College of Agriculture Engineering Sciences

Soil and Water Department

3rd stage (Irrigation System)

Mr. Ismael O. Ismael

Lecture (6) 2022-2023

Irrigation Efficiency and Uniformity Distribution

Irrigation Efficiency or (IE)

The net amount of water added to the root zone is divided by the amount of water taken from some source.

> Water applied is never 100% beneficially used.

There is always some loss

- Evaporation from soil and leaf surface
 - ✓ Evaporation losses can range from 1% to as much as 30%
- Spray loss from water stream
 - ✓ Losses range from 1% to 4%
- Surface runoff
- Deep percolation (water pushed past the root zone)

Highly Irrigation Efficiency dependent on:

- Irrigation System Design
- Water Management
- Maintenance and Repairs
- Environmental Considerations
- Technology and Automation

Calculating Irrigation Efficiency

$$IE = \frac{d}{Vw} \times 100$$

IE = irrigation efficiency, **d** = Water stored in the rootzone m^3 , Vw = total volume of water applied m^3

Example (1) Calculate the irrigation efficiency if the water irrigation stored in the rootzone for an area of 1 ha is 20.3 mm, and The total water volume delivered during irrigation is 280 m^3 .

Distribution Uniformity or DU

Distribution Uniformity is the measure of how uniformly the water is applied when irrigation the area.

Steps of Measuring Distribution Uniformity (DU)

- Sprinklers
- Catch can evaluation
 - Place catch cans (minimum of 24) in an equal grid spacing
 - Run sprinklers to gain a representative sample
 - Measure and record the amount of water collected in each catch can
 - Multiple tests give more accurate results
 - Near where the main line branches into laterals
 - In the middle of the field
 - At the ends of the laterals

Test Locations

Place all of the numbers in order from highest to lowest

122 ml		Average of the lowest $\frac{1}{4}$	X 100
119 ml	D0 =	Average of all	A 100
118 ml			
118 ml			
115 ml			
110 ml			
108 ml			
105 ml			
105 ml			
104 ml			
100 ml			
99 ml			
99 ml			
97 ml			
96 ml			
96 ml			
96 ml			
92 ml			
91 ml			
90 ml			
90 ml			
88 ml			
88 ml			
87 ml			

Drip or Micro Sprinklers

Emitter Uniformity

- Since we are not covering the entire ground surface, we only measure the water that is emitted during a certain time.
- > Measure the water from the emitter during a given time
- Record the amount of water collected from each emitter
- Calculate emitter uniformity using the same method as used with the sprinkler catch can collection

Example 2:

Calculate the uniformity distribution for the drip irrigation if you have the below data:

57, 53, 64, 47, 62, 48, 50, 61, 57, 61, 58, 57, 55, 53, 51, 50,