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Dynamic Phenomena in Electrical Power Systems
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Classification of Stability in Power Systems
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Mathematical Interpretation of Stability
Example: Second Order System subjected
to a Unit Step Signal

Input signal The System

Typical second order system may be
written in the form of:

YEs) _ W,

R(s) s*+2wn & s+wn?
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A typical Second Order
System

I—- x

X(S)_ 1
F(s) ms*+bs+k

Note: Compare to
determine the values of

w, (undamped natural Y (s)

frequency) and ¢ R(s) . Sr2wn € stwi
(damping ratio)
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If this system is subjected
to a unit step signal, R(s)=1/s

Input signal The System
then, ,
Y() = Zrm s
s s“+2wn € s+wn s2+2wn & s + wn?

Using partial fraction expansion,

Bs+C
SZ +2wn E s+ an Output signal

Y (s) =§+
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By partial fraction expansion, A=1, hence

Y(s) = 1, w * _ 1 Bs+C

2 2 ! 2 2
S St2w ¢stw s S°+2w, ¢ stw

Bs+C W °

— n

2 2 2 2
s“+2w ¢ stw °  s(st2w ¢ stw )

1
S

s+ 8w Ew
2 2 o2 2
s*+2w ¢ stw ° sTH2w, ¢ stw,

Y(s) =

© 2020/2021, Professor Ibrahim Hamarash, PhD. <lbrahim.hamad@su.edu.krd>



Topics in Power System Dynamics, Chapter |

Y( )_1 st &w & W,
> s (s°+2w_ & s+w %) 1 —& 42w €S+w

Y(S) 1 s+ 8w, ) w,
s tEw )2 +w )l 128 (s+Ew )P+ 2

Taking inverse Laplace transform,

¢
J1-¢°

This equation represents the dynamic response (output signal in time domain).
More versions of the equation are available by mathematical re-arrangement of
the equation.

y() =1 — e $“ntcos (w,t) — e ¢“ntsin (w,t)
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( t . ¢ ( t
“n“cos (wy t) \/1__62 “ntsin (w4t)
1- g2
y(t) = —¢?cos (wyt) — ¢ sin (wg4t)} 0
—Zamt §
y(t)=1- Ve {sin (¢) (cos (wd t) — cos (@) sin (wdt)} S 1{_ e
—(w. t

Y(t) — 1= ,—1 — {2 This triangle is introduced
as a mathematical notation
for re-arrangement of the

is i tput signhal equation.
/1 _ ~2\ Thisisanother ouTp g q
1 1-¢ ) version of the

¢ output signal

sin (wd t +tan—
equation

e
(t) =1-
y \/T(Z
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e—(wnt ) /1 _ CZ

y(t)=1-— sin | w, t+tan™ 7

Input signal The System
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. : . : Output signal
Note: The output equation is a sine wave with a variable

amplitude.

© 2020/2021, Professor Ibrahim Hamarash, PhD. <lbrahim.hamad@su.edu.krd>



Topics in Power System Dynamics, Chapter |

error (e) = input - response

= e $“ntcos (w, t) —

Steady State error (e,) (error as
time goes to infinity) is:

e, =lim(e) =0

t— o0

e~ $“ntsin (w, t)

Qutput

Interpretation: there is no deviation
from the reference (unit step signal)

at the end (t=).
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Time domain
specifications

(t, ty t, t, M)
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he effect of £ and w

o) w

R(s) s*+2wn & s+wn?

The system is subjected to a step input yield:

(1)2

Y(s) == * .

2 2
s ("t2w, ¢stw )

Using partial fraction method to find Laplace
inverse of Y(s),

1, A B
Y(S) s (s—s,) T(5—52)
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AT
1 i
o o —

=y
king Laplace inverse for the Y(s),
y(t) =1+ Ae5t + BeS:t
Where,
s; = —(w, +w,\/{?—1

Sy = _Cwn_a)n\/(2 —1

y(t) =14 K e~ 5@ut (e@n/S~1t 4 g=wnS-1ty
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Ouput for different values of §

y(t) =14+ K e $@it (ewn\/(z_lt 4+ e—wm/fz—lt)

Y(s) _ w_°

n

I, 2
R(s) s"t2w, ¢ s+w,

S12 = —§w, £wn,/{* -1

Cases.
a. &>1, b. €=0, c. 0<¢«1, d. €=1,
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Summary and Conclusion

4 Imis)

STABLLE UNSTABLE

LHP RHP

Reds)
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Characteristic equation

Y(s) _ W, * |
R(s) s*+2w & s+w ? Transfer Function

s“+2w,{s+w, *=0 Characteristic equation

s,, = —(w, + wn,/{*—1 Roots of characteristic equation
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v' Stability (Physically)

A system is said to be stable if after the occurrence of
a disturbance has the ability to restore its initial
condition or to reach to a states very close to that of
the original.

v’ Stability (Mathematically)

A system is said to be stable if and only if, all roots of
the characteristic equation lie on the LHS of the
complex plane.
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'ra‘re Variable

Example: RL circuit
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Solution of RL circuit

dl Switeh S
E=RI+L—
R =50
E +
= = RAI) + L(s AT) — Iy) o E=200 it
EfL Iulf'L |
2I) =

s(R/L + s) i R/L + s

E E
I(t) = -+l — 3le i
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State Variable

The state of a dynamic system is the smallest set of
variables called ( ) such that the knowledge
of these variables at and the input applied for
completely determine the behavior of the system for any
Time

If n state variables are needed to completely describe
the behavior of a given system, then these variables can
be considered the n components of a vector called
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The State Space Mathematical
model
Consider a system is described by the 2nd

order differential equation

. d?y(t) g dy(t)
L a2 2 dt

+ azy(t) = u(t)

Let
Yt —X1
y(t) = x,(t) = x,
a a; 1

%, (8) = () = — a—sz(t) — 2 Hie + U

Example of a 2nd order system
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State Variable

y() =& (t) = x,

. N a, a; 1
x,(t) = y(t) = —a—xz(t) ——%® + a—u(t)
1 1 1
. 0 1 N 0
=z oo
*2 a @4 i a,

DL 0[]

© 2020, UKH, Dr.Ibrahim Ismael Hamarash, ibrahim.hamad@ukh.edu.krd, ibrahim.hamarash@gmail.com


mailto:ibrahim.hamad@ukh.edu.krd
mailto:ibrahim.hamarash@gmail.com

State space model

x (t) = Ax(t) + Bu(t)
y(t) = cx(t) + D u(t)
The first and the second equations

are known as state equation and
output equation respectively
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Example: Find the eigenvalues

[f1]=[‘3 2] (1+2)(21+1)=0

-1 0 The eigenvalues are 4, =-2and 4, =-1

Characteristic equation is

/1[1 ]—[A] =) Imas“:"w.vc:ompIex plane
1 0] [=3 2 i
- =) :
0 A| [-1 0 )
ﬂ‘+3 _2_0 Y3 3 3ﬁ 1 2 3 4 5 & rResl
1 A
A +31+2=0 o

'-
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|

Example: Consider a 2-dimensional system with the following system and input
matrices.

=3 _3] te1=[g] sl o

(s[zl-m)=[; -

s+3_

sir]-fa] sT43s+2[ -2 s
The transfer function of the system is

G()=[c]G[7]-[aD ' [B]
[G(S)]=M[H3 ']['] s+3

s+3s+2| -2 sllo]|” (s +1)s+2)
The denominator of the transfer function is
|s[l]-[A]|=S2 +354+2=(s+1)s+2)

The roots of the characteristic equation, i.e., the eigenvalues are -1 and -2 and therefore,
the system is stable.

(lr)-[a) = 26UlD 1 [H3 l]
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Solution of state space equation
a. Homogenous state response

The state-variable response of a system described by

x(t) = Ax(t)

with zero input, and an arbitrary set of initial conditions x(0)
is The solution of the set of n homogeneous first-order
differential equations.
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To derive the homogeneous response x,(t), we begin
by considering the response of a first-order (scalar)
system with state equation

x (t) = ax(t)
With initial condition x(0). In this case the

homogeneous response x,(t) has an exponential
form defined by the system time constant 1=-1/q, or

z(t) = e*z(0).
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The exponential ferm es® may be expanded as power
series to give,

- a‘t* a°t® aktk N
rp(t) = |1+ at + 5 - 3 + ...+ x + ... 2(0),
The above solution is true for higher order systems,
say nthorder system to be,
A2t2 A3t3 Aktk

x,,,(t)=(I+At| o1 + 3 S I —|—...)x(0)
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The system homogeneous response x,(t) may therefore be
written in terms of the matrix exponential

A‘.Zt'z 5 A.'i.lt."l i 5 Ak{k

At _
e =1+ At+ T 3 I

+ ..
The solution is often written as,
x;(t) = e**x(0)

X (t) = ©(t)x(0)

®(1) is called state transition matrix.
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Solution: The system matrix is

o1 2}

From Eq. (9) the matrix exponential (and the state transition matrix) is

d(t) = e

5] gt ¥ T

10+—2 Of+ 40ﬁ
0 1 i =1 177 | <5 1|9

1 -8 @|¥
v 1 3+
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i 42 83 f
~ 1—2t+§—§+... 0
i 3tz T8 ek 2 3
i = —T‘Fgﬁ‘... — +§—i+...-
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and the homogeneous response to initial conditions x;(0) and z9(0) is
xp(t) = ®(t)x(0)
or

r1(t) = z1(0)e*
zo(t) = x1(0) (e_t — e—zt) + 29(0)e ",
With the given initial conditions the response is
z1(t) = 2%
zo(t) = 2 (e_" — 6_2") + 3e~t

Be~t — et

© 2019, UKH, Dr.lbrahim Ismael Hamarash,


mailto:ibrahim.hamad@ukh.edu.krd
mailto:ibrahim.hamarash@gmail.com

The forced state response

Matrix differentiation and integration are defined to be
element by element operations, therefore if the state
equations are rearranged, and all terms pre-multiplied by
the square matrix e-At:

e Ax (t) — e MAx(t) = % (P o (t)) = e ABu(t).
dt
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Integration of the equation gives,

t d t
/ (e7A7x (7)) dr = e™Ax(t) — eA%%(0) = / e A"Bu(r)dr
0

dr 0
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Because eA0=I and [e-At]1= eAt. the complete state
vector response may be written in tow similar forms:

t
%(t) = cAtx(O)-l—(.’.At/ e ATBu(T)dr
0

L
x(t) = eAtx(0)+ / At Bu(r)dr.
JO
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Example:

Find the response of the two state variables of the system

Ty = —2r1+u
Tog = I — T9.

to a constant input u(t) =5 for £ > 0, if 2,(0) = 0, and z9 = 0.
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Example: MIMO System
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S ution: A set of ODE

Ly =

d
dt
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Cind'n
Cap iy
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- A

xmple: Draw a block diagram for
the following SISO system

I J.:I ‘ _ iy (o ] {,rl 4 [h, \H[H
Lg | Uy a2 L ‘!iu

gty = [ e r][:l + duft).
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- . DC Motor

Datasheet

* moment of inertia of the rotor (J) = 3.2284E-6 kg.m”"2/s"2

* damping ratio of the mechanical system (b) =3.5077E-6 Nms
* electromotive force constant (K=Ke=Kt) = 0.0274 Nm/Amp

* electric resistance (R) =4 ohm

* electric inductance (L) =2.75E-6 H

* input (V): Source Voltage

* output (theta): position of shaft

* The rotor and shaft are assumed to be rigid
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Solution
J=3.2284E-6;
T i b=3.5077E-6;
. K=0.0274;
: L=2.75E-6;
e X 0
_ g A=10-1>10
.? l{@ 0 -b/J K/J
J 6 +b 0 = K;i 0~ =K/Liy~R/L:1;
2 0 g O s Y 5 -
ai — vk € c=[1 0 0];
L—+RI=vkd o e

ly,x,t]=step(A,B,C,D);
plot (t/tscale,y)
ylabel ("Amplitude')
Xlabel ("Time (sec)')
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Reading list

Jan Machowski, et. al. (2020). Power System Dynamics,
Stability and Control, John Weily and Sons.

Gibbard, M.J., and Pourbeik P., Vowles D. J., (2015). Small
Signal Stabilit , Control and Dynamic Performance of Power
Systems. Adelaide University Press.

Kwatny, H. 6. and Miller K.M. (2016). Power System Dynamics
and Control, Berkhauser Press.

© 2020/2021, Professor Ibrahim Hamarash, PhD. <lbrahim.hamad@su.edu.krd>



Topics in Power System Dynamics, Chapter |

Thank you
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