Relationship (R):-

Is the degree of similarity or association between two individuals resulting between them that carrying the same gene as a result of relationship

Relationship Between D and C = $\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$

Relationship Between D and $E = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

Relationship can be calculated as a relationship coefficient (Rxy) $|Rxy| = \sum (\frac{1}{2})^n$

*Whereas (n) is the number of generates or shares within the lineage. the relationship coefficient (Rxy) = twice the probability of two genes at loci in different individuals being identical by descent. Rxy values can range from 0 to 2. Relationship can be calculated in several ways; from no arro

no. arrow 2	sire J
2	K

$$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$RAB = \sum_{1} \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\frac{\text{no. arrow}}{\left(\frac{1}{2}\right)^2 = \frac{1}{4}} \qquad \frac{2}{2} \qquad A \quad RGH$$

$$\left(\frac{1}{2}\right)^2 = \frac{1}{4} \qquad 2 \qquad A$$

$$\left(\frac{1}{2}\right)^2 = \frac{1}{4} \qquad 2 \qquad J \quad RJH$$

Inbreeding

In breeding can be calculated as a inbreeding coefficient (F)

$$F = \frac{1}{2} R_{XY}$$

Coefficient of inbreeding (F)

The coefficient of inbreeding (F) is the probability that two alleles at a randomly chosen locus are identical by descent (IBD)

IBD = copies of same alleles from common ancestor

F ranges from 0 to 1

- In breeding
 - Mating with relatives
 - Increases homozygosity
- Out breeding
 - Mating with non-relatives
 - Increases heterozygosity

$$Fy=? , Fy=\frac{1}{2}R_{CD}$$

$$R_{CD} = ?$$

Sire no. arrow A
$$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

B
$$2 \left(\frac{1}{2}\right)^2 = \frac{4}{4}$$

$$R_{CD} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

 $Fy = \frac{1}{2} R_{CD} \implies \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

same formula for the relationship between X and Y as before, but now including the inbreeding level (F) of the common ancestor. F indicates how much more likely it is that the same allele is passed on to two offspring.

$$R_{xy} = \frac{\left[\sum \left(\frac{1}{2}\right)2 (1+FCP)}{\sqrt{(1+FX)\times(1+FY)}}$$

$$R_{CD}=?$$

A
$$\frac{1}{2} \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

B
$$2 \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

G 4
$$(\frac{1}{2})^4 = \frac{1}{16}$$

G 4
$$(\frac{1}{2})^4 = \frac{1}{16}$$

$$R_{CD} = \frac{\frac{5}{8}}{\sqrt{(1+FC)\times(1+FD)}} = \frac{\frac{5}{8}}{\sqrt{\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{8}\right)}} = \frac{5}{9}$$

$$FC = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

$$FD = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

$$FA=0$$
 , $FB=0$

Sire no. arrow

G 3
$$(\frac{1}{2})^3 = \frac{1}{8}$$

G 3 $(\frac{1}{2})^3 = \frac{1}{8}$

$$\frac{4}{8} = \frac{1}{2}$$

$$R_{EG} = \frac{\frac{1}{2}}{\sqrt{(1+FE)\times(1+FG)}} \longrightarrow \frac{\frac{1}{2}}{\sqrt{\left(1+\frac{5}{16}\right)\times(1+0)}} = 0.436$$

$$FE = \frac{1}{2} \times \frac{5}{8} = \frac{5}{16}$$

$$FG=0$$

Sire no. arrow

J 4
$$(\frac{1}{2})^4 = \frac{1}{10}$$

A 2 $(\frac{1}{2})^2 = \frac{1}{4}$
B 2 $(\frac{1}{2})^2 = \frac{1}{4}$

$$\frac{5}{8} =$$

$$FJ=0$$
 $FA=0$ $FB=0$

$$FC = \frac{1}{2} R_{AB}$$

RAB= Sire no. arrow
$$\int \frac{\sin x}{2} \frac{\sin x}{(\frac{1}{2})^2} dx$$

$$FC = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

$$FD = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

$$R_{CD} = \frac{\frac{5}{8}}{\sqrt{(1+FC)\times(1+FD)}} = \frac{\frac{5}{8}}{\sqrt{\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{8}\right)}} = \frac{\frac{5}{8}}{\sqrt{\left(\frac{9}{8}\right)\times\left(\frac{9}{8}\right)}} = \frac{\frac{5}{8}}{\frac{8}{9}}$$
$$= \frac{5}{8} \times \frac{8}{9} = \frac{5}{9}$$