Relationship (R):-
Is the degree of similarity or association between two individuals resulting between them that carrying the same gene as a result of relationship

Relationship Between D and C $=\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}$

Relationship Between D and $\mathrm{E}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Relationship can be calculated as a relationship coefficient (Rxy) Rxy|= $\sum\left(\frac{1}{2}\right)^{n}$
*Whereas (n) is the number of generates or shares within the lineage. the relationship coefficient (Rxy) = twice the probability of two genes at loci in different individuals being identical by descent. Rxy values can range from 0 to 2 . Relationship can be calculated in several ways; from no.arro
$\frac{\text { no. arrow }}{2} \quad \frac{\text { sire }}{\mathbf{J}}$

2
K

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \operatorname{RAB} \left\lvert\,=\sum\left(\frac{1}{2}\right)^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\right.
\end{aligned}
$$

no. arrow sire

$$
\begin{equation*}
\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \tag{2}
\end{equation*}
$$

2

$$
\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

A RGH

A

J RJH

Inbreeding

In breeding can be calculated as a inbreeding coefficient (F)
$\mathrm{F}=\frac{1}{2} \mathrm{R}_{\mathrm{XY}}$

Coefficient of inbreeding (F)

The coefficient of inbreeding (F) is the probability that two alleles at a randomly chosen locus are identical by descent (IBD)
$I B D=$ copies of same alleles from common ancestor
F ranges from 0 to 1

- In breeding
- Mating with relatives
- Increases homozygosity
- Out breeding
- Mating with non-relatives
- Increases heterozygosity

$\mathrm{Fy}=? \quad, \quad \mathrm{Fy}=\frac{1}{2} \mathrm{R}_{\mathrm{CD}}$
$\mathrm{R}_{\mathrm{CD}}=$?
Sire no. arrow

A	2	$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
B	2	$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$

$\mathrm{R}_{\mathrm{CD}}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\mathrm{Fy}=\frac{1}{2} \mathrm{R}_{\mathrm{CD}} \longrightarrow \frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
same formula for the relationship between X and Y as before, but now including the inbreeding level (F) of the common ancestor. F indicates how much more likely it is that the same allele is passed on to two offspring.
$\mathrm{R}_{\mathrm{xy}}=\frac{\left[\Sigma\left(\frac{1}{2}\right) 2(1+F C P)\right.}{\sqrt{(1+F X) \times(1+F Y)}}$
e.g./

$\mathrm{R}_{\mathrm{EG}}=$? , $\mathrm{R}_{\mathrm{CD}}=$?, $\mathrm{R}_{\mathrm{AB}}=$?, $\mathrm{FE}=$? , $\mathrm{FD}=$?, $\mathrm{FC}=$?
$\mathrm{R}_{\mathrm{AB}}=$?
Sire no. arrow
G $2\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$\mathrm{FG}=0 \quad \mathrm{FA}=0 \quad \mathrm{FB}=0$
$\mathrm{R}_{\mathrm{CD}}=$?
Sire no. arrow
A $2\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
B $2\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
G $\quad 4\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
G $\quad 4\left(\frac{1}{2}\right)^{4}=\frac{1}{16}{ }^{\frac{10}{16}=\frac{5}{8}}$
$\mathrm{R}_{\mathrm{CD}}=\frac{\frac{5}{8}}{\sqrt{(1+F C) \times(1+F D)}}=\frac{\frac{5}{8}}{\sqrt{\left(1+\frac{1}{8}\right) \times\left(1+\frac{1}{8}\right)}}=\frac{5}{9}$
$\mathrm{FC}=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
$\mathrm{FD}=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
$\mathrm{FA}=0, \quad \mathrm{FB}=0$

REG=?
Sire no. arrow
G $3\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
G $3\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
G $3\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
$\mathrm{G} \quad 3\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
$\frac{4}{8}=\frac{1}{2}$
$\mathrm{R}_{\mathrm{EG}}=\frac{\frac{1}{2}}{\sqrt{(1+F E) \times(1+F G)}}=\Longrightarrow \frac{\frac{1}{2}}{\sqrt{\left(1+\frac{5}{16}\right) \times(1+0)}}=0.436$
$\mathrm{FE}=\frac{1}{2} \times \frac{5}{8}=\frac{5}{16}$
$F G=0$

Sire no. arrow

J	4	$\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
J	4	$\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
A	2	$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
B	2	$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
		$\frac{5}{8}=$

$F J=0 \quad F A=0 \quad F B=0$

$\mathrm{FC}=\frac{1}{2} \mathrm{R}_{\mathrm{AB}}$
$\mathbf{R A B}=\quad \frac{\text { Sire }}{\mathrm{J}} \quad \frac{\text { no. arrow }}{2\left(\frac{1}{2}\right)^{2}=\frac{1}{4}}$
$\mathbf{F C}=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
$\mathbf{F D}=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
$\mathrm{R}_{\mathrm{CD}}=\frac{\frac{5}{8}}{\sqrt{(1+F C) \times(1+F D)}}=\Longrightarrow \frac{\frac{5}{8}}{\sqrt{\left(1+\frac{1}{8}\right) \times\left(1+\frac{1}{8}\right)}}=\frac{\frac{5}{8}}{\sqrt{\left(\frac{9}{8}\right) \times\left(\frac{9}{8}\right)}}=\frac{\frac{5}{9}}{\frac{9}{8}}$
$=\frac{5}{8} \times \frac{8}{9}=\frac{5}{9}$

