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Abstract

An integral equation is a type of mathematical equation where the
unknown function appears under an integral sign. Integral equations
arise in various fields of mathematics, physics, engineering and other
sciences

In this report we studied the integral equations. Also we classified the
integral equation such as volterra fredholm integral equations, linear
and non-linear integral equations homogeneous. Secondly we
converted differential equation into integral equation. Finally some
examples were given to illustrate these methods.
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CHAPTER ONE

INTRODUCTION

Integral equations are equations in which the unknown function
appears inside a definite integral. They are closely related to
differential equations. Initial value problems and boundary value
problems for ordinary and partial differential equations can often be

written as integral equation.

And some integral equations can be written as initial or boundary
value problems for differential equations. Problems that can be cast in

both forms are generally more familiar as differential equations.

Many applications are best modeled with integral equations, but most
of these problems require a lengthy derivation. A relatively simple
example is the model for population dynamics, with birth and death
rates that depend on age. This model was first formulated by A. j.
lotka 1922, who is best known for lotka-volterra predator-prey

population model. Krivan.v 2007

Integral equations are also important in the theory and numerical
analysis of differential equations, this is where the mathematics
student is most likely to en counter them. For example, picard's
existence and uniqueness theorem for first-order initial value problems
(murray F.J and miller K.S 2013) is conveniently proved using
integral equations, the proof is constructive and can be used to

formulate a method for numerical solution of initial value problems.

Systematic study of integral equations is usually undertaken as part of

a course in functional analysis or applied mathematics. This advanced
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setting is required for a full appreciation of integral equation theory
but it makes the subject accessible. By constrast, several of the
important results in the theory of integral equations can be
demonstrated using nothing more than elementary analysis, and the
elaboration of this statement is goal of the present discussion. In fact,
all but one of the results presented here will be derived using nothing
more than the material presented in a standard advanced calculus

course.

Concepts that play an important role in the theory and application of

continuous mathematics.



CHAPTER TWO

BACKGROUND

Definition (Integral equation)2.1 Colton, D. and Kress, R., 2013

An equation is called an integral equation in which an unknown
function is to be determined appears under one or more integral signs.

Naturally in such an equation these occur other terms as well.

Forexamplefora < x <b,a <t < b, the equations

9() = [} K(x gt (21.0)
g(x) = [T K(x,t)g(Ddt (2.1.2)
g() = f) + 4 [, K(x,)g(t)dt (2.1.3)
gx) =) + L[ K(x, ) g(t)de (2.1.4)
900 = & J; K(x, 0[g(O]*dt (2.1.5)

Where the function g(x) is the unknown function while all the other
function are known and £, a and b are constants, are integral equation
equation. These equation may be complex-valued functions of the of

the real variables x and t.
Definition(Linear and non-linear integral equations) 2.2

An integral equation is equation is said to be a linear if only linear
operations are performed in it upon the unknown functions. An
integral equation which is not linear is known as non-linear integral

equation.

For example, the integral equations(2.1.1 )to (2.1.4) are linar while

(2.1.3)is not linear linear the most general type of linear integral
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equation is of the form

a(x) g(x) = f(x) + £ [, KCx, O)[g(®)]de (2.2.1)

Where the upper limit may be either variable xor fixed. The functions
f, a and K are known function, while g is to be determined ; £is a
non-zero real or complex parameter. The function K (x, t) is known as
the kernel of the integral equation .the integration extends over the

domain Q of the auxiliary variable t.

The integral equations, which are linear, involved the linear operator

L{Y=f, Ko o) {} ot

Having the kernel K (x, t). It satisfies the linearty condition

L {c1gl(t)+c292(t)}=c1L{gl(t)}+c2L{g2(t)}

L{g(D)}= fQK (x, t)g(t) dt and c1,c2 are constants.

Linear integral equations are classified into two basic types.
Definition (Voltera Integral Equation) 2.3 Miller,R.K,1975

An integral equation is called a volterra integral equation if the upper

limit of integration a variable e.g.

a(x) g(x) = f(x) + £ K(x,t)g(t)dt (2.3.1)

Here the constant, f(x), a(x) and K(x,t) are known function while
g(x) is unknown function, non-zero real or complex parameter.

Equation ( 2.3.1) is a volterra integral equation of ird kind.

(@) When a = 0, the unknown function g appears only under integral

sign and nowhere else in the equation (2.3.1), we get

9() = f() + £, K(x,)g(t)dt =0 (232)
4



(2.3.2) is called the volterra integral equation of first kind.

(b)When a = 1, the equation (2.3.1 ) involves the unknown function
g, both inside as well as outside the integral sign, then
g(x) = f@) + L[ K(x,)g(©)dt
(2.3.3)
Is called the volterra's integral equation of second kind.

(c) When a = 1, f(x)=0, the equation (2.3.1)reduces to

g(x) = £ K(x,t)g(D)dt (2.3.4)
Is called the homogeneous voltera's integral equation of second
kind.

Definition (fredholm integral equation) 2.4 Weisstein, E.W., 2002

An integral equation is said to be a fredholm integral equation if the

upper limit of integration is fixed , say b, e.g.,
a(x) g(x) = f() + L[ K(x,)g(t)dt (2.4.1)

Where a and b are both constants, a(x), g(x) and K (x, t) are known
functions while g(x) is unknown function and £ is non-zero real or
complex parameter. Equation(2.4.1 )is known as fredholm integral

equation of third kind.

() When a = 0,equation(2.4.1)contains unknown function g only

under the integral sign, then
f() = «f, K(x,)g(t)dt = 0 (2.4.2)

Is called fredhoolm integral equation of first kind.

(b)When a = 1, equation (2.4.1)involves the unknown function g
both inside as well as outside the integral sign, then



b
900 = £ + £ [ K(x0g(0)dt
a
Is known as fredholm integral equation of second kind.

(c) When a = 1,f(x)=0 equation (2.4.1) reduces to

b
glx) = Af K(x,t)g(t)dt

Is known as the homogenous fredholm integral equation of

second kind.

Example 2.5: Show that the function g(x)=1 is asolution of the

fredholm integral equation g(x) + fglx(ext —1Dgt)dt =e* —x

Solution. Substuting the function g(x)=1 in the L.H.S. of the given

equation, we have

1

LHS=1+ [ x(e* — 1)g()dt =1 +x [%xt - t]
0

=14+e*—x—-—1=e*—-x=RH.S.
Hence g(x)=1 is a solution of the given integral equation
Example 2.6 : define integral equations of fredholm and volterra

types. That the Show function g(x)=xe* Is a solution of the volterra

integral equation

g(x)=sinx + 2 fgc cos(x — t) g(t) dt
Solution: substituting function g(x)=xe*in the R.S.H. of the given
integral equation , we have
R.H.S. =sin x+2f5‘ cos(x — t)tetdt
—_) X t . X t .:
=sinx+2[cosx [ te‘cost dt+ sinx [ tesint dt]
s et . x 1 rx t .
= sinx +2cosx [{t? (cost + Slnt)}o — Efo e‘(cost + sint )dt] +
6



t X
2 sinx [ {t% (sint — cost)} - %fox et(sint — cost)dt
0

ax

a? + b2
ax

since J e cosbx dx = [a cos bx + b sin bx]

(

f e sinbx dx = [asinbx —b cos bx |

a? + b?
=sinx + 2 [cosx{% xe*(cos x + sin x)} + sinx {%xex(sinx —
X

1 1 : :
cosx)} — Ecosx—{zet(cost +sint + sint — cos t} —
0

1 . 1 ) ) X
Esmx{get(smt —cost —cost — smt} ]
0

=sinx + xe* (cos?x + sin?x) — cosx (e* sinx) + sinx(e* cosx —
1) = xe”

=L.H.S

Hence g(x)=xe* is a solution of the given integral equation

2sinx

is th
ez S e

Example verify whether the function g(x) =1 —

solution of the integral equation

glx) — fncos(x + t)gt(t)d =1
0

Solution. We have

[ cos(x + )g(t)dt = [ cos(x +¢) [1 -

2sinx ]
[1-(7/2)]

2 f: cos(x + t)sint dt

1-(3)

=f:cos(x +t) —

. . 2 T . . . .
:—smx—smx——[l ”]fo cosxcostsint —-sinxsintsint dt
2

. . 2 T sin 2t . cos(t—x
=—smx—smx—mfo COSX*T—[Slnt ( ( ))+
2

2
cos (x+t)
0 |t

sin(x+2t) sin(x—Zt)) 1(sinx sin(x—2t)
2

. 2 |l
=—251nx+@f0 [E( 2 2\ 2 2



sin (x+2t)+sinx)] dt
2 2

+

= —2sinx + [12n] J-On [sin(z+2t) _sin(x-2t)  2sinx n sin(x—2t)
2

2 2 2

sin(x+2t)

=

= —2sinx +[12fz]fon[sin(x + 2t) —sinx ]dt
2

T

—tsin x]

—2sinx + 2 [_ cos(x+2t)
[+-3] 2

0

. 1 CoSs Xx COoS X
=—2sinx + [

= — + m sin x]
- L 2 2

. 1 .
= —2sinx + —=sinx

Therefore 1+f0” cos(x + t) g(t)dt # g(x)

Thus g(x) is not a solution of given integral equation.

Example .verify that the given function g(x) = is a solution

(1+x2)%/2

of the integral equation

X
3x + 2x3 3x +2x3 —t

= — t)dt
90 = 37577y R DA
0
Solution. Substuting the g(x) = —=—=— in the R.H.S. of given
(1+x2)°/2
equation, we have
R.H.S.
_ 3x+2x3 fx 3x+2x3-t t dt
_3(1+x2)2 0 (1+x2)2 '(1+t2)5/2
_ 3x+2x3 fx 3x+2x3 t fx 1 t?
T 3(1+x2)2 0 (14x2)2’ (1+t2)5/2 0 (1+x2)2'(1+t2)5/2



_ 3x+2x3 3x+2x3 1 x¢ 1 t3 x
3(1+x1)?  3(1+x2)2 " [(1402)"2] | 3(1+x)? " [(1412)72

0
2 2 2
Hsince L dts _ tan” 9 sec’f do,t = tan0,dt = sec’* 6 do =
0 (1+t2)°/2 sec5 6
3
[ sin? 6 cos 8dO = sin® 0 = t—3]]
(1+t2) 72

_ 3x+2x3 3x+2x3 x3 _ 1 x3
T3(1+x2)2 | 3(1+x2)2 [(14x2)%2 3(1+x2)2 " (14x2)%2
_ 1 3x+2x3 x3 . x _
_3(1+x2)3/2 [(1+x2)2 (1+x2)2] - (1+x2)5/2_L'H'S'

Thus g(x) = —=——— is a solution of the given integral equation.
(14x2) 72



CHAPTER TWO

APPLICATION TO ORDINARY DIFFERENTIAL EQUATION

Definition(Initial value problem)3.1 (nedialkov,N.S., Jackson, K.R
and Corliss, G.F., 1999)

When an ordinary differential equation is to be solved under
conditions involving dependent variable and its derivative at same
value of independent variable , then the problem under consideration

Is said to be an initial value problem.

Relationship between a linear differential equation and a volterra
integral equation .method of converting an initial value problem

to a volterra integral equation 3.2
Consider the differential equation of order n as

dny dn—zy

i al(x)% + a,(x) g T e +a,(x)y = f(x) (3.2.1)
With the initial conditions

y(a) = co,y' (@) =1y, vV Ha) = ¢y (3.2.2)
Where the functions a,(x) , ... ... ,an(x) and f(x) are defined and

continuous in a<x<b . in order to reduce the initial value
problem(3.2.1) — (3.2.2) to the voltera integral equation. We introduce
an unknown function g(x) . thus we take
4y _ (3.2.3)
—on = g(x) 2.
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Integrating both sides of equation (3.2.3) with respect to 'x' from a to x

using the initial condition (3.2.2) , we find that

dn
deL 1

= [T g(©)dt +cp_y (3.2.4)

Integrating again equation (3.2.4) with respect to 'x' from a to x and
using (3.2.2) we have

Zx; > =/, g(D)dt® + (x — A)cpq +Cns (3.2.5)
or
Zx; > =/, (x —Dg®)dt + (x — a)cn_1 +Cpey (3.2.6)

Integrating equation (3.2.5) again with to "x" from a to x and using
(3.2.2) we have

dn
dxn 3

(x— a)1

= [FgOdt’ + L, +

Cn— 2+Cn 3

or

n—-3 1
d y=f"(x t) (t)dt+(x f‘) €t +(’“ “) Cry +Cps (327)

deL—3 a
And so on finally we arrive at

(x—a)"2 (x—a)*3

dy _ CO"2 n)dt +

dx  (n-2)i —2yi Cn-1 T g Cn2 Tt

(x—a)c; + ¢ (3.2.8)
. (x—t)” 1 )n 1 (x_a)n—z

y = D (t)dt+ D Cn—1 +—(n_2)l_ Cpnog + -+

(x—a)c; + ¢ (3.2.9)

Multiplying(3.2.4),(3.2.5),......,(3.2.8)and(3.2.9)by
1,9 (x), ....,an—1(x) anda™(x) respectively and adding , we get

— + al(x) e AR v ta,(0)y = glx) + [Cn—l a;(x) +

_\n—-1
{(x —@)ens + ono Jap (1) + {8

co } @n(0) + [ ay(x) + (x — ey (x) +

Cpe1 +o+(x—a)c, +

(x t)

az(x) + -+

11



_\n-1
2 an(0)] g0t

f() = g() +h(x) - [ K(x,Dg ()t (3.2.10)
Where we have used (3.1) and assumed the following :

(JC a)n 1

h(x) = C'Yl—l al(x) + e + CTl 1 (n 1)[

a, (x) (3.2.11)

and

K6 8) = = [0,(0) + (x = 9a,(0) + -+ S0 0, ()]

(x—t)k-1
- 00 o (32.12)
Again let f(x) — h(x) = 0(x) (3.2.13)

Using (3.1.13) , (3.1.10) reduced to

gx) =00 + [ K(x,t)g(t)dt (3.2.14)
Which required volterra integral equation of second kind .
Particular case:

Consider the linear differential equation of second kind

=24 al(x)% +a,(x)y = f(x) (3.2.15)
With initial conditions y(0) = ¢, and y'(0) = ¢, (3.2.16)
Taking 22 = g(x) (3.2.17)

Integrating both sides of equation (3.2.17)with respect to 'x' from 0 to
x and using initial condition (3.2.16) we find that
2= [Tg®dt+c (3.2.18)

dx

And

12



y = f;‘(x —t) g(t) dt + c,(x) + ¢ (3.2.19)

Using equation (3.2.17) , (3.2.18) and (3.2.19) in (3.2.15) , we have

g +a;O[fS g dt + ¢, |+ @[ [ (x =) g(®) dt + ;) + ¢ | =
f(x)

Or

g(x) + fox[a1(x) +a,(x) + (x — O)]g@®)dt = f(x) — c1a,(x) — ¢yxa, (x) —

Coaz(x)

Or

g(x) = 0(x) + [, K(x,0)g(t)dt

Where K(x,t) = —[a;(x) + a,(x) + (x — t)]

B(x) = f(x) — c1a;(x) — c1xa,(x) — cay(x)

Whichb representsthe volterra's integral equation of the second kind.

Ilustrative examples

Example: 3.3 from an integral equation corresponding to the

2
differential equation % + x% +y = 0 with the initial condition

2
y(0) =1,y (0) =0
Solution. Consider % =g(x) (3.3.1)

Integrating both side with respect to 'x' from 0 to x and using y'(0)=0 ,

dy _ rx
we have —= = Jy g®dt (3.3.2)

Integrating both sides with respect to 'x' from 0 to x using (3.3.1) and

y(0)=1 we get

y=1+ [ (x—tg®dt (3.3.3)

From the relations (3.3.1)-(3.3.3), the given defferential equation
reduces to

13



ge) +x [5 gdt +1+ [ (x — ) g()dt = 0
Or g(x) + 1+ [ (x + x — ) g(t)dt
Or g(x) = —1— [, (2x — ) g(t)dt = 0
Which is the required voltera integral equation of second kind.

Example 3.4 : from an integral equation corresponding to differential

2
equation % +y=-cosx;y(0)=0,y'(0)=1.
. . dzy
Solution: consider = g(x) (3.4.1)

Integrating (3.4.1) with respect to 'x' from 0 to x and using initial
conditions y(0) = 0,y'(0) = 1, we get

dy _ X _ x
—=1+ fo gt)dt andy = x + fO (x —t)g(t) dt

2
Substuting the values % and y in the given integral equation , we get

gx) +x + f;c(x —t)g(t) dt = cosx
g(x) = —x + cosx — fox(x —t)g(t) dt

Which represents a volterra's integral equation of second kind.

2
Example 3.5 : convert the differential equation %— 3%+ 2y =

4 sinx with initial conditions y(0) = 1,y'(0) = —2 into volterra's

integral equation of second kind.
Solution : consider% = g(x) (3.5.1)

Integrating with respect to 'x' from 0 to x , and using the initial

conditions given with the problem , we find that that

dy__ X
—=-2+[ g dt
Or

y=1-2x+ fox(x —t) g(t) dt
14



2
Substuting, the values of % ,Z—f: and y in the given differential

equation, we find that

g() = 3[-2+ [T g®)dt] +2[1 - 2x + [ (x — Dg(®)dt | =

4sinx

or

g(x) =4sinx +4x — 8 + f;C(B —2x + 2t)g(t)dt

Which represents the volterra's integral equation of second kind.

Example 3.6: from an integral equation corresponding to the

2

differential equation == — sinx 2 + e*y = x , with initial condition

y(0) =1,y'(0) = -1
Solution : suppose that% = g(x) (3.6.1)

Integrating (3.6.1) with respect to 'x' , from 0 to x , and using y'(0) =
-1,

We find that 2 = —1 + [ g(¢) dt (3.6.2)

Integrating again (2.6.2) with to 'x' from 0 to x and y(0) = 1

We have
y=1-x+[ (x—-0g®)dt (2.6.3)
Substuting, the values of % ,% and y in the given differential

equation, we have

g(x) —sinx [-1+ [T g(®)dt |+ e*[1—x+ [[(x —t) g(t)dt] =
X

Org(x) = x —sinx —e* (1 —x)+f(fsinx g(t) dt —

15



Jy e (x — g (t)dt
Or
gx)=x—sinx—e*(1—x)+ fgc{sinx —e*(x—1t)} g(t)dt

Which is required volterra integral equation of second kind.

Example 3.7: reduce the initial value problem to volterra integral

3 ! n
equation of second kind. % —2xy =0,y(0) = % ,y(0) =y (0) =

1.

Solution. Consider % = g(x) (3.7.1)

Integrating with respect to 'x' from 0 to x, and using the initial

conditions given with the problem , we have

dZ
==, 9®dt+1
2= [“x - t)g(®)dt +x +1

_x (x—t)? x? 1
y=J, 5 9@®dt+ - +x+2
2
Substuting the values of % and y in the given differential equation ,

we find that

(x—t)?

x x2 1
g(x) —Zx[fo - g(t)dt+?+x+z] =0

(x—t)?
2!

Org(x) =x(x+1)*+ f(f g®)dt

Which represents the volterra's integral equation of second kind .

16
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