
Python Programming

PhD Students

Department of Physics

Python loops and loop control statements

Dr.Isam Khalil Abdullah

Python loops:This is our first control structure. Ordinarily the computer starts with the first line and then
goes downfrom there. Control structures change the order that statements are executed or decide if a
certain statement will be run. A loop statement allows us to execute a statement or group of statements
multiple times. Generally, Python programming language provides following types of loops to handle
looping requirements.

• While loop : Repeats a statement or group of statements while a given condition is TRUE. It tests the
condition before executing the loop body

Syntax

The syntax of while loop in python programing is:

while expression:

statement(s)

Here, statement(s) may be a single or a block of statements. The condition may be any expression, and true

is any non-zero value. The loop iterates while the condition isTrue.

When the condition becomes False, program control passes to the line immediately following the loop.

Flow Diagram

When the condition is tested

and the result is false, the

loop body will be skipped

and the first statement after

the while loop will be

executed.

Example:

a = 1

while a < 6:

a += 1

print (a)

Same as a = a + 1

The output will be

2

3

4

5

6

Example

count = 0

while (count < 9):

print 'The count is:', count

count = count + 1

print "Good bye!“

The output is:

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

Now that we have while loops, it is possible to have programs that run forever.An easy way to do this is to
write a program like this:

Example:

while 1 ==1:

print ("Help, I'm stuck in a loop.")

The output here is:

Help, I'm stuck in a loop

Help, I'm stuck in a loop

…

….

….

The way to stop it is to hit the Control (or Ctrl) button and `c' (the letter) at the same time. That will kill
the program

Meaning Math Symbol Python Symbols

Less than < <

Greater than > >

Less than or equal ≤ <=

Greater than or equal ≥ >=

Equals = ==

Not equal ≠ !=

Conditional Expressions in Python

Note:

• There should not be space between the two-symbol.

• Single equal sign is not used for check of equality because single equality

is already used for assignments in Python.

• Using else statements with while:
When we use the else statement with a while loop, the else statement is executed when the condition becomes False.

The following example illustrates the combination of an else statement with a while statement that prints a number as
long as it is less than 6, otherwise else statement gets executed.

Example:

count = 0

while count < 6:

print count, " is less than 6"

count = count + 1

else:

print count, " is not less than 6“

1 is less than 6

2 is less than 6

3 is less than 6

4 is less than 6

5 is less than 6

6 is less than 6

7 is not less than 6

for loops in Python

Afor loop is used to repeat a piece of code n number of times. The for loop is usually used with a list
of things. The basic syntax for the for loop looks like this

for item in list:

print item

Example

#Creating a list

#Here, i is the variable used to refer to individual items in the list

x = [2, 8, 512]

for i in x:

print i

• Every for loop must reference a list or a range.

• Every for loop must close with a colon.

• Code to be executed as part of the for loop must be indented by four spaces (or one press of the
Tab key).

• To use individual items in the list or range, we have to create a variable (item in syntax above or
iterating_var in the syntax below). There’s no need to declare this variable beforecreating
the for loop. You can also reuse the same variable for other for loops.

Flow Diagram

• for loop in Python:
Executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.
It has the ability to iterate over the items of any sequence, such as a list or a string

Syntax

for iterating_var in sequence:

statements(s)

Here, each item in the list is assigned to iterating_var, and the statement(s) block is executed until the
entire sequence is exhausted.

Example

for letter in 'Python':

print 'Current Letter :', letter

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Example
f = ['banana', 'apple', 'mango']

for fruit in f:

print 'Current fruit :', fruit

print "Good bye!”

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Example

string = "Hello World"

for x in string:

print x

Example

c = ['hey', 5, 'd']

for x in c:

print x

Using else Statement with Loops

When we use the else statement with a for loop, the else statement is executed when the loop has exhausted
iterating the list

Example

for x in xrange(5):

print x

else:

print 'Final x =‘ , x

0

1

2

3

4

Final x = 4

Python nested loop

Python programming language allows to use one loop inside another loop. In Python, these are heavily
used whenever someone has a list of lists - an iterable object within an iterable object.

Syntax

for iterating_var in sequence:

for iterating_var in sequence:

statements(s)

statements(s)

Python nested for loop

The syntax for a nested while loop statement in Python programming language is as follows

while expression:

while expression:

statement(s)

statement(s)

Python nested while loop

Note: you can put any type of loop inside of any other type of loop. For example a for loop can be
inside a while loop or vice versa.

Python loop control statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic

objects that were created in that scope are destroyed.

• break statement

The break statement in Python terminates the current loop and resumes execution at the next statement. In other

words, the break statement is used to exit a for or a while loop. The purpose of this statement is to end the execution of

the loop (for or while) immediately and the program control goes to the statement after the last statement of the loop.

Syntax

while (expression1) :

statement_1

statement_2

......

if expression2 :

break

for iterating_variable sequence :
statement_1
statement_2

………….
if expression3 :

break

Example

for letter in 'Python':

if letter == 'h':

break

print 'Current Letter :', letter

The output will be:

Current Letter : P

Current Letter : y

Current Letter : t

Example

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

sum = 0

count = 0

for x in numbers:

sum = sum + x

count = count + 1

if count == 5:

break

Print "Sum of first ",count,"integers is : ", sum

Here the print statement display the sum of first five elements.

Sum of first 5 integers is : 15

Example

sum = 0

count = 0

while(count<10):

sum = sum + count

count = count + 1

if count== 5:

break

print "Sum of first ", count, "integers is : ", sum

The output is:

Sum of first 5 integers is : 10

Example

num = 10

while num > 0:

print 'Current number value :', num

num = num -1

if num == 5:

break

print "Good bye!“

The output is:

Current number value : 10

Current number value : 9

Current number value : 8

Current number value : 7

Current number value : 6

Good bye!

• continue statement

The continue statement is used in a while or for loop to take the control to the top of the loop without executing

the rest statements inside the loop. In the other wards, causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

Example

for letter in 'Python':

if letter == 'h':

continue

print 'Current Letter :', letter

The output here is:

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

Example

num = 10

while num > 0:

num = num -1

if num == 5:

continue

print 'Current number value :', num

print "Good bye!“

The computer display this output:

Current number value : 9

Current number value : 8

Current number value : 7

Current number value : 6

Current number value : 4

Current number value : 3

Current number value : 2

Current number value : 1

Current number value : 0

Good bye!

Example

for letter in 'geeksforgeeks':

if letter == 'e' or letter == 's':

continue

print 'Current Letter :', letter # prints all letters except ‘e ‘ and ‘s’

Current Letter : g

Current Letter : k

Current Letter : f

Current Letter : o

Current Letter : r

Current Letter : g

Current Letter : k

Example

for letter in 'geeks for geeks':

if letter == 'e' or letter == 's':

continue

print 'Current Letter :', letter

Look the change in output

Current Letter : g

Current Letter : k

Current Letter :

Current Letter : f

Current Letter : o

Current Letter : r

Current Letter :

Current Letter : g

Current Letter : k

• pass statement

Pass is a null statement. The difference between a comment and pass statement is that, while the
interpreter ignores a comment entirely, pass is not ignored. That means nothing happens when it
executes.

Example

for letter in 'Python':

if letter == 'h':

pass

print 'This is pass block'

print 'Current Letter :', letter

print "Good bye!“

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good bye!

Example

number = 0

for number in range(10):

number = number + 1

if number == 5:

pass # pass here

print('Number is ' + str(number))

print('Out of loop')

Number is 1

Number is 2

Number is 3

Number is 4

Number is 5

Number is 6

Number is 7

Number is 8

Number is 9

Number is 10

Out of loop

count = 0

while (count < 9):

print 'The count is:', count

count = count + 1

print "Good bye!“

The output is:

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

Questions in python

loop:

1- Change the following Python code from using a while loop to for loop:

x=1
while x<10:
print x,
x+=1

2- x=10
while x>5:

print x
x-=1

3 Change the following Python code from a for loop to a while loop:
for i in range(1,50):

print i,

4 What would be printed from the following Python code segment?
for i in range(20,0,-2):

print I

What would be printed from the following Python code segment?
for x in range(1,6):

for y in range(1,x+1):
print x,' ',y

