

<u>Cation-exchange capacity</u> (CEC)

Is the amount of exchangeable cations per unit weight of dry soil and is expressed in terms of milliequivalents of positively charged ions per 100 grams of soil meq/100g soil

CEC Definition:

- The sum total of exchangeable cations that a soil can adsorb. This soil property is due to the negative electrical charge of the colloidal (both organic and inorganic) fraction of most soils.
- The negative charge is balanced by adsorbed cations so that the soil system as a whole is electrically neutral.
- The balancing cations represent a definite quantity referred to as the cation exchange capacity (CEC)."

Why Cation Exchange Capacity is important?

- Exchangeable K, Mg and Ca are important sources of plant K.
- The amount of lime required to neutralize a soil.
- Cation exchange sites slow losses by leaching.
- Cation exchange sites hold fertilizers and so reduce their mobility.
- Cation exchange sites adsorb many metals from wastewater, preventing them from entering the ground water.

Cation Exchange is vital for plant growth

- Cation exchange :
 - = Process that allows plants to gain nutrients
 - Negatively charged soils hold cations (positively charged
 - ions) of calcium, magnesium, and potassium
 - Roots donate hydrogen to soil in exchange for these

nutrients

Cation Exchange is vital for plant growth

Cation exchange capacity:

- = A soil's ability to hold cations
- Cations that don't leach are more available to plants
- A useful measure of soil fertility
- Greatest in fine or organic soils

Colloids and cation exchange...

Cation exchange occurs at the surfaces of colloidal particles.

Cation exchange =

"The interchange between a cation in solution and another cation adsorbed on the surface of any surface - active material such as a clay colloid or organic colloid."

Cation Exchange Illustrated

Cation exchange process

A SCHEMATIC LOOK AT CATION EXCHANGE

CEC 25

CEC 5

MORE CLAY, MORE POSITIONS TO HOLD CATIONS LOW CLAY CONTENT, FEWER POSITIONS TO HOLD CATIONS

SOME PRACTICAL APPLICATIONS	
Soils with CEC 11-50 Range	Soils with CEC 1-10 Range
 High clay content More lime required to correct a given pH Greater capacity to hold nutrients in a given soil depth Physical ramifications of a soil with a high clay content High water-holding capacity 	 High sand content Nitrogen and potassium leaching more likely Less lime required to correct a given pH Physical ramifications of a soil with a high sand content Low water-holding capacity

Q1/ Write the most important differences between A & B? پ 1 / جياوازي چي په نه نيوان نهم دوو وينه يهي بەرامبەرت ؟ بەتەواوى روونى بكەوە ھەريەكەيان ئاماژہ بہ چی دہکەن ؟

CEC value of some clay minerals & Organic matter

Minerals	CEC meq /100g soil
Fe, Al oxides	0
Kaolinite	2-16
Illite	20-40
Chlorite	20-40
Montmorillonite	60-100
Fermeculite	100-150
Organic matter	100- 800

CEC _{Soil} = CEC _{Clay}* Clay _% + CEC _{OM} * Organic matter _%

- Q* Assume the soil content of Montmorillonite 15 %, 10 % Chlorite and 3 % organic matter, then explain the ability cohesion range of the soils?
- Answer/
- In the low level:
- CEC _{Soil} = CEC _{Montmorillonite} * % _{Montmorillonite} + CEC _{Chlorite} * % _{Chlorite} + CEC _{OM} * % _{Organic matter}
 - = (60 * 15 +20 * 10 +3 * 100) * 0.01
 - = 14 meq / 100 g soil

In the high level:

= (100*15 + 40*10 + 800*3)*0.01

= 43 meq / 100g soil

Ability between 14-43 meq / 100g soil