Final Exam - Second Trial
Q.1) Choose the correct answer: (ONLY 10)
[10 Marks]

1. Identify which of the following quantities can be described fully by its magnitude.

Displacement, Force, Velocity, Distance
2. The dimensions of Focal length is same as that of

Force, Pressure, Wavelength, Work
3. If $\mathrm{F} 1=-20 \hat{\jmath}, \mathrm{~F} 2=-10 \hat{1}$, and $\mathrm{F} 3=5 \hat{\imath}+10 \hat{\jmath}$, what is the sum $\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3$?

$$
-15 \hat{\imath}+10 \hat{\jmath}, \quad-5 \hat{\imath}-10 \hat{\jmath}, \quad 5 \hat{\imath}, \quad 5 \hat{\imath}-10 \hat{\jmath}
$$

4. Which of the following has the smallest inertia?

An electron, a paper, an atom , a book
5. Two physical quantities whose dimensions are same, can be:

Added or subtrscted, Multiplied with each other, Divided, all of them.
6. Which of the following is not a unit of temperature?

$$
\text { Celsius, Farad, } \quad \text { Fahrenheit, } \quad \text { Kelvin }
$$

7. A ball is dropped from a height ' h ' above the ground. Its speed just before hitting the ground will be:
$\sqrt{2 g h m}, \quad \sqrt{2 g}(h-y), \quad 2 g h, \quad 2 g(h-y)$
8. If the work done on a system is positive, energy is
transfer from the system, remains constant, transfer to the system, none of them
9. The energy associated with an objects temperature is:

Potential energy, kinetic energy, mechanical energy, internal energy.
10. The gravitational force between two particles \qquad with increase the distance between them.
Increase, decrease, depend on the particles masses, remain constant.
11. Which of the following is not the name of physical quantity?

Kilogram, Density, Force, Energy

1. What is the difference between Vector and Sculler quantities in physics?

Scalars are quantities that are fully described by a magnitude (or numerical value) alone. Vectors are quantities that are fully described by both a magnitude and a direction.
2. What is the difference between isolated and non-isolated system?

An isolated system is one that does not exchange energy or matter with its surroundings, while a non- isolated system does allow for such exchanges.
3. Starting from Universal Gravitational constant (G), find gravity due to earth (g).

$$
m g=G \frac{M_{E} m}{R_{E}^{2}} \rightarrow g=G \frac{M_{E}}{R_{E}^{2}}
$$

Substitute for the mass of earth $M_{E}=5.98 \times 10^{24} \mathrm{~kg}$ and the radius of the earth $R_{E}=6.38 \times 10^{\wedge} 6 \mathrm{~m}$
$\therefore g=G \frac{M_{e}}{R_{e}{ }^{2}}=6.67 \times 10^{-11} \frac{5.98 \times 10^{24}}{6.38 \times 10^{6}}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
4. Force classified into two groups; mention them and give an example to each of them.
a. contact force (push, pull, hit, shoot)
b. field force (electric force, nuclear f., magnetic f., gravitational f.)
5. Assume two objects connected by a light string on Atwood's Machine as shown in the figure.

What is the relation between their acceleration a_{1} and a_{2} ?
What is the relation between the tension force upon each string?

$$
\begin{aligned}
& \mathrm{a}_{1}=\mathrm{a}_{2} \\
& \mathrm{~T}_{1}=\mathrm{T}_{2}
\end{aligned}
$$

Q.3A) Check the following equation is it dimensionally correct or not?

$$
x=x_{0}+v t+(1 / 2) a t^{2}
$$

where, x is displacement at given time t
x_{o} is the displacement at $t=0, v$ is the velocity at $t=0$, a represents the acceleration
Checking the dimensions on both sides, L.H.S. $=\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]$
R.H.S. $=\left[\mathrm{LT}^{-1}\right][\mathrm{T}]+\left[\mathrm{LT}^{-2}\right][\mathrm{T} 2]=\left[\mathrm{M}^{\circ} \mathrm{L}^{1} \mathrm{~T}^{\circ}\right]+\left[\mathrm{M}^{\circ} \mathrm{L}^{1} \mathrm{~T}^{\circ}\right]=\left[\mathrm{M}^{\circ} \mathrm{L}^{1} \mathrm{~T}^{\circ}\right]$

Comparing the L.H.S. and R.H.S.
Hence the formula is dimensionally correct.
Q.3B) The Cartesian coordinates of a point in the $(x, y)=(-3.5,-2.5) \mathrm{m}$. Find the polar coordinates (r, θ) of this point.
[5 Marks]

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& =\sqrt{(-3.50 \mathrm{~m})^{2}+(-2.50 \mathrm{~m})^{2}} \\
& =4.30 \mathrm{~m}
\end{aligned}
$$

and from Equation 3.3,

$$
\tan \theta=\frac{y}{x}=\frac{-2.50 m}{-3.50 m}=0.714
$$

$$
\theta=216^{\circ} \quad \text { (signs give quadrant) }
$$

Q4) Calculate the minimum energy required to send a 3000 kg spacecraft from the earth to a distance point in space where earth's gravity is negligible.
If the journey takes three weeks, what average power would the engine have to supply?
[10 Marks]

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
v_{e c c} & =\sqrt{\frac{2 G M_{e}}{R_{e}}}=1.12 \times 10^{4} \mathrm{~m} / \mathrm{s} \\
K & =\frac{1}{2} m v_{e c c}^{2}=\frac{1}{2} \times 3000 \times\left(1.12 \times 10^{4}\right)^{2} \\
& =1.88 \times 10^{11} \mathrm{~J}
\end{aligned} \\
& \text { (b) } P_{a v}
\end{aligned}=\frac{K}{\Delta t}=\frac{1.88 \times 10^{11}}{21 \text { day } \times 8.64 \times 10^{4} \mathrm{~s} / \text { day }}=103 \mathrm{~kW} .
$$

Q.5) Find the resultant of the three displacement vectors in Fig. by means of the component method. The magnitudes of the vectors are $A=5 \mathrm{~m}, \mathrm{~B}=5 \mathrm{~m}$ and $\mathrm{C}=4 \mathrm{~m}$.
[10 Marks]
$A_{x}=-(5.00 \mathrm{~m}) \cos \left(20.0^{\circ}\right)=-4.698 \mathrm{~m}$
$A_{y}=+(5.00 \mathrm{~m}) \sin \left(20.0^{\circ}\right)=+1.710 \mathrm{~m}$
$B_{x}=+(5.00 \mathrm{~m}) \cos \left(60.0^{\circ}\right)=+2.500 \mathrm{~m}$
$B_{y}=+(5.00 \mathrm{~m}) \sin \left(60.0^{\circ}\right)=+4.330 \mathrm{~m}$
$C x=0$ and $C y=-4.00 \mathrm{~m}$
The resultant (sum) of all three vectors (which we call R)

$$
\begin{aligned}
& R_{x}=A_{x}+B_{x}+C_{x} \\
& =-4.698 \mathrm{~m}+2.500 \mathrm{~m}+0 \mathrm{~m} \\
& =-2.198 \mathrm{~m} \\
& R_{y}=A_{y}+B_{y}+C_{y} \\
& =+1.710 \mathrm{~m}+4.330 \mathrm{~m}-4.000 \mathrm{~m} \\
& =2.040 \mathrm{~m}
\end{aligned}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

$$
=3.00 \mathrm{~m}
$$

$$
=\sqrt{(-2.198 \mathrm{~m})^{2}+(2.040 \mathrm{~m})^{2}}
$$

If the direction of R (as measured from the +x axis) is θ, then

$$
\begin{aligned}
& \tan \theta=\frac{2.040}{(-2.198)}=-0.928 \\
& \theta=-42.9^{\circ}+180^{\circ}=137.1^{\circ}
\end{aligned}
$$

Earth/Radius $=6,371 \mathrm{~km}$
Earth $/$ Mass $=5.972 \times 10^{24} \mathrm{~kg}$
$G=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$

