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Abstract

Spline interpolation is a vital tool in numerical analysis, offering a flexible

approach to approximating functions between data points.

This research project explores various spline techniques, their theoretical
foundations,

practical implementations, and applications across diverse fields.
By synthesizing theoretical insights with practical considerations, this study aims
to provide valuable guidance for researchers and practitioners leveraging

spline interpolation methods.
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Introduction

Spline interpolation serves as a cornerstone in the realm of numerical analysis and
computational mathematics, offering a powerful method for approximating
functions between discrete data points. With applications spanning diverse fields
such as

engineering, computer graphics, finance, and scientific computing, understanding
the principles and applications of spline interpolation is crucial for researchers
and practitioners alike.

In this research project, we embark on a comprehensive exploration of spline
interpolation techniques, aiming to elucidate their theoretical underpinnings,

computational aspects, and practical implications. Spline interpolation involves



Chapter one
Definitions

Definition of numerical 1.1:

Numerical refers to anything related to number or numerical value . it
involves the use pf numbers , calculation . or measurements in various

contexts such as mathematics statics or data analysis.
Definition of function 1.2 :

In mathematics a function is a related between a set of inputs ( domain )

where each input is related to exactly one output .
Definition of spline function 1.3 :

A spline function is piecemise defined polynomial function use in
mathematical and computational applications particularly in the

representation and interpolation of curves or surface .
Definition of polynomial 1.4 :

A polynomial is a mathematical expression consisting of variables raised to
nonnegative integer exponents, combined through addition subtraction and

multiplication .
Definition of interval 1.5 :

An interval in mathematics is a set of real numbers that includes all the
numbers between any two given numbers within the set it can be expressed
in various forms such as open intervals , closed intervals or half-open
intervals Interpolation by spline function
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Definition 1.6 : a function S is called spline function of degree K if

1- The domain of sis an interval [a, b ]

2- , , .. (7D areall continuous functionon [ a, b ]

3- The are points  partitioning where = o< 1< < = andsuch
that S is a polynomial of degree at most K an each subinterval

[ +1]

Definition 1.7 : a spline function is a function of polynomial pieces joined
together with certain smooth conditions .

We are forced to write.

os,(x) ifxg Sx<xy

S(X)< s1(x)  ifxy Sx=<x

Sp—1(x) if Xp1 S x <%y

Or can write -

o) [ o 1]
F(x)=< 1( ) [ 1, 2]

— L) [ 1 ]



Note : the function S(x) that we wish to construct consists of ( n-1)
polynomial pieces the interpolation conditionsare ( )= ,1l< <

The continuity condition are imposed only at the interior

knots 2, 3, .. —1 these condition are written as . lim
O()=Ilim OC) ,j=1,2...,n-1 .i=0,1, ..., k-1

- - -+

learning objective : after successful completion of this lessen you
should be able to .

1) Develop linear spline interpolation to given data points
2) Estimate unknown data points from the linear spline interpolation .
First — degree spline [ linear spline interpolation ]

A polygonal function is a spline of degree one which consists
linear polynomials joined together to achieve continuity The
points o, 1,.. are called knots .

Definition 1.8: a function S is called a spline of degree one ( first
degree spline )

1- The domain of S is an interval [a,b]
2- S is continuous on [a,b]

There is a partitioning of the interval = o< 1< < = such
that

S is a linear polynomial on each subinterval [ , +1]
Where each piece of S(x) is a linear polynomial for first degree spline .
()= ()+
A function such as S(x) is called piecewise linear
()= (- )+
Where =229 fori=0,
Xi+17Xj
1, ...,n-1 mis aslopes between
-1



(x3. 13)

(0, yo)

v
el

S(x) is give above data by

ol )= of — o)+ 0 , o= =1
()= 1( — 1)+ 1 1S = 2
-1()= (- D+ -, 1= =
Example 1.1 :
0,2
: 7 o() [0,2]
0 4
2 -2
5 19 S(x) = < 1() [2,5]
6 59
\ 2( ) [5,6]



) o()= o — o)+ o

—2-4 _ -6 _
0 %0 -2 3

o()=-3( ~0)+4
ofl )=—3 +4

2) ()= 1( — D+ 1
19-(=2)_21__

M=""5_"2 ~3
1()=7( =2)+(=2)
1()=7 —16

3) 2()= 2( — 2)+ 2
»=20"=39

2() =39 —176

Plot of XX and
T 1




Chapter two

Spline of degree two ( quadratic spline)
* Spline of degree 2
A function Q is called spline of degree 2 if
* The domain of Q is an interval [a , b]
* and are continuous function on [a, b]

* There are points  ( called knots ) suchthat = o< 1< < = AndQ
is a polynomial of degree at most 2 each subinterval [ , +1]

* A quadratic spline is a continuously differentiable piecewise quadratic
function .

Q( )= , =01,.., ( ) is continuous we can put
- ( )and +1 = ( +1)

From lagrange interpolation of degree one we get :

()~

+
+ +17

+1

Integration both sides first degree spline we get :

_ (xmxe)e (x=x)2
Q( ) - 2(Xi+1 — Xi) * 2(Xi+1 — Xi) 1t

Where c is the constant of integration to find ¢ use the interpolation condition.

(Xi—2xi+1)

2

Q( )= weobtain = -

Substituting the value of in the above equation we get :

Q) =5y (= )2+ (=) +

2(Xi+1— Xi
Where Q( ) = : ()= =01,.., -1
And ( +1) = +1
These three conditions defined he function Q( ) uniquelyon[ , +1] As
given in the equation

Yi+17Yi
= — -+ —_—
+1 2 (xi+1 —Xi )

, =01,.., —1Where oisarbitrary



Note :
Iim ()= Ilim ()

- +

lim ()= lim ()

Example 2.1:find a quadratic splinenterpolation for these data

X -1 1 3

3.5

y 1 2 0

Solution : Let

ox)  if x [—1,1]

Qx)= 1() if x [—13]
2(x) 1if x [3,3.5]




— 2 — —
Where ( ) 2(X+l X) ( ) + ( ) + - 01112
To find o, 1, 2, 3
Let 0=0
y1l—y0 —
1= o+2( ) 0+2(1(1)) =1

y= 1+2(y2 yl)_ ~1+2(2)=3

0= 2+ 2 = —(=3) +2(55) = 23

o()=Gr=) (= F*+( = 0 oF o
o() = Gamg) (= DY+ (= (1)) +0=3F ( +1)

1

O=5y (= 9P+~ 1+

1():2‘(2‘; ( =12+ ( —D@+2=~( —12+( —1)+2

()= (= (= 2) 2+ o

2() =555 ( —37+( —3)(=3)+0=26( —3)*=3( -3)

Z(x+1)2 if x [—11]
Qx) = —x-D%+x-1)+2 if x [1,3]
26(x -3)2-3(x—3) if x [1,3]



Chapter 3
Spline of degree three (cubic spline)

Definition 3.1 : a function C is called a spline of degree three if

1. The domain of C is an interval [a,b]

2. are continuous on [a,b]

3. There are points  the knots of C such that

= 0< 1< < = andsuch that Cis a polynomial of degree at most
3 on each subinterval [ , +1]

We next turn to interpolation a table of given values a cubic spline whose
knots coincide with the x value in the table

0 1 -1

0 1 -1

the function C(x) the we are constructing consists of (n-1) cubic polynomial

pieces :
0( ) [ o, 1]
Q(x) = Cx)=10) [ 1, 2]
-1() [ -1, ]

The interpolation condition
()= , 0= <
The continuity conditions are imposed only at the interior knots
1, 2,.. -1
|_igiw_ Oxi) = |1r;iw+ O (xi) =012.., -1, =012
The continuity condition are needed in order to use all the degree of freedom
available A cubic spline function s called a natural cubic splineif ( 0) = ( )

=0
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Algorithm for natural cubic spline :

To derive a natural cubic spline function since ( ) is continuous
are the number = C(x;) 0 <i<  we do not now the values of 1,
2,... —1,butofcourse o= =0

If  were known , we construct a linear polynomial taking the values and +1
at the end point thus :

()=—(C—-)+—(C+—)
Where = +1— integrate this twice gives the function

C()= 22 (x = Xi)PH+—(Xu — X+ +

Where ¢ and d are constants of integration by adjusting the integration constants .
We obtaina form () :

C()= 22 = X (X — X+ (= )+ ( +1— )

Where Ci and Di are constants of integration .

the interpolation condition ( )= ()= +«1 imposed to
the appropriate values Ci an Di we get :

()= 52 O g =02 (2 5 11) =) (= ) (%)

To find M1, 1=1,2, ... ,n-1 , we have form the above equation

()=== (X—Xi)2+2—<xi+1—X)2+(—“— 5 +1) +(—- g)(xm—x)

This gives : ()=E( +1)—§ +
11



Where =i( 1= )

and = 41 —
analogously we have
a()=—7(C -)-—4— + 4
1
Where -1=—( — -1)
-1
When these are set as equals we get after rearrangement
1 a+2( 21— )+ +1=6( — -1) 1< = -
1 By letting =2( -1+ )and = 6( — -1) We obtain a
tridiagonal system of equation :
0=0
-1 -1 =+ =+ +1= 1 < < - l
=0
To be solved for the the simplicity of the first and last equations is a
result of the natural cubic spline conditions

()= ()=0

Example 3.1:

Derive the equation of the natural cubic interpolation spline for the following
data

X 1 2 3

y 2 6 2

Solution : we know that

oo O [1.2]

1( ) [23]
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0()= 72— P +goenrt(2- 2 1) (= ) H(2- 2 6) (=)

1
0 6

1= 520 - P+t oen(2- 2 ) - D22 )0e-%)

0= 1— o0=2—-1=1 1= 2— 1=3—2=1

_yl—yO_E — _y2—-y1 _ 1-0_
0_0_11_2 1_61_1_1
=2( + )=2(1+1)=4 =6( 1+ )=6(1—(~2)) =18
Thus 0=0 o o+ 1 1+ 1 1= 1 , 2=0
Since o= 2=0
Then 1=
_ 18 _ 9
4 =18 1= =
Z(-1P+( +1) [1.2]
()=
T @= y+2 +5 [2.3]

Is cubic spline function

13



Chapter 4

Problem: the statistics and number of students in the 12 grade in
the center khabat district

Who use these materials daily

variable
0 coffee 0 127 1-2
1 Milk 1 154 1-2
2 Tea 2 376 1-5
3 Juice 3 219 1-3
4 gum 4 148 1-2

Cubic spline formula is
_ (=) (- -8 (C =) 2
()= 5 -1 T "'—(—1 —1)"‘

a0 (_2 )L

6

Wehave, 144 + ==( 4—-2 + 41) - (2

xHere =1, =4and (=0, ,=0

Substitute = 1 in equation (2)
6
0ot+t4 1+ 2=5(0=2 1+ 2)

0+4 |+ 2=§ (127 —2 154 + 376)

4 1+ 2:1170
Substitute = 2 in equation (2)
6
1+4 2+ 3==5(1—2 2+ 3)

L+4 L+ 3=§ (154 —2 376+ 219)

1+4 2+ 3:_2274
Substitute = 3 in equation (2)
6
o+4 3+ 4 ==5(2—2 3+ 4)

14




2 +4 3+0=2 (376—2 219+ 148)
2+4 3:516

Substitute = 1 in equation (1), we get cubic spline in 1% interval [ ¢, 1] =
[1.2]

1()_( 1= )° O+(—60)3 (1_)(0_E2 O)+<—o)(1_€2 1)

- )3

(-1)°

10y = 0+ 4850357 + 22 (127 -2 0)+
1

()] (154 -2 485.0357)
() =80.8393 3—2425178 2+1886786 +100 1< =2

Substitute = 2 in equation (1), we get cubic spline in 2" interval
[ 1 2] = [213]

2():(26—)3 1+(—61)3 2+(2_)(1_§ 1)+(_1)(2_E2 2)

(-2)3

— 3
2() = (3 4850357 + — 7701429 + &2 (154
485. 0357) +2(376 -2 —770.1429)

2() =~ 209.1964 3 +1497.6965 2 —3291.75 + 2420.2857 2<
<3

Substitute = 3 in equation (1), we get cubic spline in 3™ interval
[ 2 3] — [314]

3()=(36—)3 2+(—62)3 3+(3_)(2_§ 2)+(_2)(3_§ 3)

(-3)°

G
3() = — 7701429 + 3215357 +2(376 -2 —
1

7701429)+ (219 - 321.5357)

3() = 181.9464 3 —20225894 2 +7269.1074 —8140.5718
3= <4

Substitute = 4 in equation (1), we get cubic spline in 4" interval
[ 5, 4]1=1[43]

4()— _)3 3"'(_6—3)3 4"‘(4_)(3_g2 3)"‘Q(4_g2 4)

15




400

_ (=) (43 (5-) 1
. ;— - 3215357 +—> 0 +T(219 . 321.5357) +

2 (148 -3 0)
4y =— 535893 3 +803.8392 2 —4036.607 +6933.714  4<

For (1),1 [1.2], so
substitute =1in ,( ), we get

(1) = 127
For '(1),1 [1,2],sofind "1( )
1( ) =2425178 ? —485.0357 + 188.6786

Now

substitute = 1in ;( ), we get

/(1) =—53.8393

Cubic Spline Interpolation

| = Data Points
[ Cubic Spline Interpolation

350 - 1

300 |

256 - -

200 |

150 - \ +
100 -

50

XN



Problem: the statistics and number of students in the 12 grade in the center
khabat district

Who use these materials daily

variable
0 Tiger 0 288 1-4
1 Pepsi 1 352 1-3
> Cigarettes > 101 5-15
3 Hookah 3 121 1-2
4 Vape 4 77 5-10

Cubic spline formula is

_ (- (- -1)® (=) 2
()=— -1 "‘6—1 "‘u( -1 7% —1) +

(-l )l

Wehave, —1+4 + . =5( _1-2 + ) - (2

Here =1, =4and (=0, 4,=0
Substitute = 1 in equation (2)
6
0ot+4 1+ 2=5(0—2 1+ 2)
0+4 ;+ ,=2 (288—2 352+101)

4 ,+ ,=—1890

Substitute = 2 in equation (2)
1+4 2+ 3=5(1—-2,+ 3)
% (352 —2 101+ 121)
L+4 ,+ 5=1626
Substitute = 3 in equation (2)

6
2t4 3+ 4=5(2—2 3+ 4)

17




=> ,+4 3+0=2 (101-2 121+77)

=> ,+4 ;=—384

Substitute = 1 in equation (1), we get cubic spline in 1% interval [ ¢, 1] = [1,2]
_ (1= )3 (=03 (1—) 2 (= o) 2
1() = 16 ot 60 g+ (o— o)"‘ 0(1‘; 1)

6
— 3 —1)3 — —
1= 0+ —62025 + (288 -1 0)+ 2 (352 -2 -
629.25)
1( ) =—104875 3+314625 2~ 14575 +224 1< <2

Substitute = 2 in equation (1), we get cubic spline in 2™ interval [ 1, 5] =[2,3]

2():(26—)3 1+(—61>3 2+(2_)(1_€2 l)Jr(—l)(z_E2 )

_ G- _ (-2° G-) 1
() =2 —62925 +-2 627 +52(352 -2 —629.25) +

(-2 _1
2(101 -2 627)

,( ) =209.375 3 —1570.875 2+ 362525 — 2290, 2< <3
Substitute = 3 in equation (1), we get cubic spline in 3™ interval [ 5, 3] = [3,4]

3():(36—)3 2_|_(—62)3 3+(3—)(2_€2 2)_|_(—2)(3_€2 3)

_ @4 (-3° (4-) 1
13( ) = 627 +— 252.75 +T(101 -
: —252.75)

627) + (;13)(121 -

3( ) =—146.625 °+1633.125 2 —5986.75 + 7322, 3= =14
Substitute = 4 in equation (1), we get cubic spline in 4" interval [ 3, 4] = [4,5]

4():(46;)3 3"‘(_63)3 4"‘(4_)(3—32 3)"'(_3)(4—;2 4)

_6-) ( —4)3 G- 1
4 )_T( —4)252.75 :T 0+ (121_6 —252.75)
T (77_6 O)

4( ) =42125 3 —631.875 2+ 3073.25 — 4758 4< <5
For (1),1 [12], so0
substitute = 1in ,( ), we get

18



(1) = 288
For '(1),1 [1.2],sofind "1( )
1 =—314.625 2+629.25 — 14575

Now substitute = 1in ;( ), we get
(1) =168.875

Cubic Spline Interpolation
450 | | |

O Data Points
Cubic Spline Interpolation

400 |
350 -
300 !
&
250 -
200 -
150

100 -

50 :

XN
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