Salahaddin University **College of Agricultural Engineering Sciences Soil and Water Department Second Stage** Lecture – 3 -Land Levelling By Kamyar M. Mohammed 2022-2023

Centroid is the geometric center of a geometric object: a one-dimensional curve, a twodimensional area or a three-dimensional volume. Centroids are useful for many situations in Statics, including the analysis of distributed forces, beam bending, and shaft torsion.

Two related concepts are the *center of* gravity, which is the average location of an object's *weight*, and the *center of mass* which is the average location of an object's *mass*.

Centroid Definition

The centroid is the center point of the object

Types of Centroid

1. Simple Centroid Shapes

2. Compound Centroid Shapes

3. Irregular Shapes

Properties of Centroid

The properties of the centroid are as follows:

- 1. The centroid is the centre of the object.
- 2. It is the centre of gravity.
- 3. It should always lie inside the object.
- 4. It is the point of concurrency of the medians.

1. Simple Centroid Shapes

$$\overline{y} = \frac{4r}{3\pi}$$
 $\overline{x} = r$

2. Compound Centroid Shapes

Shape	Figure	$ar{x}$	$ar{y}$	Area
rectangle area	$ \begin{array}{c} y \\ h \\ \downarrow \\ \downarrow$	$\frac{b}{2}$	$\frac{h}{2}$	bh
General triangular area	$\frac{h}{3}$	$rac{x_1+x_2+x_3}{3}$ [1]	$\frac{h}{3}$	$\frac{bh}{2}$
Isosceles-triangular area	$A \xrightarrow{\begin{array}{c} \beta \\ h \\ l \end{array}} B$	$\frac{l}{2}$	$rac{h}{3}$	$\frac{lh}{2}$

Shape Name	Diagram	Area
Square	4 in	$A = s^2$ $A = 4^2$ $A = 16 \text{ sq inches}$
Triangle	30	$A = \frac{1}{2}bh$ $A = \frac{1}{2}10 \times 3$ $A = \frac{1}{2}30$ $A = 15 \text{ sq. units}$
Rectangle	12 cm 4 cm	A = L x W A = 12 x 4 A = 48 sq. cm
Circle	10	A = πr ² A = 3.14 x 5 ² A = 3.14 x 25 A = 78.5 sq. units
Trapezoid	10 in 8 in 14 in	$A = \frac{1}{2} h(b_1 + b_2)$ $A = \frac{1}{2} 6(10 + 14)$ $A = \frac{1}{2} 6(24)$ $A = 3 \times 24$ $A = 72 \text{ sq. in}$

Centroid Formula

Centroid Formula

Let's consider a triangle. If the three vertices of the triangle are $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, then the <u>centroid</u> of a triangle can be calculated by taking the average of X and Y coordinate points of all three vertices. Therefore, the centroid of a triangle can be written as:

Centroid of a triangle = $((x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3)$

Examples on Calculating Centroid

Find the solved examples below, to find the centroid of triangles with the given values of vertices.

Question 1: Find the centroid of the triangle whose vertices are A (2, 6), B (4, 9), and

C (6,15).

Solution:

A $(x_1, y_1) = A (2, 6)$ B $(x_2, y_2) = B (4,9)$ C $(x_3, y_3) = C (6,15)$

We know that the formula to find the centroid of a triangle is = $((x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3)$

Centroid of a triangle = ((2+4+6)/3, (6+9+15)/3) = (12/3, 30/3) = (4, 10)

Therefore, the centroid of the triangle for the given vertices A (2, 6), B (4,9), and C (6,15) is (4, 10).

Question 2: Find the centroid of the triangle whose vertices are A (1, 5), B (2, 6), and C (4, 10).

Solution: Given, A (1, 5), B (2, 6), and C (4, 10) are the vertices of a triangle ABC.

By the formula of the centroid we know; Centroid = $((x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3)$

Centroid = (1+2+4)/3, (5+6+10)/3 = (7/3, 21/3) = (7/3, 7)Hence, the centroid of the triangle having vertices A (1, 5), B (2, 6), and C (4, 10) is (7/3, 7). Question 3: If the vertices of a triangle are (2, 1), (3, 2) and (-2, 4). Then find the centroid of it.

Solution: Given, (2, 1), (3, 2) and (-2, 4) are the vertices of triangle

Centroid = $((x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3)$ Putting the values, we get; Centroid, O = (2+3-2)/3, (1+2+4)/3 O = (3/3, 7/3)O = (1, 7/3)

Hence, the centroid of the triangle having vertices (2, 1), (3, 2) and (-2, 4) is (1, 7/3).

3. Irregular Centroid Shapes

Irregular shapes

For irregular 3D shapes you can also separate the object into segments, determine the crosssectional area of each piece and then plot the cross-sectional area vs. position to determine the centroid of the shape. The centroid of each area segment must be determined.

The expressions are modified as follows:

 $\bar{X} = \frac{\sum x_c (A\Delta x)}{\sum A\Delta x} = \frac{\sum x_{c_i} V_i}{\sum V_i}$ $\bar{Y} = \frac{\sum y_c (A\Delta x)}{\sum A\Delta x} = \frac{\sum y_{c_i} V_i}{\sum V_i}$ $\bar{Z} = \frac{\sum z_c (A\Delta x)}{\sum A\Delta x} = \frac{\sum z_{c_i} V_i}{\sum V_i}$

