
 

 
 
 
 
 
 

Exact and numerical solution of 

integral equation 

Research project 

Submitted to The Department of Mathematics In Partial Fulfillment Of 

The Requirements For The Degree Of BSc. In MATHEMATICS 

 

Prepared by: 

Eman Jawdat Saber 

 

Supervised by: 

Assist.prof: 

Dr.Ivan subhi Latif & Dr.Paxshan Muhammad Amin 

 

April-2023 



ii 
 

CERTIFICATION OF THE SUPERVISOR 
 

 

 I certify that this work was prepared under my supervision at the 

Department of Mathematics /College of Education/ Salahaddin 

University- Erbil in partial fulfillment of the requirements for the 

degree of Bachelor of philosophy of Science in Mathematics. 

 

Signature: 

Supervisor: Dr. Ivan Subhi Latif & Dr.Paxshan Muhammad Amin 

Scientific grade: Assistant Professor 

Date: 6 /4/ 2023 

 

         In view of available recommendations, I forward this word for 

debate by the examining committee. 

 

Signature:  

Name: Dr. Rashad Rashid Haji 

Scientific grade: Assistant Professor 

Chairman of the Mathematics Department 

Date: 6/4/2023 

 

 



iii 
 

                          ACKNOWLEDGMENT 

 

 

         First of all, I would like to thanks God for helping me to complete 

This project with success. 

 Secondly, I would like to express my special thanks to my supervisor  

Assist. Prof. Dr. Ivan Subhi Latif & Dr.Paxshan Muhammad Amin, it 

has been great honor to be here student.  

 It is great pleasure for me to undertake this project I have taken efforts  

however, it would not have been possible without the support and help of 

many  

individuals. 

            Also, I would like to express my gratitude towards my parents 

 My thanks appreciations go to Mathematical Department and all my 

valuable teachers. 

 

 

 

 

 

 

 

  



iv 
 

ABSTRACT 
 

 

In this work we find the Exact and numerical solution of integral equation 

which ∫ 𝐾(𝑥, 𝑦)
𝑥

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),used to find the Approximate numerical 

solutions, this method is tested on Linear  Fredholm  Integral  Equation  

(LFIE)  and  Volterra  Integral Equation (LVIE) of second kind, was highly 

accurate.  

The examples are given to explain the solution procedures. The 

Comparison of numerical solution was compatible with exact solutions.                        
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CHAPTER ONE 

INTRODUCTION 

 1.1 Introduction 

   The theory and applications of integral equations, or, as it is often called, of the 

inversion of definite integrals, have come suddenly into prominence and have held 

during the last half dozen years a central place in the attention of mathematicians. 

By an integral equation, is understood an equation in which the unknown function 

occurs under one or more signs of definite integration. Mathematicians have so 

far devoted their attention mainly to two peculiarly simple types of integral 

equations, - the linear equations of the first and second kinds, - and we shall not 

in this tract attempt to go beyond these cases. We shall also restrict ourselves to 

equations in which only simple (as distinguished from multiple) integrals occur. 

This restriction, however, is quite an unessential one made solely to avoid 

unprofitable complications at the start, since the results we shall obtain usually 

admit of an obvious extension to the case of multiple integrals without the 

introduction of any new difficulties. In this respect integral equations are in 

striking contrast to the closely related differential equations, where the passage 

from ordinary to partial differential equation. (M.Bochar 2015) 

Integral equation formulations are a competitive strategy in computational 

electromagnetics but, lamentably, are often plagued by ill-conditioning and by 

related numerical instabilities that can jeopardize their effectiveness in several 

real case scenarios. Luckily, however, it is possible to leverage effective 

preconditioning and regularization strategies that can cure a large majority of 

these problems. Not surprisingly, integral equation preconditioning is currently a 

quite active field of research. To give the reader a prepositive overview of the 

state of the art, this paper will review and discuss the main advancements in the 

field of integral equation preconditioning in electromagnetics summarizing the 

strengths and weaknesses of each technique. The contribution will guide the 
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reader through the choices of the right preconditioner for a given application 

scenario. This will be complemented by new analyses and discussions which will 

provide a further. (Adrien, et al. 2021) 

An integral equation is defined as an equation in which the unknown function u(x) 

to be determined appear under the integral sign. The subject of integral equations 

is one of the most useful mathematical tools in both pure and applied mathematics. 

It has enormous applications in many physical problems. Many initial and 

boundary value problems associated with ordinary differential equation (ODE) 

and partial differential equation (PDE) can be transformed into problems of 

solving some approximate integral equations. An integral equation can be 

classified as a linear or nonlinear integral equation as we have seen in the ordinary 

and partial differential equations. we have noticed that the differential equation 

can be equivalently represented by the integral equation. Therefore, there is a 

good relationship between these two equations. (Rahman 2013) 
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CHAPTER TWO 

Background 

 

 

there are a number of classifications of linear integral equations that 

distinguish different kinds of equations. The following are the most 

frequently studied. (Hochstadt 2011) 

                       ∫ 𝐾(𝑥, 𝑦)
𝑏

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                                        (1)         

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑦)
𝑏

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                        (2)                                                                              

a(x) 𝜑(𝑥) −  𝜆 ∫ 𝐾(𝑥, 𝑦)
𝑏

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                (3) 

 

The above equations (1) -(3) are generally known as Fred Holm equations of the 

first, second, and third kind, respectively. The interval (a,b)may in general be a 

finite interval or 

 (-∞, 𝑏], [𝑎, ∞), 𝑜𝑟 (−∞, ∞), where a and b are finite. If a(x) does not vanish one 

can divide (3) by a(x) to reduce it to (2). The functions 𝑓(𝑥), a(x), and 𝐾(𝑥, 𝑦) 

are presumably known functions and the function 𝜑(𝑥) is unknown . The 

parameter 𝜆 could be absorbed in the function 𝐾(𝑥, 𝑦), but it is convenient to 

retain it in the equation. Its role will become clearer when the operators in question 

will be studied. The function 𝐾(𝑥, 𝑦) is generally  known as the kernel of the 

equation. 

A second class of equations are the Volterra equations of the first, second, and 

third kind, namely 
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             ∫ 𝐾(𝑥, 𝑦)
𝑥

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                                           (4) 

             𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑦)
𝑥

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                          (5) 

            a(x) 𝜑(𝑥) −  𝜆 ∫ 𝐾(𝑥, 𝑦)
𝑥

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥),                   (6) 

 

One can view these as special cases of Fred Holm equations. The letter reduce to 

the corresponding Volterra equations if 𝐾(𝑥, 𝑦) = 0 for y > x . Nevertheless, 

Volterra equations have many interesting properties that do not emerge from the 

general theory of Fred Holm equations so that a separate study is definitely 

warranted. 

Equations (1)-(6) have one thing in common; they are all linear equation 

That is, the functions 𝜑 enters the equations in a linear manner so that  

∫ 𝐾(𝑥, 𝑦)
𝑏

𝑎

[𝑐1𝜑1(𝑦) + 𝑐2𝜑2(𝑦)]𝑑𝑦 

=c1∫ 𝐾(𝑥, 𝑦)
𝑏

𝑎
𝜑1(𝑦)𝑑𝑦 + 𝑐2 ∫ 𝐾(𝑥, 𝑦)

𝑏

𝑎
𝜑2(𝑦)𝑑𝑦. 

 

Definition of a function 2.1: A function f from a set A to a set B 

(f: A → B) is a rule of correspondence that assigns to each element x in 

the set A exactly one element y in the set B. The set A is called the 

domain of the function f. The range or codomain of the function is the 

set of elements in B that are in      correspondence with elements in A. 

In the case of functions described as equations in two variables, the 

variable x is the independent variable and the variable y is the 

dependent variable. In general, a function is denoted as f(x) (read f of 

x), where f is the name of the function, x is the domain value and f(x) 
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is the range value y for a given x. The process of finding the value of 

f(x) for a given value of x is called evaluating a function. (B.George 

and weir 2014) 

 

Definition of Integral Equations 2.2: Integral equation is an equation in 

which the unknown, say a function of numerical variable, occurs under an 

integral. That means a functional equation involving the unknown function 

under one or more integrals. (Hochstadt 2011) 

 The main types of integral equations are the following: 

Definition of Volterra integral equations 2.3: The most standard form 

of Volterra linear integral equations is of the form                                                                                                                                                      

                                      φ(x)u(x) = f (x) + λ ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt               (2.1)       

     where the limits of integration are function of x and the unknown function 

u(x) appears linearly under the integral sign. If the function φ(x) = 1, then 

equation (2.1) simply become 

                                    u(x) = f (x) + λ   ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt                        (2.2)       

  and this equation is known as the Volterra integral equation of the second kind; 

whereas if φ(x)= 0, then equation (2.1) 

becomes                                                                                                                                                                                 

f(x)+λ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt=0                                                                       (2.3)                                                                                                                  

which is known as the Volterra equation of the first kind. (Rahman 2013) 

Definition of Fredholm integral equations 2.4: 

 The most standard form of Fred Holm linear integral equations is given by the 

form 
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                                            φ(x)u(x)=f(x)+λ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt                (2.4) 

 where the limits of integration a and b are constants and the unknown function 

u(x) appears linearly under the integral sign. If the function φ(x) = 1, then (2.4) 

becomes simply 

                                       u(x) = f (x) + λ   ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt                    (2.5)  

 and this equation is called Fred Holm integral equation of second kind; whereas 

if φ(x) = 0, then (2.4) yields 

                                        f (x) + λ   ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)dt                              (2.6) 

 which is called Fredholm integral equation of the first kind. (Rahman 2013) 

2.5 The series solution method 

We shall introduce a practical method to handle the Volterra integral equation 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫  
𝑥

0

𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 

In the series solution method we shall follow a parallel approach known as the 

Frobenius series solution usually applied in solving the ordinary differential 

equation around an ordinary point (see Ref. [9]). The method is applicable 

provided that 𝑢(𝑥) is an analytic function, i.e. 𝑢(𝑥) has a Taylor's expansion 

around 𝑥 = 0. Accordingly, 𝑢(𝑥) can be expressed by a series expansion given 

by 

𝑢(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

 

where the coefficients a and x are constants that are required to be determined. 

Substitution of equation (2.38) into the above Volterra equation yields 
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∑  

∞

n=0

anxn = f(x) + λ ∫  
x

0

K(x, t) ∑  

∞

n=0

antndt 

so that using a few terms of the expansion in both sides, we find 

a0  +a1x + a2x2 + a3x3 + ⋯ + anxn + ⋯

= f(x) + λ ∫  
x

0

 K(x, t)a0dt + λ ∫  
x

0

 K(x, t)a1tdt

 +λ ∫  
x

0

 K(x, t)a2t2dt + ⋯ + λ ∫  
x

0

 K(x, t)antndt + ⋯

 

In view of equation (2.40), the integral equation will be reduced to several 

traditional integrals, with defined integrals having terms of the form tn, n ≥ 0 

only. We then write the Taylor's expansions for f(x) and evaluate the first few 

integrals in equation (2.40). Having performed the integration, we equate the 

coefficients of like powers of x in both sides of equation (2.40). This will lead to 

a complete determination of the unknown coefficients a0, a1, a2, … an …. 

Consequently, substituting these coefficients an, n ≥ 0, which are determined in 

equation (2.40), produces the solution in a series form. We will illustrate the series 

solution method by a simple example. (Rahman 2013) 

 

2.6Integro-differential equations  

In the early 1990, Vito Volterra studied the phenomenon of population growth, 

and new types of equations have been developed and termed as the Integro-

differential equations. In this type of equations, the unknown function 𝑢(𝑥) 

appears as the combination of the ordinary derivative and under the integral sign. 

In the electrical  engineering problem, the current 𝛪(𝑡) flowing in a closed circuit 

can be obtained in the form of the following Integro-differential equations, 

                  𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 +

1

𝑐
∫ 𝐼(𝜏)𝑑𝜏 = 𝑓(𝑡),        𝐼(0) = 𝐼0

𝑡

0
                                      (2.7) 

Where 𝐿 is the inductance, 𝑅 the resistance, C the capacitance, and  𝑓(𝑡) the 

applied voltage. Similar examples can be cited as follows: 

     𝑢′′(𝑥) = 𝑓(𝑥) + 𝜆 ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,     𝑢(0) = 0,
𝑥

0
𝑢′(0) = 1,                       (2.8) 

        𝑢′(𝑥) = 𝑓(𝑥) + 𝜆 ∫ (𝑥𝑡)𝑢(𝑡)𝑑𝑡,     𝑢(0) = 1
1

0
                                                  (2.9) 
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Equation (2.7) and (2.8) are of Volterra type Integro-differential equations, 

whereas equation (2.9) Fredholm type Integro-differential equations. These 

terminologies were concluded because of the presence of indefinite and definite 

integrals. (Rahman 2013) 

2.7 The method of successive approximations 

In this method, we replace the unknown function u(x) under the integral sign of 

the Volterra equation  any selective real-valued continuous function u0(x), 

called the zeroth approximation. This substitution will give the first 

approximation u1(x) by 

                                    u1(x) = f(x) + λ ∫  
x

0
K(x, t)u0(t)dt                           (2.10) 

It is obvious that u1(x) is continuous if f(x), K(x, t), and u0(x) are continuous. 

The second approximation u2(x) can be obtained similarly by replacing u0(x) in 

equation (2.3) by u1(x) obtained above. And we find 

                                         u2(x) = f(x) + λ ∫  
x

0
K(x, t)u1(t)dt                          (2.11) 

Continuing in this manner, we obtain an infinite sequence of functions 

u0(x), u1(x), u2(x), … , un(x), … 

that satisfies the recurrence relation 

                                     un(x) = f(x) + λ ∫  
x

0
K(x, t)un−1(t)dt                    (2.12) 

for n = 1,2,3, … and u0(x) is equivalent to any selected real-valued function. The 

most commonly selected function for u0(x) are 0,1 , and x. Thus, at the limit, the 

solution u(x) of the obtained as 

                                                  u(x) = lim
n→∞

 un(x)                                      (2.13) 

so that the resulting solution u(x) is independent of the choice of the zeroth 

approximation u0(x). This process of approximation is extremely simple. 

However, if we follow the Picard's successive approximation method, we need to 

set u0(x) = f(x), and determine u1(x) and other successive approximation as 

follows: 
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u1(x) = f(x) + λ ∫  
x

0
 K(x, t)f(t)dt

u2(x) = f(x) + λ ∫  
x

0
 K(x, t)u1(t)dt

 … …

un−1(x) = f(x) + λ ∫  
x

0
 K(x, t)un−2(t)dt

un(x) = f(x) + λ ∫  
x

0
 K(x, t)un−1(t)dt

                    (2.14) 

The last equation is the recurrence relation. Consider 

                        

u2(x) − u1(x) = λ ∫  
x

0
 K(x, t) [f(t) + λ ∫  

t

0
 K(t, τ)f(τ)dτ] dt

 −λ ∫  
x

0
 K(x, t)f(t)dt

= λ2 ∫  
x

0
 K(x, t) ∫  

t

0
 K(t, τ)f(τ)dτdt

           = λ2ψ2(x)                                                                                (2.15)

 

where 

                                ψ2(x) = ∫  
x

0
K(x, t)dt ∫  

t

0
K(t, τ)f(τ)dτ                      (2.16) 

Thus, it can be easily observed from equation (2.15) that 

                                        un(x) = ∑  n
m=0 λmψm(x)                                  (2.17) 

if ψ0(x) = f(x), and further that 

                                        ψm(x) = ∫  
x

0
K(x, t)ψm−1(t)dt                         (2.18) 

where m = 1,2,3, … and hence ψ1(x) = ∫
0

x
 K(x, t)f(t)dt. 

The repeated integrals in equation (2.16) may be considered as a double integral 

over the triangular region indicated in Figure 2.1; thus interchanging the order of 
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Figure 2.1: Double integration over the triangular region (shaded area). 

 

integration, we obtain 

ψ2(x)  = ∫  
x

0

 f(τ)dτ ∫  
x

τ

 K(x, t)K(t, τ)dt

 = ∫  
x

0

 K2(x, τ)f(τ)dτ

 

where K2(x, τ) = ∫
τ

x
 K(x, t)K(t, τ)dt. Similarly, we find in general 

                             ψm(x) = ∫  
x

0
Km(x, τ)f(τ)dτ,  m = 1,2,3, …                   (2.19) 

where the iterative kernels K1(x, t) ≡ K(x, t), K2(x, t), K3(x, t), … are defined by 

the recurrence formula 

                             Km+1(x, t) = ∫  
x

t
K(x, τ)Km(τ, t)dτ,  m = 1,2,3, …        (2.20) 

Thus, the solution for un(x) can be written as 

                                               un(x) = f(x) + ∑  n
m=1 λmψm(x)                  (2.21) 

It is also plausible that we should be led to the solution means of the sum if it 

exists, of the infinite series defined by equation (2.17). Thus, we have using 

equation (2.19) 
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         un(x) = f(x) + ∑  

n

m=1

  λm ∫  
x

0

 Km(x, τ)f(τ)dτ

= f(x) + ∫  
x

0

  { ∑  

n

m=1

 λmKm(x, τ)} f(τ)dτ,         (2.22)

 

hence it is also plausible that the solution of equation (2.1) will be given by as 

n → ∞ 

lim
n→∞

 un(x)  = u(x)

 = f(x) + ∫  
x

0

  { ∑  

n

m=1

 λmKm(x, τ)} f(τ)dτ

 = f(x) + λ ∫  
x

0

 H(x, τ; λ)f(τ)dτ

 

where 

                                          𝐻(𝑥, 𝜏; 𝜆) = ∑  𝑛
𝑚=1 𝜆𝑚𝐾𝑚(𝑥, 𝜏)                          (2.23) 

is known as the resolvent kernel. (Rahman 2013) 
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CHAPTER THREE 
 

 

Example 3.1: Obtain the solution of the Volterra equation using the series 

method. 

 𝑢(𝑥) = 𝑥 + ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0
           …….(3.1) 

using the series method. 

Solution: 

𝑢(𝑥) = ∑ 𝑎𝑘𝑥𝑘
∞
𝑘=0              

𝑢(𝑥) = 𝑥 + ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0

 

∑ 𝑎𝑘𝑥𝑘
∞

𝑘=0
=  𝑥 + ∫ (𝑡 − 𝑥)

𝑥

0

∑ 𝑎𝑥𝑥𝑘
∞

𝑘=0
 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 

= 𝑥 + ∫ (𝑡 − 𝑥)(𝑎0 + 𝑎2𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 + 𝑎6𝑡6 + 𝑎7𝑡7 +
𝑥

0

𝑎8𝑡8 + 𝑎9𝑡9 + ⋯ )𝑑𝑡 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 

= 𝑥 + ∫ [
𝑥

0
𝑎0𝑡 + 𝑎1𝑡2 + 𝑎2𝑡3 + 𝑎3𝑡4 + 𝑎4𝑡5 + 𝑎5𝑡6 + 𝑎6𝑡7 + 𝑎7𝑡8 + 𝑎8𝑡9 +

𝑎9𝑡10 + ⋯ ]  − 

𝑎0𝑥 + 𝑎1𝑡𝑥 + 𝑎2𝑡2 + 𝑎3𝑡3𝑥 + 𝑎4𝑡4𝑥 + 𝑎5𝑡5𝑥 + 𝑎6𝑡6𝑥 + 𝑎7𝑡7𝑥 + 𝑎8𝑡8𝑥

+ 𝑎9𝑡9𝑥 + ⋯ ] 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 

= 𝑥 + (𝑎0
𝑡2

2
+ 𝑎1

𝑡3

3
+ 𝑎2

𝑡4

4
+ 𝑎3

𝑡5

5
+ 𝑎4

𝑡6

6
+ 𝑎5

𝑡7

7
+ 𝑎6

𝑡8

8
+ 𝑎7

𝑡9

9
+ 𝑎8

𝑡10

10
+

𝑎9
𝑡11

11
)]0 

𝑥 − 

(𝑎0𝑡𝑥 + 𝑎1

𝑡2

2
𝑥 + 𝑎2

𝑡3

3
𝑥 + 𝑎3

𝑡4

4
𝑥 + 𝑎4

𝑡5

5
𝑥 + 𝑎5

𝑡6

6
𝑥 + 𝑎6

𝑡7

7
𝑥 + 𝑎7

𝑡8

82
𝑥

+ 𝑎8

𝑡9

9
𝑥 + 𝑎9

𝑡10

10
𝑥) ]0 

𝑥  

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 
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= 𝑥 + (𝑎0
𝑥2

2
+ 𝑎1

𝑥3

3
+ 𝑎2

𝑥4

4
+ 𝑎3

𝑥5

5
+ 𝑎4

𝑥6

6
+ 𝑎5

𝑥7

7
+ 𝑎6

𝑥8

8
+ 𝑎7

𝑥9

9
+ 𝑎8

𝑥10

10
+

𝑎9
𝑥11

11
) 

-(𝑎0𝑥2 + 𝑎1
𝑥3

2
+ 𝑎2

𝑥4

3
+ 𝑎3

𝑥5

4
+ 𝑎4

𝑥6

5
+ 𝑎5

𝑥7

6
+ 𝑎6

𝑥8

7
+ 𝑎7

𝑥9

8
+ 𝑎8

𝑥10

9
+

𝑎9
𝑥11

10
) 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 

= 𝑥 − 𝑎0 (
𝑥2

2
− 𝑥2) − 𝑎1 (

𝑥3

3
−

𝑥3

2
) − 𝑎2 (

𝑥4

4
−

𝑥4

3
) − 𝑎3 (

𝑥5

5
−

𝑥5

4
) −

𝑎4 (
𝑥6

6
−

𝑥6

5
) − 𝑎5 (

𝑥7

7
−

𝑥7

6
) − 𝑎6 (

𝑥8

8
−

𝑥8

7
) − 𝑎7 (

𝑥9

9
−

𝑥9

8
) − 𝑎8 (

𝑥10

10
−

𝑥10

9
) −

𝑎9 (
𝑥11

11
−

𝑥11

10
) 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9 + ⋯ 

= 𝑥 −
𝑎0

2
𝑥2 −

𝑎1

6
𝑥3 −

𝑎2

12
𝑥4 −

𝑎3

20
𝑥5 −

𝑎4

30
𝑥6 −

𝑎5

42
𝑥7 −

𝑎6

56
𝑥8 −

𝑎7

72
𝑥9

−
𝑎8

90
𝑥10 −

𝑎9

110
𝑥11 

𝑎0 = 0, 𝑎1 = 1 

 

𝑎2 = −
𝑎0

2
 

 

𝑎3 = −
𝑎1

6
 

𝑎4 = −
𝑎2

12
 

𝑎5 = −
𝑎3

20
 

𝑎6 = −
𝑎4

30
 

𝑎7 = −
𝑎5

42
 

 

𝑎8 = −
𝑎6

56
 



14 
 

𝑎9 = −
𝑎7

72
 

𝑎0 = 𝑎2 = 𝑎4 = 𝑎6 =  𝑎8 = 0 

𝑎2𝑚 = 0   for m ≥  0           …….(3.2) 

 

𝑎2𝑚+1 =
(−1)𝑚

2𝑚+1
       for m ≥  0           …….(3.3) 

 

Substituting equ (3.2) and (3.3) in equ (3.1) we get 

 

𝑢(𝑥) = ∑
(−1)𝑚

2𝑚 + 1
  𝑥2𝑛+1

∞

𝑚=0
 

 

𝑢(𝑥) =  sin 𝑥 

 

 

Example 3.2: 

Solve the following Volterra integral equation of the second kind of successive 

approximation method 

                                                  𝑢(𝑥) = 𝑥 + ∫ (𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡
𝑥

0
        ……. (3.4) 

Solution: we first select any real valued function for the zeroth approximation, 

hence we set    

                                                              𝑢0(𝑥) = 0           …….  (3.5) 

Substituting in to the right hand side of (eq.3.4) we find  

                                                    𝑢(𝑥) = 𝑥 +  ∫ (𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡
𝑥

0
      …….  (3.6) 

And this gives the first approximation of 𝑢(𝑥) by  

                                                                𝑢(𝑥) = 𝑥             …….  (3.7) 

Inserting (eq.3.7) in to (eq.3.6) to replace   𝑢0(𝑥) we obtain  
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𝑢2(𝑥) = 𝑥 + ∫ (𝑡 − 𝑥)(𝑡)𝑑𝑡
𝑥

0

 

Where by integration we determine the second approximation of 𝑢(𝑥) by  

𝑢2(𝑥) = 𝑥 −
1

3!
𝑥3 

Continuing in the same manner we find the third approximation of 𝑢(𝑥) given 

by  

𝑢3(𝑥) = 𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 

Accordingly, the nth approximation is given by  

𝑢𝑛(𝑥) = ∑(−1)𝑘−1   
𝑥2𝑘−1

(2𝑘 − 1)!
 , 𝑛 ≥ 1

𝑛

𝑘=1

 

Consequently, the solution 𝑢(𝑥) of (eq.5) is given by  

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

𝑢(𝑥) = lim
𝑛→∞

(∑(−1)𝑘−1 

𝑛

𝑘=1

𝑥2𝑘−1

(2𝑘 − 1)!
)     … … . (3.8) 

 

                                              𝑢(𝑥) =  sin 𝑥 

To show that 𝑢(𝑥) obtained in (eq.3.8) does not depend on the selection of 

𝑢0(𝑥), we will solve the equation (eq.3.4) by selecting           

                                                𝑢0(𝑥) = 𝑥      

using The new selection of 𝑢0(𝑥) in the right hand side of (eq.3.4) we obtain 

𝑢1(𝑥) = 𝑥 + ∫ (𝑡 − 𝑥)𝑡𝑑𝑡
𝑥

0

 

Which gives the first approximation by  

𝑢1(𝑥) = 𝑥 −
1

3!
𝑥3 
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𝑢2(𝑥) = 𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 

In a parallel manner we find that  

 

𝑢𝑛(𝑥) = ∑(−1)𝑘   
𝑥2𝑘+1

(2𝑘 + 1)!
 , 𝑛 ≥ 0

𝑛

𝑘=0

 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

 

𝑢(𝑥) = lim
𝑛→∞

(∑(−1)𝑘 

𝑛

𝑘=0

𝑥2𝑘+1

(2𝑘 + 1)!
)     

 

                                                           𝑢(𝑥) =  sin 𝑥 

 

 

Example 3.3: Solve the following Volterra integer differential equation by 

using the series solution method. 

𝑢" = 𝑥 cosh 𝑥 − ∫ 𝑡𝑢(𝑡)𝑑𝑡 ,      𝑢(0) = 0 , 𝑢"(0) = 1
𝑥

0
                     ……. (3.9)  

Substituting  𝑢(𝑥) by the series  

𝑢(𝑥) = ∑ 𝑎𝑛 𝑥𝑛                                … … . (3.10)     

∞

𝑛=0

 

Into both sides of the equation (3.9) and using the Taylor expansion of  cosh 𝑥 we 

obtain 

∑ 𝑛(𝑛 − 1)𝑎𝑛 𝑥𝑛−2 = 𝑥 (∑
𝑥2𝑘

(2𝑘)!

∞

𝑘=0

) −

∞

𝑛=2

∫ 𝑡 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

)
𝑥

0

𝑑𝑡        … … . (3.11)) 

Using the initial Conditions Yields  

𝑎0 = 0,                          …….(3.12) 

𝑎1 = 1,                          …….(3.13) 
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Evaluating the traditional integrals that involve terms of the form 𝑡𝑛  , 𝑛 ≥ 0,and 

using few terms from both sides yields 

2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + 20𝑎5𝑥3 + ⋯ 

= 𝑥 (1 +
1

2!
𝑥2 +

1

4!
𝑥4 + ⋯ ) − (

1

3
𝑥3 +

1

4
𝑎𝑛𝑥4 + ⋯ )                           ……. (3.14)                                                                 

Equating the coefficients of like powers of x in both sides we find  

𝑎2 = 0,                                                                                                            

𝑎3 =
1

3!
 ,                                        …….(3.15) 

𝑎4 = 0, 

And generally 

  

𝑎2𝑛 = 0, for 𝑛 ≥ 0,                                …….(3.16) 

 

𝑎2𝑛+1 =
1

(2𝑛+1)!
 , for  𝑛 ≥ 0                                          …….(3.17)                                                                                     

Using (3.10) we find the solution 𝑢(𝑥) in a series from  

𝑢(𝑥) = 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 +

1

7!
𝑥7 + ⋯                                         ……. (3.18) 

And in a closed from, the exact solution is given by  

𝑢(𝑥) = sinh 𝑥 ,                             …….(3.19) 

Obtained upon using the Taylor Series of  sinh 𝑥. 
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 :پوختە

 Exact and numerical solution of integral equation)ئەو لێکۆڵینەوەیە کە بۆ

∫ەل یەتیبر ەیک ەشێهاوکەک(یە  𝐾(𝑥, 𝑦)
𝑥

𝑎
𝜑(𝑦)𝑑𝑦 = 𝑓(𝑥) باکاردێ بۆ

بە نزیکەیی لە نۆمیریکاڵ دا ئەو میسۆدە یان   ەشێهاوک دۆزینەوەی شیکاری

 Linear fredhold integralدەتوانین بڵێین ئەو ڕیگایە یە بەکاردێ لەگەڵ )

equation  ) ( وە لەگەڵVolterrn integral equation )و  کە لە پلە دوودا بوو.وە ئە

ئەنجامەکەیە ،وە بەراوردی  کە دراون بۆ ڕونکردنەوەی کرداری نمونەکانیشی 

 شیکارە نزیکەکەی نیومێریکاڵ و شیکارە دەقیق )ئەسڵەکە(دەکات . 

 

 

 

                   

 

 

 

 

 


