k}}{k!}+\ldots\right) \mathbf{x}(0)
$$

The system homogeneous response $x_{h}(\dagger)$ may therefore be written in terms of the matrix exponential

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+\ldots+\frac{\mathbf{A}^{k} t^{k}}{k!}+\ldots
$$

The solution is often written as,

$$
\begin{aligned}
& \mathbf{x}_{h}(t)=e^{\mathbf{A} t} \mathbf{x}(0) \\
& \mathbf{x}_{h}(t)=\Phi(t) \mathbf{x}(0)
\end{aligned}
$$

$\Phi(\dagger)$ is called state transition matrix.

Solution: The system matrix is

$$
\mathbf{A}=\left[\begin{array}{rr}
-2 & 0 \\
1 & -1
\end{array}\right] .
$$

From Eq. (9) the matrix exponential (and the state transition matrix) is

$$
\begin{aligned}
\boldsymbol{\Phi}(t)= & e^{\mathbf{A} t} \\
= & \left(\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+\ldots+\frac{\mathbf{A}^{k} t^{k}}{k!}+\ldots\right) \\
= & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
-2 & 0 \\
1 & -1
\end{array}\right] t+\left[\begin{array}{rr}
4 & 0 \\
-3 & 1
\end{array}\right] \frac{t^{2}}{2!} } \\
& +\left[\begin{array}{rr}
-8 & 0 \\
7 & -1
\end{array}\right] \frac{t^{3}}{3!}+\ldots
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
1-2 t+\frac{4 t^{2}}{2!}-\frac{8 t^{3}}{3!}+\ldots & 0 \\
0+t-\frac{3 t^{2}}{2!}+\frac{7 t^{3}}{3!}+\ldots & 1-t+\frac{t^{2}}{2!}-\frac{t^{3}}{3!}+\ldots
\end{array}\right]
$$

and the homogeneous response to initial conditions $x_{1}(0)$ and $x_{2}(0)$ is

$$
\mathbf{x}_{h}(t)=\boldsymbol{\Phi}(t) \mathbf{x}(0)
$$

or

$$
\begin{aligned}
& x_{1}(t)=x_{1}(0) e^{-2 t} \\
& x_{2}(t)=x_{1}(0)\left(e^{-t}-e^{-2 t}\right)+x_{2}(0) e^{-t}
\end{aligned}
$$

With the given initial conditions the response is

$$
\begin{aligned}
x_{1}(t) & =2 e^{-2 t} \\
x_{2}(t) & =2\left(e^{-t}-e^{-2 t}\right)+3 e^{-t} \\
& =5 e^{-t}-2 e^{-2 t}
\end{aligned}
$$

The forced state response
Matrix differentiation and integration are defined to be element by element operations, therefore if the state equations are rearranged, and all terms pre-multiplied by the square matrix $e^{-A t}$:

$$
e^{-\mathbf{A} t} \dot{\mathbf{x}}(t)-e^{-\mathbf{A} t} \mathbf{A} \mathbf{x}(t)=\frac{d}{d t}\left(e^{-\mathbf{A} t} \mathbf{x}(t)\right)=e^{-\mathbf{A} t} \mathbf{B u}(t) .
$$

Integration of the equation gives,

$$
\int_{0}^{t} \frac{d}{d \tau}\left(e^{-\mathbf{A} \tau} \mathbf{x}(\tau)\right) d \tau=e^{-\mathbf{A} t} \mathbf{x}(t)-e^{-\mathbf{A} 0} \mathbf{x}(0)=\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau
$$

Because $e^{A 0}=I$ and $\left[e^{-A t}\right]^{-1}=e^{A t}$, the complete state vector response may be written in tow similar forms:

$$
\begin{aligned}
& \mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+e^{\mathbf{A} t} \int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
& \mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau .
\end{aligned}
$$

Example:

Find the response of the two state variables of the system

$$
\begin{aligned}
& \dot{x}_{1}=-2 x_{1}+u \\
& \dot{x}_{2}=x_{1}-x_{2}
\end{aligned}
$$

to a constant input $u(t)=5$ for $t>0$, if $x_{1}(0)=0$, and $x_{2}=0$.

Example: MIMO System

Solution: A set of ODE

$$
\begin{aligned}
\dot{x_{1}} & =a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+b_{11} u_{1}+\ldots+a_{22} x_{2}+\ldots+b_{2 n} x_{n}+b_{21} u_{1}+\ldots+b_{2 r} u_{r} \\
\dot{x_{2}} & =a_{21} x_{1}+a_{2}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}+b_{n 1} u_{1}+\ldots+b_{n r} u_{r} \\
\vdots & \vdots \\
\dot{x_{n}} & =a_{n 1} x_{1}+a_{n} x_{2}
\end{aligned}
$$

$$
\frac{d}{d t}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 r} \\
b_{21} & & b_{2 r} \\
\vdots & & \vdots \\
b_{n 1} & \ldots & b_{n r}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{r}
\end{array}\right]
$$

$\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}$

Output equation

$$
\begin{aligned}
y_{1} & =c_{11} x_{1}+c_{12} x_{2}+\ldots+c_{1 n} x_{n}+d_{11} u_{1}+\ldots+d_{1 r} u_{r} \\
y_{2} & =c_{21} x_{1}+c_{22} x_{2}+\ldots+c_{2 n} x_{n}+d_{21} u_{1}+\ldots+d_{2 r} u_{r} \\
\vdots & \vdots \\
y_{m} & =c_{m 1} x_{1}+c_{m 2} x_{2}+\ldots+c_{m n} x_{n}+d_{m 1} u_{1}+\ldots+d_{m r} u_{r}
\end{aligned}
$$

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & & & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{ccc}
d_{11} & \ldots & d_{1 r} \\
d_{21} & & d_{2 r} \\
\vdots & & \vdots \\
d_{m 1} & \ldots & d_{m r}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{r}
\end{array}\right]
$$

$\mathrm{y}=\mathrm{Cx}+\mathrm{Du}$

Example: Draw a block diagram for the following SISO system

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right] } & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+d u(t)
\end{aligned}
$$

HW. DC Motor

Datasheet

* moment of inertia of the rotor $(\mathrm{J})=3.2284 \mathrm{E}-6 \mathrm{~kg} \cdot \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2$
* damping ratio of the mechanical system (b) $=3.5077 \mathrm{E}-6 \mathrm{Nms}$
* electromotive force constant $(\mathrm{K}=\mathrm{Ke}=\mathrm{Kt})=0.0274 \mathrm{Nm} / \mathrm{Amp}$
* electric resistance (R) $=4$ ohm
* electric inductance (L) $=2.75 \mathrm{E}-6 \mathrm{H}$
* input (V): Source Voltage
* output (theta): position of shaft
* The rotor and shaft are assumed to be rigid

Solution

$$
\begin{gathered}
T \propto i \\
T=K_{t} \mathrm{i} \\
e \propto \dot{\theta} \\
e=b \dot{\theta} \\
J \ddot{\theta}+b \dot{\theta}=K_{t} \dot{i}
\end{gathered}
$$

$$
L \frac{d i}{d t}+\mathrm{RI}=\mathrm{v}-\mathrm{k} \dot{\theta}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
\mathrm{i}
\end{array}\right]= {\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & -\frac{\mathrm{b}}{\mathrm{~L}} & \frac{\mathrm{~K}}{\sqrt{\mathrm{~L}}} \\
0 & -\frac{\mathrm{L}}{\mathrm{~L}} & -\frac{\mathrm{T}}{\mathrm{~L}}
\end{array}\right]\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
\mathrm{i}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{\mathrm{~L}}
\end{array}\right] \mathrm{V} } \\
& \mathrm{y}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
\mathrm{i}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J}=3.2284 \mathrm{E}-6 ; \\
& \mathrm{b}=3.5077 \mathrm{E}-6 ; \\
& \mathrm{K}=0.0274 ; \\
& \mathrm{R}=4 ; \\
& \mathrm{L}=2.75 \mathrm{E}-6 ; \\
& \mathrm{A}= {\left[\begin{array}{lll}
0 & 1 & 0 \\
& & -\mathrm{b} / \mathrm{J} \\
& \mathrm{~K} / \mathrm{J} \\
0 & -\mathrm{K} / \mathrm{L} & -\mathrm{R} / \mathrm{L}
\end{array}\right] ; } \\
& \mathrm{B}= {\left.\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] / \mathrm{L}\right] ; } \\
& \mathrm{C} {\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] ; } \\
& \mathrm{D}=[0] ;
\end{aligned}
$$

```
[y,x,t]=step (A,B,C,D);
plot(t/tscale,y)
ylabel('Amplitude')
xlabel('Time (sec)')
```

© 2020/2021 , Professor Ibrahim Hamarash, PhD. lbrahim.hamad@su.edu.krd

Reading list

Jan Machowski, et. al. (2020). Power System Dynamics, Stability and Control, John Weily and Sons.

Gibbard, M.J., and Pourbeik P., Vowles D. J., (2015). Small Signal Stabilit, Control and Dynamic Performance of Power Systems. Adelaide University Press.

Kwatny, H. G. and Miller K.M. (2016). Power System Dynamics and Control, Berkhauser Press.

Thank you

