

Soil Chemistry

- The chemistry of a soil determines its
 - *- Ability to supply available

plant nutrients and

Affects its physical properties

and the health of its microbial population.

*- In addition, a soil's chemistry also determines its corrosivety, stability, and ability to absorb pollutants and to filter water.

- It is the surface chemistry of mineral and organic <u>colloids</u> that determines soil's chemical properties.

Interaction of water molecules with clay surfaces, and cations and anions in soil

Soil Reaction (pH)

- Soil reaction is the degree of acidity or alkalinity of a soil, usually expressed as a pH value.
- Soil pH ₌ log [H⁺]
- Soil pH is an <u>indicator</u> of physical, chemical and biological properties in soil.
- Soil pH is also related to the cations present on the exchange complex.

pH of Common Materials

- Milk of magnesia: ~10.
- Bicarbonate of soda:
- Pure water:
- Milk:
- Natural rain:
- Beer/coffee:
- Lemon Juice:

~10.5 ~ 8.3 7.0 ~ 6.8 5 to 6 ~ 4 ~ 2

p	H 5	.5 6	.0 6.	.5 7.	. 0 7	.5 8	.0 8.	.5 p ł
	Strongly acid	Medium acid	Slightly acid	Very slightly acid	Very slightly alkaline	Slightly alkaline	Medium alkaline	Strongly alkaline

Descriptive terms for Soil pH ranges

Soil pH...

- This gives a measure of the acidity or basicity of a soil. 0-7 = acidic; 7-14 = basic.
- Acidity is measured by determining the concentration of Hydrogen (H⁺) ions in the soil.
- Higher concentration of H⁺ ions = high acidity, higher concentration of OH⁻ ions = high basicity.
- In general, the <u>ideal pH</u> for plant growth is about
 5.5 in organic soils and about 6.5 in mineral soils.

Where do H⁺ and OH⁻ ions come from? Dissociation

[+]

[-]

[-]

Water Molecule (2 hydrogen and one oxygen atom) spilt to form negative hydroxl ion (alkaline) and positive hydrogen ion (acidic)

of water

molecule

Why is soil pH important?

- Affects solubility of minerals.
- Affects type, numbers and activity of microorganisms.
 - Fungi tolerate acidity better than bacteria. Bacteria often negatively affected by high acidity (i.e. low pH).
 - Indirectly affects aggregate stability.
- Determines what happens to many soil pollutants.
- CEC increases with soil pH.

Soil Buffering Capacity...

- The tendency of soils is to resist changes of the pH of the soil solution.
- This resistance is termed "buffering".
- Soils have different buffering capacities.
- Generally,

(Higher CEC = greater buffering capacity).

• Buffering capacity indicates dynamic equilibrium of soil solution.

Changes of all types tend to be resisted by the system.

Buffering Mechanisms

- Oxidation of pyrite and reduced S minerals; dissolution of minerals: pH 2 to 4
- Aluminum compounds: pH 4.0 to 5.5
- Cation exchange: pH **5.5** to **6.8**
- Organic matter and minerals: pH 6.8 to 7.2
- Ca and Mg carbonates: pH 7.2 to 8.5
- Exchangeable Na⁺; Dissolution of solid sodium carbonate: pH 8.5 to 10.5

Percent Base Saturation

•Basic cations : Ca^{++} , Mg^{++} , Na^{+} , K^{+}

Acidic cations: Al⁺⁺⁺, H⁺

Percent base saturation: A measure of the proportion of basic cations occupying the exchange sites of a soil

• Cation exchange capacity is the sum of <u>all cations</u> on the exchange complex

$$\Sigma$$
 (Ca⁺⁺, Mg⁺⁺, K⁺, Na⁺)

% Base Saturation =

x 100

Cation Exchange Capacity

Soil Acidity Types

- Active acidity:
 - The activity of hydrogen ions in solution.
- <u>Reserve acidity:</u>

The acidity that is associated with the exchange complex. It is neutralized by lime or other alkaline material.

Soil structure and pH

- Soil structure
 - = A measure of soil's "clumpiness"
 - * A medium amount of clumpiness is best for plants
 - * Repeated tilling compacts soil, decreasing its waterabsorbing capabilities.

• Soil pH

- = affects a soil's ability to support plant growth
- -Soils that are too acidic or basic can kill plants
- -pH influences the availability of nutrients for plants

Q/Write only the pH unit?

س/ ماهي وحدة درجة التفاعل ؟

پ/ يه کهى pH چى يه ؟