
Lecture 5

Lecturer

Kanar Shukr Muhamad

Data Structure

and

Algorithm Design

2023-2024

University of Salahaddin-Hawler
College of Engineering
Software and Informatics Engineering Department
Second Year Class

Stack

2

➢A stack is a linear data structure in which the insertion of a

new element and removal of an existing element takes

place at the same end represented as the top of the stack.

➢To implement the stack, it is required to maintain

the pointer to the top of the stack.

➢A stack data structure could use an array, a linked list, or

any thing that can hold data, stores arbitrary objects.

Stack Continue

3

➢To add(push) an item to the stack, it must be placed on the

top of the stack.

➢To remove(pop) an item from the stack, it must be

removed from the top of the stack too.

➢Thus, the last element that is pushed in to the stack, is the

first element to be popped out from the stack. i.e. ,Last In

First Out(LIFO)

Stack

4

➢ It supports the following main operations:

➢push(object o): inserts element o.

➢pop(): removes and returns the last inserted element.

➢ isEmpty(): returns a Boolean value indicating whether no

elements are stored.

➢ isFull(): checks weather stack is full or not.

Stack Continue

5

Stack Applications

6

➢Reversing a sequence of string.

➢Checking palindrome sequences.

➢Store the return address when use the CALL interrupt.

➢Converting expression from infix to prefix or prefix to

infix and evaluation the expression which found in any

form above.

➢Page-visited history in a Web browser

➢Undo sequence in a text editor

Exception

7

➢Attempting the execution of an operation of ADT may

some times cause an error condition, called an exception.

➢Exceptions are said to be “thrown” by an operation that

can not be executed.

➢In the Stack ADT, operations pop can not be performed if

the stack is empty.

➢Attempting the execution of pop on an empty stack throws

an EmptyStackException

Stack Algorithm

8

➢Stack is an order collection of items, it may be declared as

array or structure containing two objects.

➢As array we can define the stack as follows:

 int stack[max_size_of_stack];

 int top;

➢Note that stack variable can be of any data type (integer,

float, etc.) while top must be of type integer always.

Stack Algorithms Continue

9

➢ 1. PUSH algorithm:

 Adds an item to the stack. If the stack is full, then it is said to be

an overflow condition.

push(value)

begin

 if stack is full

 return

 end if

 else

 increment top

 assign value to stack[top]

 end else

end algorithm

Stack Algorithms Continue

10

2. POP algorithm: Return and remove an item from the

stack. The items are popped in the reversed order in which

they are pushed.

If the stack is empty, then it is said to be

an underflow condition.

Stack Algorithms Continue

11

pop()

begin

 if stack is empty

 return

 end if

 else

 save a value of stack[top]

 decrement top

 end else

 return saved value

end algorithm

Stack Algorithms Continue

12

➢3. Stack empty algorithm:

 Returns true if the stack is empty, else false.

sisEmpty()

 begin

 if top < 0

 return true

 else

 return false

 end algorithm

Stack Algorithms Continue

13

4.Stack full algorithm: This algorithm is use to check if

stack is full or not, it is called from push algorithm.

sisFull()

 begin

 if top =maxsize-1

 return true

 else

 return false

 end algorithm

Limitations

14

➢Limitations

➢The maximum size of the stack must be defined a priori,

and can not be changed.

Convert Infix to Postfix

15

1. Infix: A+B Here arithmetic operator in the middle.

2. Postfix: AB+ Here arithmetic operator at the end.

3. Prefix: +AB Here arithmetic operator at the begin.

➢ In computer the compiler covert infix expression top

postfix expression by using a stack.

Convert Infix to Postfix

16

➢Algorithm of converting infix expression to postfix

expression by using single stack.

1. We use single stack to store the operator signal.

2. Check arithmetic expression character by character

from left to right.

3. Character may be:

1. If character is operand (a to z, 1 to 9) then output it

into output string.

Convert Infix to Postfix Continue

17

2. If character is left parenthesis “(“ then push in stack

3. if character is operator (+,-,*,/) then pop all operators

from stack that have priority greater or equal than

new operator to the output string then push new

operator to the stack.

4. if character is right parenthesis “)‟, pop all operators

from stack until left bracket to the output string ,

ignore left and right parentheses do not add to the

output string.`

Convert Infix to Postfix Continue

18

4. If you finished the arithmetic expression then popped all

operators from stack to the output string. The final shape

of output string is postfix expression.

Convert Infix to Postfix Continue

19

➢The order of precedence:

❖Exponentiation ^

❖ *,/

❖ +,-

❖Equivalent(=,<,<=,>,>=.!=)

❖NOT

❖AND,%

❖OR

Convert Infix to Postfix Continue

20

➢ E.x/ Convert infix to postfix: (6 – 2) * (5+4)
O/P StringStackI/PStep No.

((1

6(62

6(--3

6 2(-24

6 2 - null)5

6 2 - **6

6 2 - * ((7

6 2 - 5* (58

6 2 - 5* (++9

6 2 – 5 4* (+410

6 2 – 5 4 +*)11

6 2 – 5 4 + *nullnull12

	Slide 1: Data Structure and Algorithm Design
	Slide 2: Stack
	Slide 3: Stack Continue
	Slide 4: Stack
	Slide 5: Stack Continue
	Slide 6: Stack Applications
	Slide 7: Exception
	Slide 8: Stack Algorithm
	Slide 9: Stack Algorithms Continue
	Slide 10: Stack Algorithms Continue
	Slide 11: Stack Algorithms Continue
	Slide 12: Stack Algorithms Continue
	Slide 13: Stack Algorithms Continue
	Slide 14: Limitations
	Slide 15: Convert Infix to Postfix
	Slide 16: Convert Infix to Postfix
	Slide 17: Convert Infix to Postfix Continue
	Slide 18: Convert Infix to Postfix Continue
	Slide 19: Convert Infix to Postfix Continue
	Slide 20: Convert Infix to Postfix Continue

